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Abstract. In this paper, by establishing a new graph Γ(G) over the semi-direct product of groups, we
will first state and prove some graph-theoretical properties, namely, diameter, maximum and minimum
degrees, girth, degree sequence, domination number, chromatic number, clique number of Γ(G). In the final
section we will show that Γ(G) is actually a perfect graph.

1. Introduction and Preliminaries

In this paper, as we indicated in the title, we will mainly define a new graph over semi-direct products
of groups and then will investigate the graph theoretical properties for this new graph. In detailed, for any
two subgroups A and K of G satisfying A ≤ G, K C G and A ∩ K = {1G}, we will say that G is a semi-direct
product of A and K and then will define a new simple undirected graph Γ(G) in terms of G. After that, as
a quite similar way in [13, 20], we will investigate some graph-theoretical properties (such as the diameter,
maximum and minumum degrees, girth, chromatic number, clique number, domination number, degree
sequence and irregularity index) over Γ(G).

In the literature, there are some important studies that are interested in special graph varieties related to
algebraic structures. The most important class of graphs associated to algebraic structures is that of Cayley
graphs, because these graphs have valuable applications (cf. [24]) and are related to automata theory (cf.
[25, 26]). Cayley graphs of groups have been considered in many articles (see, for example, [7, 22, 23, 31]).
Well-known classes of graphs related to algebraic structures include power graphs (cf. [1, 27]) and zero-
divisor graphs (cf. [2, 3, 14]). In fact our new graph Γ(G) will be constructed in the light of these thoughts.
However the graph Γ(G) in here is different than the previous special type of graphs and corresponding
works on them since it will be built up on the semi-direct product of two groups in the meaning of the
vertex and edge sets. This will give us an opportunity for extending the theory used in here to iterated
semi-direct products (cf. [12]) and wreath products (cf. [34]) for future studies. We also note that although
a similar approximation has been recently applied by the second author in another joint paper [20], the
results in here are more general than the previous study since the submonoids considered in [20] were very
special while the subgroups in here are not. We finally indicate that one of the reason to define the graph
Γ(G) is the following. In some studies, for instance, [21, 28, 32] while the diameters in the related graphs
are given as inequalities, the same parameter in here will be given as a direct equation (see Theorem 2.1).
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In here we also establish up similar conditions for the graph parameter girth (see Theorem 2.2), and for
maximum and minumum degrees (see Theorem 2.3).

Since our new graph construction will be based on the semi-direct products of two groups (see, for
instance, [8, 34]), let us remind it very briefly: For any two finite groups A and K with presentations
PA = [X ; r] and PK = [Y ; s], and also for all a ∈ A, let us consider the homomorphism ϕ : A → Aut(K),
a 7→ ϕa. The semi-direct product G = K oϕ A of K by A is defined as the set of elements that are all ordered
pairs (a, k) (a ∈ A, k ∈ K) satisfying the multiplication (a, k)(a′, k′) = (aa′, (kϕa′ )k′), and has a presentation
P = [X, Y ; r, s, t], where t = {yxλ−1

yx x−1
| y ∈ Y, x ∈ X} and λyx is a word on Y representing the element

(ky)ϕax of K (a ∈ A, k ∈ K, x ∈ X, y ∈ Y) (cf. [19, Proposition 10.1]). Throughout this paper, all elements zi
(i = 1, 2, . . . , k) in the generating set X ∪ Y of G will be formed as zi , zε1

1 zε2
2 . . . z

εk
k , where k ≥ 2 according

to the Normal Form Theorem (NFT) (see [11]). Also the homomorphism ϕ will always be not identity idG
unless stated otherwise. We should finally note that, in some sources of the literature, the definition of the
semi-direct product does not always given as in above. But we actually preferred to use it as this way since
group presentations are very economical way to describe the generating set and relations (which contains
the canonical elements, see [11] for the details) among these generators. A generating set for a group is
essential for defining a new graph in this paper (see below).

1.1. A new graph Γ(G) based on semi-direct products
As we described in the previous section, since the semi-direct product G is constructed on two finite

groups A and K, the generating set X∪Y of it certainly contains a finite number of elements. This situation
occurs in the definition of Γ(G) = (V,E) associated with G since the vertex set V consists of the whole elements
of G (not only generaters, and so V = G) and the edge set E is obtained by the following steps:

(I) Each of the vertices in this graph must be adjoined to the vertex 1G (except 1G itself since the graph is
assumed to be simple).

