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Available at: http://www.pmf.ni.ac.rs/filomat

On the Stability of the Spectral Properties
under Commuting Perturbations

Kai Yana, Weigang Sub, Xiaochun Fanga

aDepartment of Mathematics, Tongji University, Shanghai 200092, P. R. China
bSchool of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, P.R. China

Abstract. In this paper, we examine the stability of several spectral properties under commuting pertur-
bations. In particular, we show that if T ∈ L(X) is an isoloid operator satisfying generalized Weyl’s theorem
and if F ∈ L(X) is a power finite rank operator that commutes with T, then generalized Weyl’s theorem holds
for T + F. In addition, we consider the permanence of Bishop’s property (β), at a point, under commuting
perturbation that is an algebraic operator.

1. Introduction

Throughout this paper, L(X) denotes the Banach algebra of all bounded linear operators acting on a
Banach space X. For T ∈ L(X), Let T∗,N(T),R(T), σ(T), accσ(T), ρ(T) and σa(T) denote the adjoint, the null
space, the range, the spectrum, the accumulation points of σ(T), the resolvent set and the approximate
point spectrum of T respectively. Let α(T) and β(T) be the nullity and the deficiency of T defined by α(T) =
dimN(T) and β(T) = codimR(T). If the range R(T) is closed and α(T) < ∞ (resp. β(T) < ∞), then T is called
upper semi Fredholm (resp. lower semi Fredholm). If T ∈ L(X) is both upper and lower semi Fredholm, then T
is called Fredholm. If T ∈ L(X) is either upper or lower semi Fredholm, then T is called semi Fredholm, and
its index is defined by ind (T) = α(T) − β(T). An operator T ∈ L(X) is called a Weyl (resp. upper semi Weyl,
lower semi Weyl) operator if it is a Fredholm operator of index 0 (resp. T is an upper semi Fredholm operator
and ind (T) ≤ 0, T is a lower semi Fredholm operator and ind (T) ≥ 0). Recall that the descent and the ascent
of T ∈ L(X) are q(T) = in f {n ∈ N : R(Tn) = R(Tn+1)} and p(T) = in f {n ∈ N : N(Tn) = N(Tn+1)}. An operator
T ∈ L(X) is called a Browder (resp. upper semi Browder, lower semi Browder) operator if T is a Fredholm
operator and p(T) = q(T) < ∞ (resp. T is an upper semi Fredholm operator and p(T) < ∞, T is a lower
semi Fredholm operator and q(T) < ∞). Let us define the Weyl spectrum, upper semi Weyl spectrum, the
Browder spectrum and upper semi Browder spectrum as following respectively:

σW(T) = {λ ∈ C : λI − T is not a Weyl operator},

σUSW(T) = {λ ∈ C : λI − T is not an upper semi Weyl operator},
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σB(T) = {λ ∈ C : λI − T is not a Browder operator},

σUSB(T) = {λ ∈ C : λI − T is not an upper semi Browder operator}.

For each integer n, define T[n] to be the restriction of T to R(Tn) viewed as the map from R(Tn) to R(Tn)
(in particular T[0] = T). If there exists n ∈N such that R(Tn) is closed and T[n] is upper semi Fredholm (resp.
Fredholm, lower semi Fredholm), then T is called upper semi B-Fredholm (resp. B-Fredholm, lower semi B-
Fredholm); see [12]. In this case T[m] is a semi Fredholm operator and ind(T[m]) = ind(T[n]) for all m ≥ n. This
enables us to define the index of a semi B-Fredholm as ind(T) = ind(T[n]). An operator T ∈ L(X) is called
upper semi B-Weyl (resp. B-Weyl, lower semi B-Weyl) if there exists n ∈ N such that R(Tn) is closed and T[n]
is upper semi Weyl (resp. Weyl, lower semi Weyl). Analogously, a bounded operator T ∈ L(X) is called
upper semi B-Browder (resp. B-Browder, lower semi B-Browder) if there exists n ∈ N such that R(Tn) is closed
and T[n] is upper semi Browder (resp. Browder, lower semi Browder). Let us define the B-Weyl spectrum,
upper semi B-Weyl spectrum, the B-Browder spectrum and upper semi B-Browder spectrum as following
respectively:

σBW(T) = {λ ∈ C : λI − T is not a B-Weyl operator},

σUSBW(T) = {λ ∈ C : λI − T is not an upper semi B-Weyl operator},

σBB(T) = {λ ∈ C : λI − T is not a B-Browder operator},

σUSBB(T) = {λ ∈ C : λI − T is not an upper semi B-Browder operator}.

