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Available at: http://www.pmf.ni.ac.rs/filomat

A Few Remarks on Bounded Operators
on Topological Vector Spaces

Omid Zabetia, Ljubiša D.R. Kočinacb
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Abstract. We give a few observations on different types of bounded operators on a topological vector
space X and their relations with compact operators on X. In particular, we investigate when these bounded
operators coincide with compact operators. We also consider similar types of bounded bilinear mappings
between topological vector spaces. Some properties of tensor product operators between locally convex
spaces are established. In the last part of the paper we deal with operators on topological Riesz spaces.

1. Introduction

Throughout the paper, all topological vector spaces are over the scalar field K which is either the field
R of real numbers or the field C of complex numbers. A neighborhood U of 0 in a topological vector space
will be simply called a zero neighborhood.

Let X be a topological vector space. A subset A of X is bounded if for each zero neighborhood U in X
there is a scalar λ such that A ⊆ λU. X is said to be locally bounded if there is a bounded neighborhood of
0 ∈ X. In the literature one can find two different notions of bounded operators. In [11, 13, 15] there is
the definition which is a definition of nb-bounded operators below, while in [7] one can find the definition
which is a definition of bb-bounded operators; the following terminology is from [16]. A linear operator T
on X is said to be:

• nb-bounded if there exists a zero neighborhood U ⊆ X such that T(U) is a bounded subset of X;

• bb-bounded if T mappings bounded sets into bounded sets.

The class of all nb-bounded operators on X is denoted by Bn(X) and is equipped with the topology of
uniform convergence on some zero neighborhood. A net (Sα) of nb-bounded operators is said to converge
to zero uniformly on a zero neighborhood U ⊆ X if for each zero neighborhood V, there is an α0 with
Sα(U) ⊆ V for each α ≥ α0.

The class of all bb-bounded operators on X is denoted by Bb(X) and is endowed with the topology of
uniform convergence on bounded sets. Note that a net (Sα) of bb-bounded operators converges to zero
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uniformly on a bounded set B ⊆ X if for each zero neighborhood V, there is an index α0 with Sα(B) ⊆ V for
all α ≥ α0.

Also, the class of all continuous operators on X is denoted by Bc(X) and is assigned to the topology
of equicontinuous convergence. A net(Sα) of continuous operators is convergent to the zero operator
equicontinuously if for each zero neighborhood V ⊆ X there exists a zero neighborhood U such that for
every ε > 0 there is an α0 with the property Sα(U) ⊆ εV for any α ≥ α0.

It is easy to see that

Bn(X) ⊆ Bc(X) ⊆ Bb(X).

Also note that the above inclusions become equalities when X is locally bounded; see [16, 18] for more
details concerning these operators. Recall that a topological vector space X has the Heine-Borel property if
every closed and bounded subset of X is compact.

By X ⊗ Y, we mean the algebraic tensor product space. If X and Y are locally convex spaces, then
the symbol X⊗πY will be used for the algebraic tensor product space endowed with the projective tensor
product topology. For a review about projective tensor product of locally convex spaces and the related
notions, we refer the reader to [15, Chapter III; 5, 6]; for a topological flavour of topological vector spaces
and the relevant aspects, one may consult [13, Chapters I, II, III]. Note that the symbol co(A ⊗ B) denotes
the convex hull of A ⊗ B.

Some notions will be given in the course of exposition in the beginning of a section.
The paper is organized in the following way. In Section 2 we further investigate bounded linear operators

on topological vector spaces. In Section 3 we introduce bounded bilinear mappings between topological
vector spaces and consider some their properties. Section 4 is devoted to a topological approach to the
notions of central and order bounded below operators defined on a topological Riesz space. With an
appropriate topology, we extend some known results for central and order bounded below operators on a
Banach lattice, to the topological Riesz space setting.

2. Linear Mappings

Let X be a normed space, K(X) be the space of all compact operators on X, and B(X) be the collection
of all bounded linear operators. From the equality ‖T(x)‖ ≤ ‖T‖‖x‖, it follows that X is a topological B(X)-
module, where the module multiplication is given via the formula (T, x) 7→ T(x), for each linear operator
T and each x ∈ X. On the other hand, it is known that K(X) is a closed subspace of B(X). It is also of
interest to investigate situations in which K(X) and B(X) are the same. So, it is natural to see if these results
can be generalized to ordinary topological vector spaces and to different classes of bounded and compact
operators on them.