(II) (i) For any two vertices w1 = xε1
1 xε2

2 . . . xεm
m and w2 = yδ1

1 yδ2
2 . . . yδn

n (where n > 2, εi and δ j are
integers) and for all xi, y j ∈ X ∪ Y (1 ≤ i ≤ m , 1 ≤ j ≤ n), if xi , y j, then w1 is adjoined to the w2
(shortly, w1 ∼ w2).

(ii) As a consequence of (i), for any two vertices w1 = xk
i and w2 = xt

j (1 ≤ i, j ≤ n, i , j, and k, t are
integers), we can directly take w1 ∼ w2. However, to adjoin w1 and w2 while i = j, it must be
k , t.

In the rest of this paper the notation Γ will always denote a general undirected simple graph while Γ(G)
will denote the graph defined in the above steps, and also all results in this paper will be based on Γ(G). In
Figures 1 and 2, we will present some Γ(G) graph examples that are obtained by the above definition.

2. Some Special Properties of Γ(G)

In this section, by considering Γ(G), we will mainly deal with the special graph properties, namely
diameter, girth, maximum and minimum degrees, domination numbers and finally irregularity index. It is
quite well known that, for any graph Γ, most of these properties can be obtained by checking the distance
or the total number of the vertices (see [15]). So we will follow the same idea to prove the results in this
section.

We first recall that, for any Γ, the distance (i.e. length of the shortest path) between two vertices w1, w2
of Γ is denoted by dΓ(w1, w2), and so the diameter of Γ is defined by the set diam(Γ) = sup{dΓ(w1, w2) :
w1 and w2 are vertices of Γ}. By taking into account Γ(G) as Γ, we obtain the following result.

Theorem 2.1. Let G be a semi-direct product of any two finite groups, and let us consider Γ(G). Then diamΓ(G) = 2.

Proof. The proof will be presented in three cases by considering the vertices of Γ(G).
Case 1: Let w1 = xεi

i and w2 = yδ j

j be any two vertices in Γ(G). Thus, by (II)-(ii) in Section 1.1, w1 ∼ w2 and
so dG(w1, w2) = 1.
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Case 2: Assume that w1 = xε1
1 xε2

2 . . . xεn
n and w2 = yδ j

j are any two vertices in Γ(G). By (II)-(i) in Section
1.1, for each i = 1, 2, . . . ,n, if xi , y j then w1 ∼ w2 which implies dG(w1, w2) = 1. On the other hand, for at
least one i = 1, 2, . . . ,n, if ∃ xi = y j then w1 / w2 but since w1 ∼ 1G and w2 ∼ 1G (by (I) in Section 1.1), we get
w1 ∼ 1G ∼ w2 and this clearly gives dG(w1, w2) = 2.

Case 3: As the next step of Case 2, let us consider two vertices w1 = xε1
1 xε2

2 . . . xεn
n and w2 = yδ1

1 yδ2
2 . . . yδn

n
in V(Γ(G)). By a similar approximation, for all i, j = 1, 2, . . . ,n, if xi , y j then w1 ∼ w2 which implies
dG(w1, w2) = 1 by (II)-(i) in Section 1.1. However, for at least one i, j = 1, 2, . . . ,n, if ∃ xi = y j then w1 / w2
but since w1 ∼ 1G and w2 ∼ 1G (by (I) in Section 1.1), we get w1 ∼ 1G ∼ w2 and so dG(w1, w2) = 2.

At this point we accurately note that since G is a semi-direct product (and so ϕ , idG), it cannot be
abelian and therefore cannot be a cyclic group. Therefore the generating set of G definitely does not consist
of one element xi. This implies that Case 1 cannot be the only case that occurs for all pairs of vertices w1
and w2. In other words, the generating set of G must contain another element y j together with xi, and then
the vertices of the related graph must be formed as w = xk

i yt
j (where 1 ≤ k ≤ n and 1 ≤ t ≤ m such that n, m

stand for the orders of xi and y j, respectively). Notice that the length of these elements can be at least two
with the form w = xiy j. Hence, by the adjoining steps defined in Section 1.1, this situation always shows
that diam(Γ(G)) = 2.

