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Comparison of Spectral Invariants in Lagrangian
and Hamiltonian Floer Theory
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Abstract. We compare spectral invariants in periodic orbits and Lagrangian Floer homology case, for a
closed symplectic manifold P and its closed Lagrangian submanifolds L, when ω|π2(P,L) = 0, and µ|π2(P,L) = 0.
We define a product HF∗(H) ⊗HF∗(H : L)→ HF∗(H : L) and prove subadditivity of invariants with respect
to this product.

1. Introduction

In [15, 16] Oh defined spectral invariants for the case of cotangent bundle P = T∗M (and the canonical
Liouville symplectic form), where the action functional

aH(x) :=
∫

x
θ −

∫ 1

0
H(x(t), t)dt

is well defined. Let HF∗(H : OM) denote Lagrangian Floer homology of the pair (OM, φ1
H(OM)), where φ1

H is
the time-one map generated by a Hamiltonian H. Denote by HFλ∗ (H : OM) the filtered homology defined
via filtered Floer complex:

CFλ∗ (H : OM) := Z2〈{x ∈ Crit aH | aH(x) < λ}〉.

These homology groups are well defined since the boundary map preserves the filtration:

∂ : CFλ∗ (H : OM)→ CFλ∗ (H : OM),

due to well defined action functional that decreases along its gradient flow lines. For a singular homology
class α define

σ(α,H) := inf{λ ∈ R | FH(α) ∈ Im(ıλ∗ )}

where
ıλ∗ : HFλ∗ (H : OM)→ HF∗(H : OM)
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is the homomorphism induced by inclusion and

FH : H∗(M)→ HF∗(H : OM)

is an isomorphism between singular and Floer homology groups. The construction of spectral invariants is
done in [15] in the case of conormal bundle boundary condition, and in [16] for cohomology classes. This
construction is based on Viterbo’s idea for generating functions defined in the case of cotangent bundle
(see [21]).

It turned out that Oh’s and Viterbo’s invariants are in fact the same, see [9, 10].
Oh proved in [15] that these invariants are independent both of the choice of almost complex structure

J (which enters the definition of Floer homology) and, after a certain normalization, on the choice of H as
long as φ1

H(L0) = L1. Using these invariants σ(α,L1) := σ(α,H), Oh derived the non–degeneracy of Hofer’s
metric for Lagrangian submanifolds.

Lagrangian spectral invariants σwere also used in [11, 12] in the characterization of geodesics in Hofer’s
metric for Lagrangian submanifolds of the cotangent bundle via quasi–autonomous Hamiltonians.

In [8], Leclercq constructed spectral invariants for Lagrangian Floer theory without the assumption
ω = −dθ. He considered the case when L is a closed submanifold of a compact (or convex at infinity)
symplectic manifold P and

ω|π2(P,L) = 0, µ|π2(P,L) = 0,

where µ stands for Maslov index. He used a module structure of Floer homology over a Morse homology
ring and Albers’ Piunikhin–Salamon–Schwarz (we will also use the abbreviation PSS) isomorphisms (see
below or [2]) to prove that, after a certain normalization, the spectral invariants only depend on L and
L′ := φ1

H(L).
Schwarz defined similar invariants in the case of Floer theory for contractible periodic orbits in [20]. If

(P, ω) is a symplectic manifold with ω|π2(P) = 0, then the action functional is well defined as:

AH(a) :=
∫

D2
ā∗ω −

∫ 1

0
H(a(t), t)dt,

where ā : D2
→ P is any extension of a to the unit disc. For both ω|π2(P) = 0 and c1|π2(P) = 0 Schwarz defined

symplectic invariants as:
ρ(α,H) := inf{λ ∈ R | PSS(α) ∈ Im(ıλ∗ )}.

Here α ∈ H∗sing(P) is a nonzero cohomology class, PSS is the Piunikhin–Salamon–Schwarz isomorphism and
ıλ∗ is the homomorphism induced by inclusion

ıλ : CFλ∗ (H)→ CF∗(H),

where CF∗(H) and CFλ∗ (H) are (filtered) Floer chain complexes for Hamiltonian periodic orbits. For each
nonzero cohomology class α, ρ(α, ·) is a section of the action spectrum bundle

Σ :=
⋃

Φ̃∈H̃am(P){Φ̃} ×
{
AH(x) | x ∈ Fix0

(
Φ1

H

)
, Φ1

H ∈ Φ̃
}

↓

Ham(P, ω)

which is continuos with respect to Hofer’s metric, and which carries certain properties (see [20] for details
and also [5]).