In [16], two different notions for compact operators on a topological vector space have been introduced.
A linear operator T on a topological vector space X is said to be:

• n-compact if there is a zero neighborhood U ⊆ X for which T(U) is relatively compact (which means
that its closure is compact);

• b-compact if for each bounded set B ⊆ X, T(B) is relatively compact.

We use the notations Kn(X) and Kb(X) for the set of all n-compact linear operators and the set of all b-compact
linear operators on X, respectively. It is easy to see that Kn(X) is a two-sided ideal of Bn(X) and Kb(X) is a
right ideal of Bb(X).

In this section we investigate some relations between bounded linear operators and compact ones. For
more details about bounded and compact operators on topological vector spaces and the related notions
see [7, 15, 16, 18].

In [18], it has been proved that each class of bounded linear operators on a topological vector space X,
with respect to the appropriate topology, forms a topological algebra. In this section we show that X is a
topological A-module, where A is one of the topological algebras Bn(X), Bc(X), and Bb(X), respectively, and
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the module multiplication is given via (T, x) → T(x), for every linear operator T and every x ∈ X. Let us
point out that a topological vector space X is a topological A-module, where A is a topological algebra over
the same field, provided that the module multiplication is continuous as a mapping from A × X, equipped
with product topology, into X.

Proposition 2.1. The module multiplication in Bn(X) is continuous with respect to the topology of uniform conver-
gence on some zero neighborhood.

Proof. Let (xα) be a net in X which is convergent to zero and (Tα) be a net in Bn(X) converging to zero
uniformly on some zero neighborhood U ⊆ X. There is an α0 such that xα ∈ U for each α ≥ α0. If V is an
arbitrary zero neighborhood in X, Then, there exists an index α1 with Tα(U) ⊆ V for each α ≥ α1, so that for
sufficiently large α, we have

Tα(xα) ⊆ Tα(U) ⊆ V.

Proposition 2.2. The module multiplication in Bc(X) is continuous with respect to the equicontinuous convergence
topology.

Proof. Let (xα) be a net in X which is convergent to zero and (Tα) be a net of continuous operators con-
verging to zero equicontinuously. Suppose V is an arbitrary zero neighborhood in X. There exist a zero
neighborhood U ⊆ X and an index α0 with Tα(U) ⊆ V for each α ≥ α0. Choose an α1 such that xα ∈ U for
every α ≥ α1. Thus, for sufficiently large α, we conclude

Tα(xα) ⊆ Tα(U) ⊆ V.

Proposition 2.3. The module multiplication in Bb(X) is sequentially continuous with respect to the topology of
uniform convergence on bounded sets.

Proof. Let (xn) be a sequence in X which is convergent to zero and (Tn) be a sequence of bb-bounded
operators converging to zero uniformly on bounded sets. Note that E = {xn : n ∈ N} is bounded in X.
Suppose V is an arbitrary zero neighborhood in X. There exists an n0 such that Tn(E) ⊆ V for any n > n0, so
that we have

Tn(xn) ⊆ Tn(E) ⊆ V.

Question 2.4. Is the module multiplication in Bb(X) continuous, in general?

Note that for a normed space X, K(X) = B(X) if and only if X is finite dimensional. In this step, we
consider some situations where a class of compact linear operators coincides with the corresponding class
of bounded operators.

Proposition 2.5. Kb(X) = Bb(X) if and only if X has the Heine-Borel property.

Proof. Kb(X) = Bb(X)⇔ I ∈ Kb(X)⇔ X has the Heine-Borel property, where I denotes the identity operator
on X.

Remark 2.6. Note that when X has the Heine-Borel property, then Kn(X) = Bn(X). Suppose, for a topological
vector space X, Kn(X) = Bn(X). We consider two cases. First, assume X is locally bounded. Then,

I ∈ Bn(X)⇒ I ∈ Kn(X)⇒ X is locally compact⇒ X is finite dimensional.
The second case, when X is not locally bounded. Then,
I < Bn(X)⇒ I < Kn(X)⇒ X is not locally compact⇒ X is infinite dimensional.