For our next result, let us recall another graph parameter girth. It is quite well known that the girth of
any Γ, denoted by 1irth(Γ), is the length of the shortest cycle contained in it. However, if Γ does not contain
any cycle (i.e. acyclic), then the girth of it is assumed to be infinity. Thus we have the following theorem.

Theorem 2.2. For a semi-direct product G of any two finite groups, 1irth(Γ(G)) = 3.

Proof. By considering the vertices of Γ(G), the proof is given in two main cases as similar as in the proof of
Theorem 2.1.

Case 1: For a vertex w1 = xε1
1 xε2

2 . . . x
εn
n (n ≥ 2) in Γ(G), if there does not exist an adjacent vertex

w2 = yδ1
1 yδ2

2 . . . y
δm
m , in other words ∃ xi = y j (1 ≤ i ≤ n, 1 ≤ j ≤ m), we cannot discuss about the cycle in Γ(G).

However, if there exists ∀ xi , y j (1 ≤ i ≤ n, 1 ≤ j ≤ m), then we only get w1 ∼ 1G and w2 ∼ 1G (equivalently,
w1 ∼ 1G ∼ w2 ∼ w1) by (I) in Section 1.1. Thus 1irth(Γ(G)) = 3.

Case 2: For a vertex w1 = xεi
i in Γ(G), since G is a group and so there must be a cyclic subgroup < xi >

of G, we certainly have another vertex (actually an element of G) w2 = xt
i (or if o(xi) = 2 then, by Section

1.1, there is w3 = x j in Γ(G)) in Γ(G). Hence, by the edge set steps in Section 1.1, w1 ∼ w2 (or w3), and then
w1 ∼ 1G and w2 ∼ 1G (i.e. w1 ∼ 1G ∼ w2 (or w3) ∼ w1). This also implies 1irth(Γ(G)) = 3.

For any simple graph Γ, the degree of a vertex w of Γ, denoted by de1Γ(w), is the number of vertices
adjacent to w. Among all degrees, the maximum degree ∆(Γ) and the minimum degree δ(Γ) of Γ is the number
of the largest and the smallest degrees, respectively, in Γ. Our next result is actually about these two
parameters.

Theorem 2.3. Let G be a semi-direct product of order n, and let Γ(G) be the graph obtained from G as defined in
Section 1.1. Then the maximum and minimum degrees of Γ(G) are determined by ∆(Γ(G)) = n − 1 and δ(Γ(G)) = 1,
respectively.

Proof. Since G has total n element included 1G, by (I) in Section 1.1, for all w ∈ Γ(G) (w , 1G), we have
w ∼ 1G. Therefore 1G has total n − 1 adjacent vertex, and so de1G(1G) = n − 1. (Recall also that for a simple
graph with n vertices, the maximum degree can be n − 1). Thus ∆(Γ(G)) = n − 1.

Now assume that the group G (having n elements) is generated by 〈x1, x2, . . . , xk〉. (Recall that the
generating set must contains finite number of elements by our assumption). Therefore, for all εi , 0, we
certainly have a vertex w1 = xε1

1 xε2
2 . . . xεk

k . Thus, by the definition in Section 1.1, since there should not be
existed an adjacent vertex 1G , w2 = yδ1

1 yδ2
2 . . . yδk

k (for all xi , y j and i, j = 1, 2, . . . , k) with w1, the vertex
w1 can only be adjacent with 1G. As a result of this, δ(Γ(G)) = 1.



S. Topkaya, A.S. Cevik / Filomat 30:3 (2016), 611–619 614

For any simple graph Γ, there also exists the term degree sequence DS(Γ) which is a sequence of degrees
of the vertices in Γ. In [33], a new graph parameter irregularity index, denoted by t(Γ), is defined for simple
graphs. In fact t(Γ) is the number of distinct terms in the set DS(Γ). In the following, we will prove a result
on degree sequence and irregularity index by considering a semi-direct product of two finite cyclic groups.
We note that although most of the results over irregularity index are stated as inequalities, our next theorem
establishes an exact equality.