In his paper [2], Albers constructed PSS morphisms for the Lagrangian case and showed that, in certain
dimensions, these morphisms are isomorphisms (see also [7] for the case of cotangent bundle P = T∗M).
These are the isomorphisms that Leclercq used in his already mentioned paper [8] to define the Lagrangian
invariants σ (see Subsection 3.2 below). Albers considered the case of a closed, monotone Lagrangian
submanifold L with minimal Maslov index ΣL ≥ 2. He also constructed morphismsχ : HF∗(H : L)→ HF∗(H)
and τ : HF∗(H) → HF∗(H : L) where HF∗(H) denotes Floer homology for periodic Hamiltonian orbits and
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HF∗(H : L) denotes Lagrangian Floer homology of the pair (L, φ1
H(L)). This construction is based on counting

the numbers of “chimneys” and it was independently considered by Abbondandolo and Schwarz in [1].
Using these homomorphisms, Albers proved the commutativity of certain diagrams (see (8) below).

In this paper, we consider the case of a closed symplectic manifold (P, ω) and its closed smooth La-
grangian submanifold L with topological assumptions

ω|π2(P,L) = 0, µ|π2(P,L) = 0

and symplectic invariants ρ for periodic orbits, and σ for Lagrangian case (see Subsection 3.2 below).
We will use the homomorphisms constructed by “chimneys” to compare these spectral invariants.

Similar comparison was made by Monzner, Vichery and Zapolsky in a different context (see [13]). Further,
we define the product ◦ using perturbed pseudoholomorphic curves that connect Hamiltonian periodic
orbits and Hamiltonian paths with Lagrangian boundary conditions. This product was previously defined,
for example by Hu and Lalonde [6], in the more general context of monotone Lagrangians. The main result
of the paper is the following.

Theorem 1.1. Let P be a closed symplectic manifold and L ⊂ P its closed Lagrangian submanifold such that
ω|π2(P,L) = 0, µ|π2(P,L) = 0. Let H j : P× [0, 1]→ R be three (time dependent) Hamiltonians, for j = 1, 2, 3. Then there
exists a product

◦ : HF∗(H1) ⊗HF∗(H2 : L)→ HF∗(H3 : L)

which, in the case when H2 = H3, turns the Lagrangian Floer homology HF∗(H2 : L) into a module over Floer
homology for periodic orbits HF∗(H1). For H3 = H1]H2, and a ∈ HF∗(H1), b ∈ HF∗(H2 : L), it holds:

σ(PSS−1(a ◦ b),H1]H2) ≤ ρ(PSS−1(a),H1) + σ(PSS−1(b),H2). (1)

The proof of Theorem 1.1 is given in Section 4.
In Section 2 we recall the construction of Floer homology and PSS−type isomorphisms and their

properties that we will use in the paper.
In Section 3 we construct spectral invariants in periodic orbits and Lagrangian case, and prove that

Lagrangian spectral invariants do not depend on H as long as φ1
H(L) is fixed, up to a constant. Besides, we

prove certain inequalities between these two types of invariants (Theorem 3.5 and Theorem 3.6).
We would like to thank Rémi Leclerq for pointing to us an error in the previous version of the paper.
We would like to thank the anonymous referee for many valuable suggestions and corrections.

2. Recalls and Preliminaries

Throughout the paper we will assume that (P, ω) is a closed symplectic manifold and L is its closed
Lagrangian submanifold.

2.1. Floer homology and PSS (iso)morphisms

Let us first briefly sketch the construction of Floer homology and PSS isomorphisms for periodic orbits.
For a smooth (generic) Hamiltonian H : P × S1

→ R, the Floer complex CF∗(H) is defined as a vector space
over Z2 with the generators

P(H) := {a ∈ C∞(S1,P) | ȧ(t) = XH(a(t)), [a] = 0 ∈ π1(P)}

and it is graded by the Conley–Zehnder index (see [19], for example). Floer differential is defined as

δ(a) :=
∑

b

n(a, b)b,
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where n(a, b) is the number (modulo 2) of elements of the following set:

M(a, b; H, J) :=

u : R × S1
→ P

∣∣∣∣∣∣∣∣
∂su + J(∂tu − XH(u)) = 0
u(−∞, t) = a(t)
u(+∞, t) = b(t)


modulo R−action (τ,u) 7→ u(· + τ, ·). Here XH is the Hamiltonian vector field, i.e. ω(XH, ·) = dH(·). Floer
homology HF∗(H) and Morse homology HM∗(P, f ) for Morse function f : P→ R are isomorphic. One way
to prove this is via the PSS isomorphisms. Define two cut-off functions

ρR(s) =

1, s ≥ R + 1,
0, s ≤ R

, ρ̃R(s) := ρR(−s).