We say that Π(T) and Πa(T) denote the set of all poles and the set of all left poles respectively, while
Π0(T) and Π0

a(T) denote the set of all poles of finite rank and the set of all left poles of finite rank respectively.
Moreover,

Π(T) = σ(T)\σBB(T), Πa(T) = σa(T)\σUSBB(T),

Π0(T) = σ(T)\σB(T), Π0
a(T) = σa(T)\σUSB(T).

Let E(T) and Ea(T) denote the set of all isolated eigenvalues of T and the set of all eigenvalues of T that
are isolated in σa(T) respectively. That is,

E(T) = {λ ∈ isoσ(T) : 0 < α(λI − T)},

Ea(T) = {λ ∈ isoσa(T) : 0 < α(λI − T)}.

Moreover, we set
E0(T) = {λ ∈ E(T) : α(λI − T) < ∞},

E0
a(T) = {λ ∈ Ea(T) : α(λI − T) < ∞}.

Definition 1.1. ([13]) Let T ∈ L(X) . We say that
(1) Weyl’s theorem holds for T if σ(T)\σW(T) = E0(T).
(2) Generalized Weyl’s theorem holds for T if σ(T)\σBW(T) = E(T).
(3) Property (w) holds for T if σa(T)\σUSW(T) = E0(T).
(4) Property (1w) holds for T if σa(T)\σUSBW(T) = E(T).

It is well known that following implications hold [13]:

property (1w) ⇒ generalized Weyl’s theorem

⇓ ⇓

property (w) ⇒ Weyl’s theorem

Let D(λ, r) be the open disc centred atλ ∈ Cwith radius r > 0, and letO(U,X) denote the Fréchet algebra of
all X-valued analytic functions on the open subset of U ⊂ C endowed with uniform convergence on compact
subsets of U. An operator T ∈ L(X) is said to satisfy Bishop′s property (β) at λ0 ∈ C if there exists r > 0 such
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that for every open subset U ⊂ D(λ0, r) and for any sequence { fn}∞n=1 ⊂ O(U,X), limn→∞(T − λI) fn(λ) = 0
in O(U,X) implies limn→∞ fn(λ) = 0 in O(U,X). We denote by σβ(T) the set where T fails to have Bishop’s
property (β) and we say that T satisfies Bishop′s property (β) if σβ(T) = 0. Dually, an operator T ∈ L(X) is
said to have the decomposition property (δ) if T∗ satisfies Bishop’s property (β). It is well known that T is
decomposable if and only if T satisfies both (β) and (δ). We refer the readers to the chapter 1 and chapter 2 of
[18] for more details and further definitions.

In [17], W. Y. Lee and S. H. Lee have proved that, for an isoloid operator T, Weyl’s theorem is transmitted
from T to T + F when F is a finite rank operator commuting with T. Recently, M. Oudghiri have generalized
this result replacing “finite rank” with “power finite rank” in [23]. It is known that, for an isoloid operator
T, generalized weyl’s theorem is also transmitted from T to T+F when F is a finite rank operator commuting
with T; see [10]. However, whether this result remains valid or not when we replace “finite rank” with
“power finite rank” is still a question. In the present paper, we give an affirmative answer to this question.
In section 2, we firstly get a useful equality accσ(T) = accσ(T + F), where F commutes with T and the Fn is
finite rank for some n ∈ N. By this equality, we generalize several results in [9, 10, 14]. In particular, we
show that if T ∈ L(X) is an isoloid operator satisfying generalized Weyl’s theorem and if F ∈ L(X) commuting
with T satisfies that Fn is finite rank for some n ∈ N, then generalized Weyl’s theorem holds for T + F. In
section 3, we consider the permanence of Bishop’s property (β), at a point, under commuting perturbation
that is an algebraic operator. As its applications, we consider the permanence of decomposition property
(δ) and decomposable property.

2. Weyl Type Theorems under Commuting Power Finite Rank Perturbations

In this section we study the stability of Weyl type theorems under commuting perturbation that is a
power finite rank operator. An operator F is calld power f inite rank if Fn is finite rank for some n ∈ N. Let
us begin with a useful Lemma.