Theorem 2.4. Let us take two finite cyclic groups Cm = 〈x〉 and Cn =
〈
y
〉

of orders m and n, respectively, and also
let us consider a semi-direct product G = Cm oϕ Cn such that ϕ , idG. Under these conditions, the degree sequence
and irregularity index of the graph Γ(G) are

DS(Γ(G)) =

 1, 1, . . . , 1︸      ︷︷      ︸
((m−1)(n−1)) times

, (m + n − 2), (m + n − 2), . . . , (m + n − 2)︸                                               ︷︷                                               ︸
(m+n−2) times

, (mn − 1)


and t(Γ(G)) = 3, respectively.

Proof. We should keep in our mind that the order of G is mn, and thus |V(Γ(G)| = mn. Now, the proof will
be discussed under some cases by considering the type of these mn vertices.
• By (I) in Section 1.1, for all w ∈ V(Γ(G)), we have 1G ∼ w and since the graph is simple, 1G / 1G which

implies that de1Γ(G)(1G) = mn − 1.
• Since G = 〈x〉oϕ

〈
y
〉
, we certainly have some vertices of the form xk (1 ≤ k < m) and yt (1 ≤ t < n) in the

related graph Γ(G). Therefore, by (I) in Section 1.1, each xk
∼ 1G and yt

∼ 1G. Moreover, by (II)-(ii) in Section
1.1, xk

∼ x, xk
∼ x2, . . ., xk

∼ xk−1, xk
∼ xk+1, . . ., xk

∼ xm−1, yt
∼ y, yt

∼ y2, . . ., yt
∼ yt−1, yt

∼ yt+1, . . ., yt
∼ yn−1,

xk
∼ y, xk

∼ y2, . . ., xk
∼ yn−1 and yt

∼ x, yt
∼ x2, . . ., yt

∼ xm−1. Notice that xk / xk and yt / yt. In addition,
by (II)-(i) in Section 1.1, xk / xsyt (1 ≤ s < m, 1 ≤ t < n) and similarly yt / ylxu (1 ≤ t < n, 1 ≤ u < m).

In fact these above processes show that the degree of the vertices of the form xk are (m + n − 2) (i.e., the
number of elements in Cm plus the number of elements in Cn minus the number of non-adjoining elements).
The same value is obtained for the vertices of the form yt. Hence the total number of such vertices is equal
to (m + n − 2) [m + n − 2].
• Finally, let us consider the vertices of the form xkyt (1 ≤ k < m, 1 ≤ t < n). By (I) in Section 1.1,

vertices of this type can only be adjoined with 1G. In fact the total number of these vertices is obtained by
subtract the total number of vertices of the form xk and yt, and identity element from the order of G. That
is mn − (m + n − 2) − 1 = mn −m − n + 1 = [(m − 1)(n − 1)].

Hence, these all above cases and by the definition of degree sequence, we clearly obtain the set DS(Γ(G))
as depicted in the theorem. Nevertheless, it is easily seen that the irregularity index t(Γ(G)) = 3, as
required.

The adjacency spectrum spec(Γ) of a graph Γ is the multiset of eigenvalues of its adjacency matrix. Two
graphs Γ and Γ′ are called cospectral if spec(Γ) = spec(Γ′) and Γ′ is called to be a cospectral mate for Γ.
Moreover, a graph Γ is called determined by the spectrum if Γ is isomorphic to all its cospectral mates.
Additionally, for the graphs Γ and Γ, if spec(Γ) = spec(Γ′) then Γ � Γ′. In fact the characterization of Γ graphs
in terms of the determination of its spectrum is very difficult and goes back to about half of a century and
it is originated in chemistry [16, 35].

According to the above paragraph, we can state the following remark and theorem.

Remark 2.5. For any two cyclic groups Cm and Cn having orders m and n, respectively, if (m,n) , 1 then
we have two groups G and G′ such that G � Cm oϕ Cn and G′ � Cm oϕid Cn. Then, by Section 1.1, when we
obtain two graphs Γ(G) and Γ(G′), it is easy to see that spec(Γ(G)) = spec(Γ(G′)). This yields Γ(G) � Γ(G′).

Theorem 2.6. For any two different finite semi-direct product groups G and G′, their graphs Γ(G) and Γ(G′) can be
isomorphic.
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After introducing adjacency spectrum and Theorem 2.6, we can ontain the following corollary as a
consequence of Theorem 2.4.