O. Zabeti, Lj.D.R. Kočinac / Filomat 30:3 (2016), 763–772 766

Let (Xn) be a sequence of topological vector spaces in which, every Xn has the Heine-Borel property. Put
X =
∏
∞

n=1 Xn, with the product topology. It is known that X is a topological vector space. In the following,
we establish that each Xn has the Heine-Borel property if and only if so has X.

Theorem 2.7. Let X =
∏
∞

n=1 Xn, with the product topology; then X has the Heine-Borel property if and only if each
Xn has this property, as well.

Proof. First, assume that each Xn has the Heine-Borel property. We claim that if B ⊆ X is bounded, then
there exist bounded subsets Bi ⊆ Xi such that B ⊆

∏
∞

i=1 Bi. Put

Bi = {x ∈ Xi : (y1, . . . , yi−1, x, yi+1, . . .) ∈ B, y j ∈ X j}.

Each Bi is bounded in Xi. Let Wi be a zero neighborhood in Xi and put

W = X1 × . . .Xi−1 ×Wi × Xi+1 × . . . .

Since W is a zero neighborhood in X, there exists a positive scalar α such that B ⊆ αW, so that Bi ⊆ αWi.
Also, it is easy to see that B ⊆

∏
∞

i=1 Bi. Therefore,

B ⊆
∞∏

i=1

Bi =

∞∏
i=1

Bi,

so that we conclude B is also compact, i.e. that X has the Heine-Borel property.
For the converse, suppose X has the Heine-Borel property. Choose a bounded set Bn ⊆ Xn. Put

B = {0} × . . . × {0} × Bn × {0} × . . . .

It is an easy job to see that B is bounded in X, so that B is compact. By using Tychonoff’s theorem, we
conclude that Bn is compact and this would complete our claim.

Collecting results of Theorem 3.5, Proposition 2.5, and Remark 2.6, we have the following.

Corollary 2.8. Let (Xn) be a sequence of topological vector spaces, in which, each Xn has the Heine-Borel property.
Put X =

∏
∞

n=1 Xn, with the product topology. Then, Kb(X) = Bb(X) and Kn(X) = Bn(X).

Remark 2.9. Note that when X has the Heine-Borel property, Kn(X) need not be equal to Kb(X). For example,
consider the identity operator on RN. Indeed, it is b-compact but it fails to be n-compact; nevertheless, X
has the Heine-Borel property.

Compact operators are not closed in the topologies induced by the corresponding class of bounded
linear operators. To see this, consider the following examples.

Example 2.10. Kn(X) is not a closed subspace of Bn(X), in general. Let X be c00, the space of all real null
sequences, with the uniform norm topology. Suppose that Tn is the linear operator defined by

Tn(x1, x2, . . . , xn, . . .) = (x1,
1
2

x2, . . . ,
1
n

xn, 0, . . .).

It is easy to see that each Tn is n-compact. Also, (Tn) converges uniformly on N(0)
1 , the open unit ball of X

with center zero, to the linear operator T defined by T(x1, x2, . . .) = (x1, 1
2 x2, . . .). For, if ε > 0 is arbitrary,

there is an n0 ∈ N such that 1
n0
< ε. So, for each n > n0, (Tn − T)(N(0)

1 ) ⊆ N(0)
ε . Now, it is not difficult to see

that T is nb-bounded but it is not an n-compact linear operator.

Example 2.11. Kb(X) fails to be closed in Bb(X), in general. Let X be c0, the space of all vanishing sequences,
with the coordinate-wise topology. Let Pn be the projection on the first n-components. By using the
Tychonoff’s theorem, we can conclude that for each n ∈N, Pn is b-compact. Also, (Pn) converges uniformly
on bounded sets to the identity operator I. We show that I is not b-compact. Suppose that B is the sequence
(an) defined by an = (1, 1, . . . , 1, 0, 0, . . .) in which 1 is appeared n times. B is a Cauchy sequence in c0, so that
it is bounded. Also note that B = B. Now, if I ∈ Kb(c0), then B should be compact. Since B is not complete,
this is impossible.
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3. Bilinear Mappings