Let p be a critical point of f . Let 1 be a Riemannian metric such that the pair ( f , 1) is Morse–Smale. Define

PSS(p) :=
∑

x

n(p, x)x

and extend it on the chain level by linearity. Here n(p, x) is a number (modulo 2) of pairs (γ,u):

γ : (−∞, 0]→ P, u : [0,+∞) × S1
→ P

that satisfy 
dγ
ds = −∇ f (γ(s))
∂su + J(∂tu − XρRH(u)) = 0
γ(−∞) = p, u(+∞, t) = a(t)
γ(0) = u(0, 1

2 ),

where ∇ f denotes the gradient of f with respect to 1. This mapping commutes with the differentials, that is

PSS ◦ ∂Morse = δ ◦ PSS,

where ∂Morse is Morse differential, so we have PSS : HM∗(P, f ) → HF∗(H) (we keep the same notation). It
is proven in [18] that, under our assumptions, PSS is actually an isomorphism, and its inverse, PSS−1 is
defined by counting the “reverse” mixed objects, i.e. the pairs (u, γ) that satisfy:

u : (−∞, 0] × S1
→ P, γ : [0,+∞)→ P

∂su + J(∂tu − Xρ̃RH(u)) = 0
dγ
ds = −∇ f (γ(s))
u(−∞, t) = a(t), γ(+∞) = p
u(0, 1

2 ) = γ(0)

(see Figure 1).

Figure 1: Mixed type objects that define PSS isomorphisms in the case of periodic orbits and in
Lagrangian intersections case
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Now let us recall the construction of Floer homology and PSS−type morphisms in the Lagrangian case.
Suppose that P and L are as above and that H is non degenerate, i.e. that L t φ1

H(L). For our purposes, we
will set

ω|π2(P,L) = 0, µ|π2(P,L) = 0 (2)

where µ is Maslov index. (Of course, Floer homology for Lagrangian intersections can be defined in a more
general context.) Let H : P×S1

→ R be a smooth Hamiltonian function. Floer complex CF∗(H : L) is defined
as a vector space over Z2 with the generators

P(H,L) := {x ∈ C∞([0, 1],P) | ẋ(t) = XH(x(t)), x(0), x(1) ∈ L, [x] = 0 ∈ π1(P,L)}.

The grading is given by relative Maslov index, which is well defined, since µ|π2(P,L) = 0 (see, for example, [14]
for details). Floer differential is defined by counting the pseudo–holomorphic tunnels, i.e.

∂(x) =
∑

y

n(x, y)y,

where n(x, y) is the number (modulo 2) of elements of the set

M(x, y; H, J) :=

u : R × [0, 1]→ P

∣∣∣∣∣∣∣∣∣∣
∂su + J(∂tu − XH(u)) = 0
u(s, i) ∈ L, i ∈ {0, 1}
u(−∞, t) = x(t)
u(+∞, t) = y(t)


modulo R−action (τ,u) 7→ u(· + τ, ·). As usual, we denote this quotient space by

M̂(x, y; H, J) :=M(x, y; H, J)/R.

The Albers’ PSS−type morphisms are well defined in more general cases than (2), that is when L is
monotone and minimal Maslov number NL is at least 2 (see [2]). Let us recall this construction. For critical
point p of Morse function f : L→ R, define

Φ : CM∗(L, f )→ CF∗(H : L), Φ(p) :=
∑

x

n(p, x)x

where n(p, x) is a number (modulo 2) of pairs (γ,u), that satisfy

γ : (−∞, 0]→ L, u : [0,+∞) × [0, 1]→ P
dγ
ds = −∇ f (γ(s))
∂su + J(∂tu − XρRH(u)) = 0
u(s, 0),u(s, 1),u(0, t) ∈ L
γ(−∞) = p, u(+∞, t) = x(t)
γ(0) = u(0, 1

2 )

(3)

(see Figure 1). We denote the set of solutions of (3) byM f ,H
p,x . The setM f ,H

p,x is a (m f (p) − µ(x))−dimensional
manifold where m f (p) is the Morse index of a critical point p (note that this requires a particular choice of
the reference of the Maslov index).