Corollary 2.7. Let us take two finite cyclic groups Cm = 〈x〉 and Cn =
〈
y
〉

of orders m and n, respectively, and also
let us consider a semi-direct product G1 = CmoidG1

Cn (i.e., ϕ = idG1 ) and let us assume that hc f (m,n) = k. Therefore,

either DS(Γ(G1)) = {(mn − 1), (mn − 1), . . . , (mn − 1)︸                                    ︷︷                                    ︸
mn times

} and t(Γ(G1)) = 1

or DS(Γ(G)) = DS(Γ(G1)) and t(Γ(G)) = t(Γ(G1)), where G is the group as stated in Theorem 2.4.

Proof. Depends on k, we have two cases. Of course the first one is the trivial case which is the situation
k = 1. This clearly implies that the group G1 is isomorphic to the cyclic group Cmn of order mn. Hence, by
(II)-(ii) in Section 1.1, we see that the graph Γ(Cmn) is complete with mn vertices. Thus the degree sequence
of Γ(Cmn) consists of mn-times the mn − 1 elements, and the irregularity index is t(Γ(Cmn)) = 1.

On the other hand, if k , 1, then G1 is a finite group of order mn. Notice that since the condition
ϕ = idG1 still holds, the finite group G is not the same with the group G1 � Cmn investigated in the above
paragraph. However, by considering Remark 2.5 and Theorem 2.6, we certainly have Γ(G1) � Γ(G) and so,
as a consequence of Theorem 2.4, we obtain the equalities DS(Γ(G)) = DS(Γ(G1)) and t(Γ(G)) = t(Γ(G1)), as
required.

Again, for any Γ, a subset ∅ , D of the vertex set V(Γ) is called a dominating set if every vertex V(Γ)\D
is joined to at least one vertex of D by an edge. Additionally, the domination number γ(Γ) is the number of
vertices in a smallest dominating set for Γ.

Theorem 2.8. For a semi-direct product G of two finite groups, let us consider the graph Γ(G). Then γ(Γ(G)) = 1.

Proof. As we used in most of the proofs in above results, for all w ∈ G, 1G ∼ w in Γ(G). According to the
definition of Γ(G), the smallest dominating set is {1G}which implies γ(Γ(G)) = 1, as required.

(a) G � D8 has two generaters a and b (b) G has three generaters a, b and c

1G

bc

ac
ab

abcc

b aa2 a

ba3

1G

ab

a2b

a3b

Figure 1: Examples of graphs defined in Section 1.1

Example 2.9. It is known that the dihedral group D8 is isomorphic to the semi-direct product C4 = 〈a ; a4
〉oϕ

C2 = 〈b ; b2
〉 with a presentation D8 = 〈a, b ; a4, b2, b−1ab = a−1

〉. Since D8 has two generaters a and b, the
vertex set V(Γ(D8)) = {1G, a, a2, a3, b, ab, a2b, a3b} and the graph can be drawn as in Figure 1-((a)). Thus, as
an application of the above results, we get diam(Γ(D8)) = 2, 1irth(Γ(D8)) = 3, ∆(Γ(D8)) = 7, δ(Γ(D8)) = 1,
DS(Γ(D8)) = {1, 1, 1, 4, 4, 4, 4, 7}, t(Γ(D8)) = 3 and γ(Γ(D8)) = 1.

Example 2.10. Consider Klein-4 groupV4 with a presentationPV4 = 〈a, b ; a2, b2, (ab)2
〉. Also let us consider

the semi-direct product G �V4 oϕ C2, where C2 = 〈c ; c2
〉. Since G has three generators a, b and c, the vertex

set is defined by {1G, a, b, c, ab, ac, bc, abc} and thus the graph can be presented as in Figure 1-(b). Clearly,
Theorem 2.4 cannot be applied for this example since V4 is not cyclic. But, by considering the graph
in Figure 1-(b), it is easy to see that DS(Γ(G)) = {1, 2, 2, 2, 4, 4, 4, 7} and so t(Γ(G)) = 4. Moreover, as an
application of the above theorems (except Theorems 2.4 and 2.6), we obtain diam(Γ(G)) = 2, 1irth(Γ(G)) = 3,
∆(Γ(G)) = 7, δ(Γ(G)) = 1 and γ(Γ(G)) = 1.
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3. Perfectness Property of Γ(G)

Throughout this section it is assumed that a semi-direct product having finite order with a generating
set 〈x1, x2, . . . , xk〉. Our main goal in this section is to show that the graph Γ(G) defined in Section 1.1 is
actually perfect.