The notion of a jointly continuous bilinear mapping between topological vector spaces has been studied
widely, for example, see [13–15] for more information. In particular, when we deal with the normed spaces
framework, these mappings carry bounded sets (with respect to the product topology) to bounded sets.
On the other hand, tensor products are a fruitful and handy tool in converting a bilinear mapping to a
linear operator in any setting; for example, the projective tensor product for normed spaces and the Fremlin
projective tensor products for vector lattices and Banach lattices (see [8, 9] for ample information). In a
topological vector space setting, we can consider two different non-equivalent ways to define a bounded
bilinear mapping. It turns out that these aspects of boundedness are in a sense ”intermediate” notions of a
jointly continuous one. On the other hand, different types of bounded linear operators between topological
vector spaces and some of their properties have been investigated (see [16, 18]). In this section, by using
the concept of projective tensor product between locally convex spaces, we show that, in a sense, different
notions of a bounded bilinear mapping coincide with different aspects of a bounded operator. We prove
that for two bounded linear operators, the tensor product operator also has the same boundedness property,
as well.

Definition 3.1. Let X, Y, and Z be topological vector spaces. A bilinear mapping σ : X × Y → Z is said to
be:

(i) n-bounded if there exist some zero neighborhoods U ⊆ X and V ⊆ Y such that σ(U × V) is bounded in
Z;

(ii) b-bounded if for any bounded sets B1 ⊆ X and B2 ⊆ Y, σ(B1 × B2) is bounded in Z.

We first show that these concepts of bounded bilinear mappings are not equivalent.

Example 3.2. Let X = RN be the space of all real sequences with the Tychonoff product topology. Consider
the bilinear mapping σ : X × X → X defined by σ(x, y) = xy where x = (xi), y = (yi) and the product is
pointwise. It is easily verified that σ is b-bounded; but since X is not locally bounded, it can not be an
n-bounded bilinear mapping.

It is not difficult to see that every n-bounded bilinear mapping is jointly continuous and every jointly
continuous bilinear mapping is b-bounded, so that these concepts of bounded bilinear mappings are
related to jointly continuous bilinear mappings. Note that a b-bounded bilinear mapping need not be
jointly continuous, even separately continuous; by a separately continuous bilinear mapping, we mean one
which is continuous in each of its components. Consider the following example (which is actually originally
an exercise from [13, Chapter I, Exercise 13]; we will give a proof for it for the sake of completeness).

Example 3.3. Let X be the space C[0, 1], consisting of all real continuous functions on [0, 1]. Suppose τ1 is
the topology generated by the seminorms px( f ) = | f (x)|, for each x ∈ [0, 1], and τ2 is the topology induced
by the metric defined via the formulae

d( f , 1) =

∫ 1

0

| f (x) − 1(x)|
1 + | f (x) − 1(x)|

dx.

Consider the bilinear mapping σ : (X, τ1)× (X, τ1)→ (X, τ2) defined by σ( f , 1) = f1. It is easy to show that σ
is a b-bounded bilinear mapping. But is it not even separately continuous; for example the mapping 1 = 1X,
the identity operator from (X, τ1) into (X, τ2), is not continuous. To see this, suppose

V = { f ∈ X : d( f , 0) <
1
2
}.

V is a zero neighborhood in (X, τ2). If the identity operator is continuous, there should be a zero neighbor-
hood U ⊆ (X, τ1) with U ⊆ V. Therefore, there are {x1, . . . , xn} in [0, 1] and ε > 0 such that

U = { f ∈ X, | f (xi)| < ε, i = 1, . . . ,n}.
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For each subinterval [xi, xi+1], consider positive reals αi and αi+1 such that xi < αi < αi+1 < xi+1. For an
n ∈N, Define,

fi(x) =


n(x−xi)
αi−xi

, if xi ≤ x ≤ αi,
n, if αi ≤ x ≤ αi+1,

n(x−xi+1)
αi+1−xi+1

, if αi+1 ≤ x ≤ xi+1.

Now consider the continuous function f on [0, 1] defined by fi′s. Obviously, f ∈ U. Put β =
∑n

i=1(αi+1 − αi).
We can choose n ∈N and β in such a way that βn

n+1 >
1
2 . Thus,∫ 1

0

| f (x)|
1 + | f (x)|

dx >
βn

n + 1
>

1
2
.

This completes the claim.