The map Φ turns out to be well defined in the homology level, and under our assumption (2), an
isomorphism between Morse and Floer homologies in all dimensions. We will denote this isomorphism of
homology groups again by Φ. Its inverse Ψ is defined on the generators of Floer complex as

Ψ : CF∗(H1 : L)→ CM∗(L, f ), Ψ(x) :=
∑

p

n(x, p)p
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where n(x, p) is a number (modulo 2) of pairs (u, γ) that solve the equations:

u : (−∞, 0] × [0, 1]→ P, γ : [0,+∞)→ L
∂su + J(∂tu − Xρ̃RH(u)) = 0
dγ
ds = −∇ f (γ(s))
u(s, 0),u(s, 1),u(0, t) ∈ L
u(−∞, t) = x(t), γ(+∞) = p
u(0, 1

2 ) = γ(0).

The proofs of the above facts are usually based on the analysis of certain moduli spaces, especially
in dimensions zero and one, and their boundaries as well. The description of these boundaries and the
proof of compactness in zero dimension case use Gromov compactness and gluing theorems. Bubbling is
controlled due to topological assumptions (2).

For the sake of simplicity, we will denote these isomorphisms also by PSS, whenever there is no risk of
confusion. More precisely

PSS := Φ, PSS−1 = Ψ.

3. Spectral Invariants and Their Comparison

3.1. Action functionals
In this subsection we will recall the constructions of two action functionals – for contractible loops and

for contractible paths with the ends on a Lagrangian submanifold.
In the case of periodic orbits, we will suppose that ω|π2(P) = 0, which is true if the second equality in (2)

holds. We define the action functional on the space of smooth contractible loops

Ω0(P) := {a ∈ C∞(S1,P) | [a] = 0 ∈ π1(P)}

in a standard way:

AH(a) := −
"

D2
ã∗ω −

∫
S1

H(a(t), t) dt, (4)

where ã is any map from a disc with ã|S1 = γ. This map exists since a is contractible and the first integral
in (4) does not depend on the choice of ã when the condition (2) is fulfilled. One easily checks that the
critical points ofAH are Hamiltonian periodic orbits.

Let us now define the action functional for the Lagrangian case. Let P, L and H be as above and suppose
that

ω|π2(P,L) = 0. (5)

The second condition in (2) does not have to be fulfilled in order to define the action functional. For the
domain of the action functional aH we choose:

Ω0(P,L) := {x ∈ C∞([0, 1],P) | x(0), x(1) ∈ L, [x] = 0 ∈ π1(P,L)}.

Set:

aH(x, h) := −
"

D2
+

h∗ω −
∫ 1

0
H(x(t), t) dt,

where h is any map from the upper half-disc D2
+ to P that restricts to x on the upper half-circle. Since

ω|π2(P,L) = 0, the first integral does not depend on h, so we denote aH(x) := aH(x, h).
We compute the differential of aH. For any variation xε(t) of x(t) with

xε(0), xε(1) ∈ L
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let hε(s, t) be any smooth map from D2
+ that satisfies

hε(0, t) ∈ L, for t ∈ [−1, 1],
hε(cos(πτ), sin(πτ)) = xε(τ) for τ ∈ [0, 1].

(6)

Denote by

ξ(t) :=
∂
∂ε

∣∣∣∣
ε=0

xε(t), ζ(s, t) :=
∂
∂ε

∣∣∣∣
ε=0

hε(s, t).

Using Cartan’s and Stokes’ formula, and the boundary conditions (6), one easily gets

daH(x)(ξ) =
d
dε

∣∣∣∣
ε=0

aH(xε) = −

"
D2

+

d
dε

∣∣∣∣
ε=0

h∗εω −
∫ 1

0
dH(ξ)dt =

−

"
D2

+

d(i(ζ)ω) −
∫ 1

0
dH(ξ)dt = −

∫
∂(D2

+)
i(ζ)ω −

∫ 1

0
dH(ξ)dt =

−

∫
S1

+

ω

(
ξ,

dx
dt

)
−

∫ 1

0
dH(ξ)dt = −

∫ 1

0
ω

(
ξ,

dx
dt
− XH

)
dt,

so the critical points of aH are Hamiltonian paths with ends in L.