Perfect graphs form an important class of graphs, in particular, related to the boundary value problems
and various other applications (see, for instance, [10, 17, 30]). For example, perfect graphs have been used
in chemistry. This is why perfect graphs are worth considering here too.

Since perfect graphs are directly related to the terms coloring, clique and clique numbers, let us start this
section by reminding these graph parameters. The coloring of Γ is to be an assignment of colors (elements
of some set) to the vertices of Γ, one color to each vertex, so that adjacent vertices are assigned distinct
colors. If n colors are used, then the coloring is referred to as an n-coloring. If there exists an n-coloring
of Γ, then the graph is called n-colorable. The minimum number n for which Γ is n-colorable is called the
chromatic number of Γ, and is denoted by χ(Γ). In addition, the other graph parameter clique is depending
on the vertices. Basically each of the maximal complete subgraphs of Γ is called a clique. Moreover, the
largest number of vertices in any clique of Γ is called the clique number and denoted by ω(Γ). In general, it is
well known that χ(Γ) ≥ ω(Γ) for any graph Γ ([15]). For every induced subgraph ΓH ⊆ Γ, if χ(ΓH) = ω(ΓH),
then Γ is called a perfect graph (cf. [30]).

In here, the equality of the chromatic and clique numbers will be stated in a unique theorem but proved
separately for the graph Γ(G), and so it will be obtained the perfectness of this special graph. We recall that
the notation o(xi) denotes the order of an element xi (where 1 ≤ i ≤ k). Since G has finite order, each of these
orders are finite as well.

Theorem 3.1. The chromatic and clique numbers of Γ(G) are given by

χ(Γ(G)) =


 k∑

i=1

o(xi)

 − (k − 1)

 = ω(Γ(G)).

Proof. For the semi-direct product G = 〈x1, x2, . . . , xk〉, let us first consider the element x1. Actually it
does not only a vertex in the related graph Γ(G) but also it defines a subgroup H1 = 〈x1〉 of G and,
by (II)-(ii), we obtain a complete subgraph Γ(H1) with o(x1) vertices. Similarly, by (II)-(ii), each of these
generators construct a complete subgraph as Γ(Hi) for i = {1, 2, · · · , k}. Moreover, again by (II)-(ii), since for
all these distinct one generator vertices are adjoining each other, they construct a complete subgraph with
total {(o(x1) + o(x2) + · · · + o(xk)) − (k − 1)} vertices. (In other words, the collection of subgraphs Γ(Hi) gives a
complete subgraph, say Γ(Hk)). In fact this final complete subgraph Γ(Hk) is

{[∑k
i=1 o(xi)

]
− (k − 1)

}
-colorable.

Because, for all w = xε1
1 xε2

2 . . . xεk
k such that (k > 2), there exists yδ j

j such that xεi
i = yδ j

j . By (II)-(ii), this implies

the vertex w cannot adjoint with yδ j

j and so by the meaning of coloring w and yδ j

j could be the same color in
Γ(G). After all these progress, we see that the chromatic number of Γ(G) must be equal to the total number
of vertices of the subgraph Γ(Hk), i.e. χ(Γ(G)) =

{[∑k
i=1 o(xi)

]
− (k − 1)

}
, as required.

On the other hand, to determine the clique number, let us consider again the complete subgraph Γ(Hk)
as obtained in the above paragraph. We know that the total number of vertices V(Γ(Hk)) is equal to
the

{[∑k
i=1 o(xi)

]
− (k − 1)

}
. However we still need to show that Γ(Hk) is the maximal complete subgraph.

Therefore, without loss of generalization, let us assume that Γ(Hk) is not maximal. So there exist another
complete subgraph, say Γ(Tk) such that

∣∣∣V(Γ(Hk))
∣∣∣ < ∣∣∣V(Γ(Tk))

∣∣∣. But, by (II)-(i), this case implies that when
we had a vertex of the form w = xε1

1 xε2
2 . . . xεk

k (k > 2) obtained from the vertex set of Γ(Tk), we should have

a vertex yδ j

j such that ∃ xεi
i = yδ j

j . However, by (II)-(ii), this situation shows w and yδ j

j cannot be adjoint,

and then gives a contradiction to Γ(Tk) be a complete (sub)graph. Therefore Γ(Hk) is the maximal complete
subgraph with

∣∣∣V(Γ(Hk))
∣∣∣ number of vertices.