In what follows, by using the concept of the projective tensor product of locally convex spaces, we
are going to show that these concepts of bounded bilinear mappings are, in fact, the different types of
bounded operators defined on a locally convex topological vector space. Recall that if U and V are zero
neighborhoods for locally convex spaces X and Y, respectively, then co(U⊗V) is a typical zero neighborhood
for the locally convex space X⊗πY.

Proposition 3.4. Let X, Y and Z be locally convex vector spaces and θ : X × Y → X⊗πY be the canonical bilinear
mapping. If ϕ : X × Y→ Z is an n-bounded bilinear mapping, there exists an nb-bounded operator T : X⊗πY→ Z
such that T ◦ θ = ϕ.

Proof. By [15, III.6.1], there is a linear mapping T : X⊗πY→ Z such that T ◦θ = ϕ. Therefore, it is enough to
show that T is nb-bounded. Since ϕ is n-bounded, there are zero neighborhoods U ⊆ X and V ⊆ Y such that
ϕ(U×V) is bounded in Z. Let W be an arbitrary zero neighborhood in Z. There is r > 0 with ϕ(U×V) ⊆ rW.
It is not hard to show that T(U⊗V) ⊆ rW, so that T(co(U⊗V)) ⊆ rW. But, by the fact mentioned before this
proposition, co(U ⊗ V) is a zero neighborhood in the space X⊗πY. This completes the proof.

Proposition 3.5. Let X, Y and Z be locally convex vector spaces and θ : X × Y → X⊗πY be the canonical bilinear
mapping. If ϕ : X × Y → Z is a b-bounded bilinear mapping, there exists a bb-bounded operator T : X⊗πY → Z
such that T ◦ θ = ϕ.

Proof. As in the proof of the previous theorem, the existence of the linear mapping T : X⊗πY→ Z such that
T ◦ θ = ϕ follows by [15, III.6.1]. We prove that the linear mapping T is bb-bounded. Consider a bounded
set B ⊆ X⊗πY. There exist bounded sets B1 ⊆ X and B2 ⊆ Y such that B ⊆ B1 ⊗ B2. To see this, put

B1 = {x ∈ X,∃ y ∈ Y, such that x ⊗ y ∈ B},

B2 = {y ∈ Y,∃ x ∈ X, such that x ⊗ y ∈ B}.

It is not difficult to see that B1 and B2 are bounded in X and Y, respectively, and B ⊆ B1 ⊗ B2. Also, since θ
is jointly continuous, B1 ⊗ B2 is also bounded in X⊗πY. Thus, from the inclusion

T(B) ⊆ T(B1 ⊗ B2) = T ◦ θ(B1 × B2) = ϕ(B1 × B2)

and using the fact that ϕ is a b-bounded bilinear mapping, it follows that T is a bb-bounded linear operator.
This concludes the claim and completes the proof of the proposition.

Remark 3.6. Note that the similar result for jointly continuous bilinear mappings between locally convex
spaces is known and commonly can be found in the contexts concerning topological vector spaces (see for
example [15, III.6]).
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We are going now to investigate whether or not the tensor product of two operators preserves different
kinds of bounded operators between topological vector spaces. The response is affirmative. Recall that for
vector spaces X, Y, Z, and W, and linear operators T : X→ Y, S : Z→W, by the tensor product of T and S,
we mean the unique linear operator T ⊗ S : X ⊗ Z→ Y ⊗W defined via the formulae

(T ⊗ S)(x ⊗ z) = T(x) ⊗ S(z);

one may consult [14] for a comprehensive study regarding the tensor product operators.

Theorem 3.7. Let X, Y, Z, and W be locally convex spaces, and T : X → Y and S : Z → W be nb-bounded linear
operators. Then the tensor product operator T ⊗ S : X⊗πZ→ Y⊗πW is nb-bounded.

Proof. Let U ⊆ X and V ⊆ Z be two zero neighborhoods such that T(U) and S(V) are bounded subsets of
Y and W, respectively. Let O1 ⊆ Y and O2 ⊆ W be two arbitrary zero neighborhoods. There exist positive
reals α and β with T(U) ⊆ αO1 and S(V) ⊆ βO2. Then

(T ⊗ S)(U ⊗ V) = T(U) ⊗ S(V) ⊆ αβ(O1 ⊗O2) ⊆ αβco(O1 ⊗O2),

so that (T ⊗ S)(co(U ⊗ V)) ⊆ αβco(O1 ⊗O2). This is the desired result.