Lemma 2.1. Let T ∈ L(X). If F ∈ L(X) commuting with T satisfies that Fn is finite rank for some n ∈N, then

accσ(T) = accσ(T + F).

Proof. Suppose that λ < accσ(T). There exists a number ε > 0, such that for all λ ∈ C, if 0 < |λ − µ| < ε, then
µI − T is invertible. Therefore, there exists a bounded operator T1 such that T1(µI − T) = (µI − T)T1 = I.
Assume that µ ∈ σ(T + F), then µ is an eigenvalue of T + F. Indeed, since µI −T is invertible and F is a Riesz
operator commuting with µI − T, then [23, Lemma 2.2] implies that uI − (T + F) is a Weyl operator. If µ is
not an eigenvalue of T + F - i.e., α[uI − (T + F)] = 0, then α[uI − (T + F)] = β[uI − (T + F)] = 0, which leads to
a contradiction. Now, we assume that x , 0 is an arbitrary eigenvector. Therefore [uI − (T + F)]x = 0. Thus,

T1[uI − (T + F)]x = 0
=⇒ x − T1Fx = 0
=⇒ x = T1Fx.

As T1F = FT1, it follows x = Tn
1 Fnx. Consequently, x is contained in a certain finite dimensional space which

is isometric to R(Fn). It is known that eigenvectors corresponding to distinct eigenvalue of T + F are linearly
independent. But we get that all such eigenvectors are contained in the finite dimensional space. It follows
that σ(T + F) may contain only finitely many points µ such that 0 < |λ− µ| < ε. This implies λ < accσ(T + F).
The opposite implication is analogous.

As a corollary, we generalize a result that belongs to Xiaohong Cao and Aifang Liu [14, lemma 2.1].

Corollary 2.2. Let T ∈ L(X). If F ∈ L(X) commuting with T satisfies that Fn is finite rank for some n ∈N, then

isoσ(T + F) ⊂ isoσ(T) ∪ ρ(T).
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Proof. It follows immediately from the lemmas above.

According to [8, Theorem 2.9], we have that: T satisfies generalized Weyl’s theorem if and only if T
satisfies Weyl’s Theorem and E(T) = Π(T). In the next theorem, we generalize one of the main results of [10]
(Theorem 3.4 of [10]), where the finite rank perturbation is extended to the power finite rank perturbation.
Recall that T ∈ L(X) is said to be isoloid if every isolated points of σ(T) is an eigenvalue.

Theorem 2.3. Suppose that T ∈ L(X) is an isoloid operator and that F ∈ L(X) commuting with T satisfies that Fn is
finite rank for some n ∈N. If T satisfies generalized Weyl’s theorem, then T + F satisfies generalized Weyl’s theorem.

Proof. Assume that T satisfies generalized Weyl’s theorem. This implies that T satisfies Weyl’s Theorem and
E(T) = Π(T). Since, by [23, Theorem 2.4], T+F satisfies Weyl’s Theorem, then in order to prove T+F satisfies
generalized Weyl’s Theorem, we need to prove E(T + F) = Π(T + F). As the inclusion Π(T + F) ⊆ E(T + F) is
always true, we need only to prove the inclusion E(T + F) ⊆ Π(T + F).

Let λ ∈ E(T + F) be arbitrarily given, then

λ ∈ isoσ(T + F) and α[λI − (T + F)] > 0.

So λ ∈ isoσ(T)∪ρ(T) by Corollary 2.2. If λ ∈ isoσ(T), since T is isoloid, we obtain that α(λI−T) > 0. Thus, λ ∈
E(T) and generalized Weyl’s theorem for T ensures that λ ∈ Π(T) - i.e., 0 < p(λI−T) = q(λI−T) < ∞. Hence
the [16, Theorem 2.2] implies λ ∈ Π(T +F). If λ ∈ ρ(T), then λI−T is invertible - i.e., p(λI−T) = q(λI−T) = 0.
As λ ∈ isoσ(T + F) ⊆ σ(T + F), it then follows that λ ∈ Π(T + F) by [16, Theorem 2.2]. Consequently, we get
E(T + F) ⊆ Π(T + F), as desired.

Note that there exists a operator T ∈ L(X) and a power finite rank operator F ∈ L(X) commuting with T
such that generalized Weyls theorem holds for T but it does not hold for T + F; see [10, Example 2]. Recall
that an operaotr T is said to satisfy property (R) if the equality Π0

a(T) = E0(T) holds for T, while T is said
to satisfy property (1R) if the equality Πa(T) = E(T) holds. These two properties play an important role in
studying Wely type theorems; see [4] and [5] for more details.