Remark 3.1. If y ∈ Ω0(P,L) ∩Ω0(P), i.e. y(0) = y(1) ∈ L and [y] = 0 ∈ π1(P), then aH(y) = AH(y).

3.2. Invariants
Now let us recall the definition of spectral invariants. We will start with periodic orbits case. If (2) holds,

we have well defined action functionalAH. Denote by

CFλ∗ (H) :=
{∑

caa ∈ CF∗(H) | ca = 0 for AH(a) ≥ λ
}
.

Note that the Floer differential δ preserves filtrations given byAH, and define

δλ := δ|CFλ∗ (H), HFλ∗ (H) := H∗(CFλ∗ (H), δλ).

Denote by
ıλ∗ : HFλ∗ (H)→ HF∗(H)

the homomorphism induced by the inclusion map ıλ. For α ∈ HM∗(P, f ), define

ρ(α,H) := inf
{
λ | PSS(α) ∈ Im

(
ıλ∗
)}
. (7)

The above definition is also valid in the case when α is a singular homology class, since Morse and singular
homologies are isomorphic (in the rest of the paper we will also sometimes identify Morse and singular
homologies).

Now we consider the Lagrangian case. Suppose that P and L are closed and that they satisfy the
condition (2). Suppose also that Hamiltonian paths with the ends in L belong to Ω0 (i.e. are zero in π1(P,L)).
Since the action functional aH is well defined and since the differential ∂ preserves the filtration given by
aH, we can set

CFλ∗ (H : L) :=
{∑

cxx ∈ CF∗(H : L) | cx = 0 for aH(x) ≥ λ
}

∂λ := ∂|CFλ∗ (H:L)

HFλ∗ (H : L) := H∗(CFλ∗ (H : L), ∂λ).

Denote by
λ∗ : HFλ∗ (H : L)→ HF∗(H : L)

the homomorphism induced by the inclusion map λ. For given singular (or Morse) homology class
α ∈ HM∗(L, f ), define

σ(α,H) := inf
{
λ | PSS(α) ∈ Im

(
λ∗
)}
.
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Theorem 3.2. If φ1
H(L) = φ1

K(L), then

σ(α,H) − σ(α,K) = C = C(H,K).

Proof: Denote by L1 = φ1
H(L) = φ1

K(L). Let x, y ∈ L ∩ L1. Let c(s) be any smooth path in L connecting x and y
(s.t. c(0) = x, c(1) = y). Denote by

γH,x(t) := φt
H(φ−1(x)), γK,x(t) := φt

K(φ−1(x)),

γs
H(t) := φt

H(φ−1(c(s))), γs
K(t) := φt

K(φ−1(c(s))),
uH(s, t) := γs

H(t), uK(s, t) := γs
K(t).

Define f (s) to be

f (s) :=
"

Ds

ω −

∫
γs

H

Hdt −
∫
γs

K

Kdt

 ,
where Ds is the surface consisting of the union of uH(τ, t), uK(τ, t) (τ, t) ∈ [0, s] × [0, 1], and the two half discs
with the boundaries on γH and L (respectively γK and L), which exists due to the assumption [γH,x] = [γK,x] =
0 ∈ π1(P,L). Now, using Stokes’ and Cartan’s formula, as well as the conditionπ2(P,L) = 0, one easily derives
f ′(s) = 0. Obviously, f (0) = aH(γH,x) − aK(γK,x). Since π2(P,L) = 0, it holds f (1) = aH(γH,y) − aK(γK,y). This
means that f ≡ const, i. e.

aH(γH,x) − aK(γK,x) = aH(γH,y) − aK(γK,y).

We now proceed as in [15], namely, we switch to the geometric, instead of dynamic version of Floer
homology. More precisely, there is a transformation between L∩ L1 and Hamiltonian paths with ends on L,
as well as perturbed holomorphic discs with boundary on L on one side, and holomorphic discs but with the
conditions u(s, 0) ∈ L, u(s, 1) ∈ L1, so we have an one-to-one correspondence between the generators and the
boundary operators in two versions of Floer homology. Therefore, the set of elements of Floer homology
that participate in the definitions on invariants are the same in two versions, so the claim follows.