Theorem 3.8. Suppose X, Y, Z, and W are locally convex spaces, and T : X → Y and S : Z → W are bb-bounded
linear operators. Then the tensor product operator T ⊗ S : X⊗πZ→ Y⊗πW is also bb-bounded.

Proof. Fix a bounded set B ⊆ X⊗πZ. By the argument used in Proposition 3.5, there are bounded sets B1 ⊆ X
and B2 ⊆ Z with B ⊆ B1 ⊗ B2. Let O1 ⊆ Y and O2 ⊆ W be two arbitrary zero neighborhoods. There are
positive reals α and β such that T(B1) ⊆ αO1 and S(B2) ⊆ βO2. Therefore,

(T ⊗ S)(B) ⊆ (T ⊗ S)(B1 ⊗ B2) = T(B1) ⊗ S(B2) ⊆ αβ(O1 ⊗O2) ⊆ αβco(O1 ⊗O2),

hence (T ⊗ S)(B) ⊆ αβco(O1 ⊗O2), as required.

Theorem 3.9. Suppose X, Y, Z, and W are locally convex spaces, and T : X → Y and S : Z → W are continuous
linear operators. Then the tensor product operator T ⊗ S : X⊗πZ→ Y⊗πW is jointly continuous.

Proof. Let O1 ⊆ Y and O2 ⊆ Z be two arbitrary zero neighborhoods. There exist zero neighborhoods U ⊆ X
and V ⊆ Z such that T(U) ⊆ O1 and S(V) ⊆ O2. It follows

(T ⊗ S)(U ⊗ V) = T(U) ⊗ S(V) ⊆ (O1 ⊗O2) ⊆ co(O1 ⊗O2),

so that (T ⊗ S)(co(U ⊗ V)) ⊆ co(O1 ⊗O2), as claimed.

4. Operators in Topological Riesz Spaces

In this section we give a topological approach to the notions of central operators and order bounded be-
low operators defined on a topological Riesz space. With an appropriate topology, we extend to topological
Riesz spaces some known results for these operators on Banach lattices.

We recall some concepts and terminology. A Riesz space (or vector lattice) is an ordered real vector space
X which is also a lattice. For x ∈ X one defines x+ = x ∨ 0 (the positive part of x), x− = (−x) ∨ 0 (the negative
part of x), and |x| = x ∨ (−x) = x+ + x− (the absolute value or modulus of x).

A subset S of a Riesz space X is said to be solid if y ∈ S, x ∈ X, and |x| ≤ |y| imply x ∈ S. A topological
Riesz space is a Riesz space which is at the same time a (ordered) topological vector space. By a locally solid
Riesz space we mean a topological Riesz space with a locally solid topology. A Banach lattice is a Riesz space
which is also a Banach space, where the norm is a lattice norm.

For more information on topological Riesz spaces and related notions, and also for terminology used in
this section, we refer the reader to [1–4, 10].
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4.1. Central operators

We recall that a linear operator T on a Riesz space X is called central if there exists a positive real number
γ such that for each x ∈ X, we have |T(x)| ≤ γ|x| (see [5, 6, 17], where there are also interesting results
concerning this class of operators). In [17], Wickstead showed that if X is a Banach lattice, then Z(X), the
space of all central operators on X (called the center of X), is a unital Banach algebra with respect to the
norm given by

‖T‖ = inf{λ ≥ 0 : |T| ≤ λI},

for each T ∈ Z(X), where I denotes the identity operator on X.
We are going to generalize this result to central operators on a locally solid Riesz space X endowed with

the τ-topology: a net (Tα) of central operators converges to zero in the τ-topology if for each ε > 0 there is an
α0 such that |Tα(x)| ≤ ε|x|, for each α ≥ α0 and for each x ∈ X. It is easy to see that Z(X) is a unital algebra.
We show that Z(X) is in fact a topological algebra.

Proposition 4.1. The operations of addition, scalar multiplication and product are continuous in Z(X) with respect
to the τ-topology.