This completes the proof.
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As a consequence of Theorem 3.1, we have the following result.

Corollary 3.2. The graph Γ(G) is perfect.

We recall that any graph Γ is called Berge if no induced subgraph of Γ is an odd cycle of length at least
five or the complement of one (see [9]). The following lemma (which is named as Strong Perfect Conjecture
in some sources) proved by Chudnovsky et al. ([10]) that actually figures out a relationship between perfect
and Berge graphs.

Lemma 3.3. ([10]) A graph is perfect if and only if it is Berge.

Therefore, by using this relationship, we can give the next result on the perfectness of Γ(G) which is
sharper than the result given in Corollary 3.2.

Theorem 3.4. For the group G = 〈x1, x2, . . . , xk〉, if k ≥ 3, then Γ(G) is perfect. However, it is also perfect if
o(x1) + o(x2) ≥ 6 while k = 2.

Proof. Assume that k = 3. Then, by (I) and (II)-(ii), we obtain a 4-lenght cycle by only using the generators
x1, x2, x3 (without their powers) and the identity element 1G. Additionally, by (II)-(i), we get x1 ∼ x2x3 for
x1, x2x3 ∈ G, and then by (I), since 1G ∼ x2x3, we obtain a 5-lenght cycle 1G ∼ x2x3 ∼ x1 ∼ x2 ∼ x3 ∼ 1G. It is
easy to see by considering (II)-(ii), one can obtain a cycle of length five only using the generators without
their powers. Thus Γ(G) is Berge and so by Lemma 3.3 it is perfect.

Moreover, for k = 2, since Γ(G) is constructed by G = 〈x1, x2〉, for all powers of these generators, the
vertices of the type xε1

1 , xε2
2 can only be connected with 1G by (I) and (II)-(ii). Thus the required cycles will

be obtained by the generators x1, x2 and their powers. But to get an odd cycle of length at least five, we
need at least 5 vertices included 1G. Hence we easily see that the condition o(x1) + o(x2) ≥ 6 must be held to
get a (at least) 5-lenght cycle by using (II)-(ii). Thus just under this condition Γ(G) is Berge (and so perfect
Lemma 3.3) for k = 2.

Example 3.5. Let us consider the semi-direct product of C3 = 〈a ; a3
〉 by C4 = 〈b ; b4

〉 with a presentation
G = 〈a, b ; a3, b4, b−1ab = x−1

〉. In fact G is the metacyclic group of order 12 (see [34]). Considering Section
1.1, one can draw the graph Γ(G) of G as in Figure 2. Therefore we have the following facts for Γ(G):

• V(Γ(G)) = {1G, a, a2, b, b2, b3, ab, ab2, ab3, a2b, a2b2, a2b3
} and so |V(Γ(G))| = 12.

• diam(Γ(G)) = 2, 1irth(Γ(G)) = 3, γ(Γ(G)) = 1, ∆(Γ(G)) = 11 and δ(Γ(G)) = 1.

• DS(Γ(G)) = (1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 11) and so t(Γ(G)) = 3.

• Since χ(Γ(G)) = 6 = ω(Γ(G)) (or, by Theorem 3.4, since o(a) + o(b) = 7 while the number of generators
is 2), it is perfect and so Berge (by Lemma 3.3).

G has two generaters a and b

a2 a

bb2

b3

1G

ab
ab2

ab3

a2b
a2b2

a2b3

Figure 2: Another example of the graph defined in Section 1.1
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Conjecture 3.6. As it is well known in graph theory, topological indices are very popular characterization methods
for simple graphs. Therefore one may adapt some special indices (for example, Zagreb indices ([18, 29, 36])) or
irregularity index ([4]) to the our new graph defined in this paper. On the other hand, as another future project, since
the main idea in the paper [13] was to defined a new graph over a special algebraic structure, namely finite monogenic
monoids, and since our main goal in here is quite similar with that paper (just by replacing monoids with groups),
one may also study some special graph products (for instance, lexicographic, tensor, cartesian etc.) as in the papers
[5, 6], and so investigate the effect of these products to the related groups.
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