3.3. Chimneys and comparison between invariants
Let us first recall Albers’ construction of a homomorphism between Floer homology for periodic Hamil-

tonian orbits and Lagrangian Floer homology. We assume that the Hamiltonian H : P × [0, 1] → R is
admissible in the sense of [2], meaning that there are no constant contractible periodic orbits. For

Σ := R × [0, 1]/ ∼, where (s, 0) ∼ (s, 1) for s ≤ 0,

a ∈ CF∗(H) and x ∈ CF∗(H : L) define the manifold of chimneys as:

M(a, x) :=

u : Σ→ P

∣∣∣∣∣∣∣∣
∂su + J(∂tu − XH ◦ u) = 0
u(s, 0),u(s, 1) ∈ L, for s ≥ 0
u(−∞, t) = a(t), u(+∞, t) = x(t)


(see Figure 2). For a ∈ CF∗(H), define

τ(a) :=
∑

n(a, x) x

where n(a, x) stands for the number (mod 2) of zero-dimensional component ofM(a, x). This homomor-
phism descends to HF∗(H), namely, since τ ◦ δ = ∂ ◦ τ, it is well defined as a map:

τ : HF∗(H)→ HF∗(H : L).

The following diagram commutes:

HF∗(H)

PSS−1

��

τ // HF∗(H : L)

PSS−1

��
H∗(P)

ı! // H∗(L)

(8)
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where ı! = PD−1
◦ ı∗ ◦ PD is a homomorphism defined by Poincaré duality map and the inclusion and H∗(P)

and H∗(L) are singular or Morse homologies (see [2] for the details).

Figure 2: A ”chimney” that defines the homomorphism τ

Proposition 3.3. The homomorphism τ induces a homomorphism τλ on filtered homology groups:

τλ : HFλ∗ (H)→ HFλ∗ (H : L).

Proof: Let a ∈ CFλ∗ (H) and x ∈ CFλ∗ (H : L) such that there exists u ∈ M(a, x). Denote by y(t) := u(0, t).
Since a ∈ Ω0(P) and there exists u connecting y and a, we have y ∈ Ω0(P). Similarly, from x ∈ Ω0(P,L)
and the existence of u connecting y and x, we conclude y ∈ Ω0(P,L). Since y ∈ Ω0(P,L) ∩ Ω0(P), it holds
aH(y) = AH(y), so we have:

aH(x) −AH(a) = aH(x) − aH(y) +AH(y) −AH(a) =∫ +∞

0

d
ds

aH(u(s, ·))ds +

∫ 0

−∞

d
ds
AH(u(s, ·))ds =

−

∫
∞

−∞

∫ 1

0
ω (∂su, ∂tu − XH ◦ u) dtds =

−

∫ +∞

−∞

∫ 1

0
‖∂su‖

2
1J

dtds ≤ 0.

(9)

Hence, if a ∈ CFλ∗ (H), then τ(a) ∈ CFλ∗ (H : L). So, we can define

τλ := τ|CFλ∗ (H) : CFλ∗ (H)→ CFλ∗ (H : L).

Let a be in Im(δλ), i.e. a = δb, with b ∈ CF∗(H) andAH(b) < λ. We know thatAH(a) < λ also, since the action
functional decreases along perturbed holomorphic strips that define the differential δ. From (9) we have
that aH(τ(b)) < λ, so

τλ(δλb) = τλ(a) = τ(a) = τ(δb) = ∂τ(b) = ∂λτλ(b),

since τ commutes with the differentials. This implies that τλ descends to the homology level.

Remark 3.4. It is obvious that the diagram

HFλ∗ (H)

ıλ∗
��

τλ // HFλ∗ (H : L)

λ∗
��

HF∗(H) τ // HF∗(H : L)

(10)

commutes.
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Theorem 3.5. If α ∈ H∗(P) is a singular (or Morse) homology class, then ρ(α,H) ≥ σ(PSS(ı!(α)),H).

Proof: Consider the following commutative diagrams:

HFλ∗ (H)

ıλ∗
��

τλ // HFλ∗ (H : L)

λ∗
��

HF∗(H)

PSS−1

��

τ // HF∗(H : L)

PSS−1

��
H∗(P)

ı! // H∗(L)

(11)

The upper diagram is (10) and the lower is Albers’ (8). For given α ∈ H∗(P) and β ∈ H∗(L), let us define the
sets:

AH(α) := {λ | PSS(α) ∈ Im(ıλ∗ )}

AH:L(β) := {λ | PSS(β) ∈ Im( λ∗ )}.