Proof. Suppose (Tα) and (Sα) are two nets of central operators which are convergent to zero in the τ-topology.
Let ε > 0 be given. There are indices α0 and α1 such that |Tα(x)| ≤ ε

2 |x| for each α ≥ α0 and x ∈ X, and
|Sα(x)| ≤ ε

2 |x| for each α ≥ α1 and x ∈ X. Choose α2 with α2 ≥ α0 and α2 ≥ α1. Then for each α ≥ α2 and for
each x ∈ X, we have,

|(Tα + Sα)(x)| ≤ |Tα(x)| + |Sα(x)| ≤ ε|x|.

Now, we show the continuity of the scalar multiplication. Suppose (γα) is a net of reals which converges to
zero. Without loss of generality, we may assume that |γα| ≤ 1 for each α. Therefore, for each x ∈ X we have

|γα||Tα(x)| ≤ |γα|ε|x| ≤ ε|x|,

for all α ≥ α0.
For continuity of the product, we have for x ∈ X

|Tα(Sα(x))| ≤ |Tα||Sα(x)| ≤ |Tα|(ε|x|) = |Tα(ε|x|)| ≤ ε2
|x|,

so that |Tα(Sα(x))| ≤ ε2
|x|. Note that by [5, 6], for a central operator T on a vector lattice X, the modulus of

T, |T|, exists and satisfies |T|(|x|) = |T(x)|, for any x ∈ X.

Proposition 4.2. Suppose (Tα) is a net of central operators on a topological Riesz space X converging (in the
τ-topology) to a linear operator T. Then, T is also central.

Proof. There is an α0 such that for each α ≥ α0 and for each x ∈ X, we have |(Tα − T)(x)| ≤ |x|. Fix an α ≥ α0.
There exists a positive real γα such that |Tα(x)| ≤ γα|x|. So, we have

|T(x)| ≤ |Tα(x)| + |x| ≤ γα|x| + |x| = (γα + 1)|x|.

Therefore, T is also a central operator.

Proposition 4.3. Let X be a complete locally solid Riesz space. Then Z(X) is also complete with respect to the
τ-topology.

Proof. Let (Tα) be a Cauchy net in Z(X) and V be an arbitrary zero neighborhood in X. Fix x0 ∈ X. Choose
δ > 0 such that δ|x0| ∈ V. There exists an α0 such that |(Tα − Tβ)(x)| ≤ δ|x| for each α ≥ α0 and for each
β ≥ α0. So, we conclude that (Tα − Tβ)(x0) ∈ V. This means that (Tα(x0)) is a Cauchy net in X. Therefore,
it is convergent. Put T(x) = lim Tα(x). Since this convergence holds in Z(X), by Proposition 4.2, T is also
central.
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Collecting the results of Propositions 4.1, 4.2 and 4.3, we have the following

Theorem 4.4. Let X be a complete locally solid Riesz space. Then, Z(X) is a complete unital topological algebra.

In addition, we have continuity of the lattice operations (defined via formulas of [5, 6]) with respect to
the assumed topology, which is proved in the following theorem; in other words (Z(X), τ) is a locally solid
Riesz space.

Theorem 4.5. The lattice operations of Z(X) are continuous with respect to the assumed topology.

Proof. By [5, 6], the supremum and the infimum operations in Z(X) are given by the formulas

(T ∨ S)(x) = T(x) ∨ S(x) and (T ∧ S)(x) = T(x) ∧ S(x), T,S ∈ Z(X), x ∈ X+.

Let (Tα) and (Sα) be two nets of central operators which are convergent to operators T and S in the τ-
topology, respectively. Let ε > 0 be arbitrary. There are some α0 and α1 such that for each x ∈ X, we
have |(Tα − T)(x)| ≤ ε

2 |x| for each α ≥ α0 and |(Sα − S)(x)| ≤ ε
2 |x| for each α ≥ α1. Pick an α2 with α2 ≥ α0

and α2 ≥ α1. Then for each α ≥ α2, by using the Birkhoff’s inequality (for example, see [3]), for each
x ∈ X+ = {y ∈ X : y ≥ 0},

|(Tα ∨ Sα)(x) − (T ∨ S)(x)| = |(Tα ∨ Sα)(x) − (Tα ∨ S)(x) + (Tα ∨ S)(x) − (T ∨ S)(x)|

≤ |Tα(x) ∨ Sα(x) − Tα(x) ∨ S(x)| + |Tα(x) ∨ S(x) − T(x) ∨ S(x)|

≤ |(Tα − T)(x)| + |(Sα − S)(x)| ≤ εx.