Let λ ∈ AH(α). There exists a ∈ HFλ∗ (H) such that PSS−1(ıλ∗ (a)) = α. Since both diagrams (11) commute, this
implies that PSS−1( λ∗ (τλ(a))) = ı!(α), so PSS(ı!(α)) ∈ Im( λ∗ ). This means that λ ∈ AH:L(ı!(α)) i.e.

AH(α) ⊂ AH:L(ı!(α)).

Since
ρ(α,H) = inf AH(α), σ(β,H) = inf AH:L(β)

the claim follows.
In the same way, considering Albers’ commutative diagram

HF∗(H : L)

PSS−1

��

χ // HF∗(H)

PSS−1

��
H∗(L)

ı∗ // H∗(P)

where χ is also defined using chimneys, but in opposite direction (see [2]), one can prove the following

Theorem 3.6. If β ∈ H∗(L) is a singular (or Morse) homology class, then ρ(ı∗(β),H) ≤ σ(β,H).

4. Proof of Theorem 1.1

The product
◦ : HF∗(H1) ⊗HF∗(H2 : L)→ HF∗(H3 : L)

is define by counting of a sort of pair-of-pants objects. More precisely, consider the disjoint union

R × [−1, 0] tR × [0, 1]

and identify (s, 0−) with (s, 0+) for all s ≥ 0 as well as (s, 0+) with (s, 1), for s ≤ 0 (see figure below). Denote
the obtained Riemannian surface with boundary by Σ. Denote by Σ1, Σ2, Σ3 the two ”incoming” and one
”outgoing” ends, such that

Σ1 ≈ S1
× (−∞, 0],

Σ2 ≈ [0, 1] × (−∞, 0],
Σ3 ≈ [0, 1] × [0,+∞),
Σ0 := Σ \ (Σ1 ∪ Σ2 ∪ Σ3)
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and by u j := u|Σ j .

Figure 3: Riemannian surface Σ

Let ρ j : R→ [0, 1] denote the smooth cut-off functions such that

ρ1(s) = ρ2(s) =

1, s ≤ −2,
0, s ≥ −1

ρ3(s) := ρ1(−s).

For a ∈ CF∗(H1), x ∈ CF∗(H2 : L) and y ∈ CF∗(H3 : L), denote byM(a, x; y) the set of all u that satisfy

u : Σ→ P,
∂su j + J(∂tu j − Xρ jH j ◦ u j) = 0, j = 1, 2, 3,
∂su + J∂tu = 0, on Σ0,
u(s,−1),u(s, 0−) ∈ L, s ≤ 0,
u(s,−1),u(s, 1) ∈ L, s ≥ 0,
u1(−∞, t) = a(t),
u2(−∞, t) = x(t),
u3(+∞, t) = y(t).

For generic choices, the setM(a, x; y) is a smooth manifold of dimension µCZ
H1

(a) +µH2 (x)−µH3 (y) + n, where
µCZ denotes the Conley–Zehnder index, and µH j the (corresponding) Maslov index.

Figure 4: Moduli spaceM(a, x; y)

Let n(a, x; y) denote the number (modulo 2) of M(a, x; y) in dimension zero. Then we define the map
product

HF∗(H1) ⊗HF∗(H2 : L)→ HF∗(H3 : L)

by
a ◦ x :=

∑
y

n(a, x; y)y

on generators and extend it by (bi)linearity on HF∗(H1)⊗HF∗(H2 : L). Using standard cobordism arguments,
one can show that ◦ descends to the homology level and, when H2 = H3, it defines the product that makes
HF∗(H2 : L) a module over HF∗(H1).
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4.1. Proof of Theorem 1.1

In order to prove the inequality (1) and the Theorem 1.1, we consider, as in [17] and [20], the bundle
P̃→ Σ whose fiber is isomorphic to (P, ω) and we fix the trivializations

ϕ j : P̃ j := P̃|Σ j → Σ j × P

for j = 1, 2, 3. On each P̃ j let
ω̃ j := ϕ∗j(ω + d(ρ jH jdt)).

We will use the following theorem by Entov:

Theorem 4.1. [3] There exists a closed two form ω̃ such that

(1) ω̃|Σ j = ω̃ j;

(2) ω̃ restricts to ω at each fiber;

(3) ω̃∧(n+1) = 0.

Let ω̃ be as in Theorem 4.1 and let
Ωλ := ω̃ + λωΣ,

where ωΣ is an area form on Σ such that
∫

Σ
ωΣ = 1. Choose an almost complex structure J̃ on P̃ such that

(1) J̃ is ω̃ compatible on each fiber, so it preserves the vertical tangent space;

(2) the projection π : P̃ → Σ is (̃J, i) pseudoholomorphic, i.e. dπ ◦ J̃ = i ◦ dπ, where i is the complex
structure on Σ;

(3) (ϕ j)∗ J̃ = i ⊕ J j, where J j(s, t, x) := (φt
ρ jH j

)∗ J.

With such a choice, we get that the J̃−holomorphic sections ũ over Σ j (or some shorter cylindrical ends, i.e.,
diffeomorphic to (−∞,K j] × S1, etc.) are precisely the solutions of

∂su + J
(
∂us − X(ρ jH j) ◦ u

)
= 0. (12)

As in [20] or [3] we obtain, for a ∈ CF∗(H1), x ∈ CF∗(H2 : L) and y ∈ CF∗(H1]H2 : L)∫
ũ∗ω̃ = AH1 (a) + aH2 (x) − aH1]H2

(y), (13)

whenever there exists a J̃−holomorphic section ũ : Σ → P̃ that satisfies (12) on fibers. Since J̃ is Ωλ−

compatible, it holds

0 ≤
∫

ũ∗Ωλ =

∫
ũ∗ω + λ

∫
ũ∗ωΣ =

∫
ũ∗ω + λ

∫
ωΣ =

∫
ũ∗ω + λ.

Now we use the Entov’s result again, that enables us to choose, for any δ > 0, a closed two form ω̃ such
that Ωλ is symplectic for all λ ≥ δ (see [3] Theorems 3.6.1 and 3.7.4).

Let δ > 0, a ∈ HF∗(H1), b ∈ HF∗(H2 : L). Let ã and x be representatives of the classes a and b respectively,
such that

AH1 (ã) ≤ ρ(PSS−1(a),H1) + δ, aH2 (x) ≤ σ(PSS−1(b),H2) + δ.
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For any y ∈ a ◦ b, there exists u ∈ M(ã, x; y), so we have

aH1]H2
(y) ≤ AH1 (ã) + aH2 (x) + δ

≤ ρ(PSS−1(a),H1) + δ + σ(PSS−1(b),H2) + δ + δ

= ρ(PSS−1(α),H1) + σ((PSS−1(b),H2) + 3δ.

Since the above inequality is true for all δ > 0 and y, we conclude

σ((PSS−1(a ◦ b),H1]H2) ≤ ρ(PSS−1(a),H1) + σ((PSS−1(b),H2),

so the Theorem 1.1 follows.

Remark 4.2. For a smooth submanifold L of P and three Morse functions

f1 : P→ R, f2, f3 : L→ R

one can define a Morse homology product

· : HM∗(P, f1) ⊗HM∗(L, f2)→ HM∗(L, f3)

as follows. Let p j be critical points of f j, for j = 1, 2, 3. The setM(p1, p2; p3) is defined as the set of all trees
γ := (γ1, γ2, γ3) such that 

γ1 : (−∞, 0]→ P, γ2 : (−∞, 0]→ L, γ3 : [0,+∞)→ L,
γ̇ j = −∇ f j(γ j), j = 1, 2, 3,
γ1(−∞) = p1, γ2(−∞) = p2, γ3(+∞) = p3,
γ1(0) = γ2(0) = γ3(0).

Figure 5: The set of treesM(p1, p2; p3)

For generic choices the setM(p1, p2; p3) is a smooth manifold of dimension

m f1 (p1) + m f2 (p2) −m f3 (p3) − dim P

where m f is the corresponding Morse index. If n(p1, p2; p3) denotes the number of elements of zero-
dimensional component, then the product · is defined as:

p1 · p2 =
∑

p3

n(p1, p2; p3)p3

on generators.
Using the standard cobordism arguments, one can prove that the product ◦ and · commute with PSS

type isomorphisms, more precisely, for α ∈ HM∗(P), β ∈ HM∗(L), it holds:

PSS(α · β) = PSS(α) ◦ PSS(β), (14)
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where PSS denote both types are PSS-type isomorphisms. Let

a := PSS(α), b := PSS(β).

From (1) and (14) we get

σ(α · β,H1]H2) = σ(PSS−1(a ◦ b),H1]H2) ≤

ρ(PSS−1(a),H1) + σ(PSS−1(b),H2) = ρ(α,H1) + σ(β,H2),

so
σ(α · β,H1]H2) ≤ ρ(α,H1) + σ(β,H2).
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