If x is not positive, by using x = x+
− x−, we get

|(Tα ∨ Sα)(x) − (T ∨ S)(x)| ≤ 2ε|x|

for sufficiently large α. Since, the lattice operations in a Riesz space can be obtained via each other, we
conclude that all of them are continuous in Z(X) with respect to the τ-topology.

4.2. Order bounded below operators

In this subsection we present a new approach to order bounded below operators on a topological
Riesz space. The concept of a bounded below operator on a Banach space has been studied widely (for
example, see Section 2.1 in [1]), and the norm of the operator was used essentially in its definition. In a
Riesz space we have the concepts order and modulus which help us to have a different vision to these
operators. On the other hand, when we deal with a topological Riesz space and an operator on it, the
concept ”neighborhoods” enables us to consider a topological view for an order bounded below operator.
With the topology introduced in the previous subsection we extend some results of [1, Section 2.1] to
topological Riesz spaces.

A linear operator T on a topological Riesz space X is said to be order bounded below if |T(x)| ≥ γ|x| for some
positive real number γ and each x ∈ X. The class of all order bounded below operators on a topological
Riesz space X is denoted by O(X). We consider the τ-topology on it. It is easy to see that every order
bounded below operator is one-to-one; also, every central order bounded below operator on a locally solid
Riesz space has a closed range.

In the following lemma we show that if a linear operator is sufficiently close to an order bounded below
operator with respect to the τ-topology, then it is also order bounded below. So, the set of all central
operators on a topological Riesz space X which are also order bounded below is an open subset of Z(X).

Lemma 4.6. If a linear operator S on a topological Riesz space X is sufficiently close to an order bounded below
operator T with respect to the τ-topology, then S is also order bounded below.
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Proof. Since T is an order bounded below operator on X there is a positive real numberγ such that |T(x)| ≥ γ|x|
for each x ∈ X. Choose a linear operator S such that |(T − S)(x)| ≤ γ

2 |x|. Then, for each x ∈ X, we have

|Sx| = |(S − T)(x) + T(x)| ≥ γ|x| −
γ

2
|x| =

γ

2
|x|,

so that |S(x)| ≥ γ
2 |x|, which completes the proof.

Now, we assert the main theorem of this subsection which is an extension of Theorem 2.9 from [1] to a
locally solid Riesz space.

Theorem 4.7. Let X be a complete locally solid Riesz space and T a continuous order bounded below operator on X.
If a net (Tα) of surjective operators converges in the τ-topology to T, then T is also surjective.

Proof. Fix a constant γ > 0 such that |T(x)| ≥ 2γ|x| for each x ∈ X. There is an α0 with |(Tα − T)(x)| ≤ γ|x|
for each x ∈ X and for each α ≥ α0, so that |Tα(x)| ≥ γ|x|. Pick y ∈ X. To show that T is surjective, we have
to show that there exists x ∈ X such that T(x) = y. There is a net {xα} in X such that Tα(xα) = y. From
γ|xα| ≤ |Tα(xα)| = |y|, it follows that |xα| ≤ 1

γ |y|.
We claim that {xα} is a Cauchy net in X. Let V be an arbitrary zero neighborhood in X. Choose δ > 0

such that δ 1
γ |y| ∈ V. Then for sufficiently large α and β we have

2γ|xα − xβ| ≤ |T(xα) − T(xβ)| ≤ |T(xα) − y| + |y − T(xβ)|

= |T(xα) − Tα(xα)| + |Tβ(xβ) − T(xβ)| ≤
δ
2
|xα| +

δ
2
|xβ| ≤ δ

1
γ
|y|.

So, we conclude that {xα} is really a Cauchy net in X.
Suppose that (xα) converges to x. Thus, it follows that (T(xα)) converges to T(x). On the other hand,

from the equality

|T(xα) − y| = |T(xα) − Tα(xα)| ≤ δ|xα| ≤ δ
1
γ
|y|

it follows that (T(xα)) converges to y ∈ X, hence T(x) = y. This complete the proof.
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