Theorem 2.4. Suppose that T ∈ L(X) is an isoloid operator and that F ∈ L(X) commuting with T satisfies that Fn is
finite rank for some n ∈N, then

(1) If T obeys property (1R) and Πa(T + F) ⊂ σa(T), then T + F obeys property (1R).
(2) If T obeys property (R) and Π0

a(T + F) ⊂ σa(T), then T + F obeys property (R).

Proof. (1) Assume that T obeys property (1R) - i.e., Πa(T) = E(T). Let λ ∈ Πa(T + F). From [11, Theorem 3.2]
and the assumption, we have

Πa(T + F) = σa(T + F)\σUSBB(T + F) ⊆ σa(T)\σUSBB(T) = Πa(T).

Hence, λ ∈ Πa(T) and [5, Theorem 2.5] implies λ ∈ Π(T) - i.e., 0 < p(λI − T) = q(λI − T) < ∞. Thus
p[λI − (T + F)] = q[λI − (T + F)] < ∞ by [16, Theorem 2.2]. As λ ∈ σ(T + F), it follows that λ is a pole of
the resolvent of T + F. So we conclude that λ ∈ isoσ(T + F). By [3, Lemma 3.5], we have α[λI − (T + F)] > 0
which ensures that λ ∈ E(T + F).

Conversely, let λ ∈ E(T + F). We claim that λ ∈ Π(T + F). Since λ ∈ isoσ(T + F), then λ ∈ isoσ(T) ∪ ρ(T)
by Corollary 2.2. If λ ∈ isoσ(T), since T is isoloid, we have α(λI − T) > 0. So λ ∈ E(T). As T satisfies
property (1R), the [5, Theorem 2.5] implies that λ ∈ Π(T) - i.e., 0 < p(λI − T) = q(λI − T) < ∞. Hence
λ ∈ Π(T + F) by [16, Theorem 2.2]. If λ ∈ ρ(T), then λI − T is invertible - i.e., p(λI − T) = q(λI − T) = 0. As
λ ∈ isoσ(T + F) ⊆ σ(T + F), it then follows that λ ∈ Π(T + F) by [16, Theorem 2.2], as desired. Now the basic
inclusion relation between Π(T + F) and Πa(T + F) ensures that T + F satisfies property (1R).

(2) Analogous to the proof of (1).

Recall that an operator T is said to satisfy 1eneralized Browder′s theorem if σBW(T) = σBB(T), while T is
said to satisfy 1eneralized a-Browder′s theorem if σUSBW(T) = σUSBB(T). It is known that a-Browder’s theorem
and generalized a-Browder’s theorem are equivalent and generalized a-Browder’s theorem is stable under
commuting Riesz perturbations. As a corollary, we generalize the results that belong to M. Berkani and M.
Amouch in [9] (Theorem 2.8 and Theorem 2.9 of [9]).
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Corollary 2.5. Suppose that T ∈ L(X) is an isoloid operator and that F ∈ L(X) commuting with T satisfies that Fn

is finite rank for some n ∈N, then
(1) If T obeys property (1w) and Πa(T + F) ⊂ σa(T), then T + F obeys property (1w).
(2) If T obeys property (w) and Π0

a(T + F) ⊂ σa(T), then T + F obeys property (w).

Proof. (1) Assume that T satisfies property (1w). Then T satisfies generalized a-Browder’s theorem and
property (1R) by [7, Theorem 2.6]. Hence, T + F satisfies generalized a-Browder’s theorem and property
(1R) by Theorem 2.4. This implies T + F satisfies property (1w).

(2) Analogous to the proof of (1).

3. Bishop’s Property (β) under Commuting Algebraic Perturbations

The Bishop’s property (β) plays an important role in studying local spectral theory. We refer the readers
to [18] for more details. For this reason, it is of interest to study the preservation of Bishop’s property (β)
under certain perturbations. Firstly, we collect two preliminary results of Bishop’s property (β) at a point.

Lemma 3.1. Let Ti ∈ L(Xi), i = 1, 2, if T1,T2 have Bishop’s property (β) at λ0, then T1 ⊕ T2 has Bishop’ s property
(β) at λ0.

Proof. Suppose that T1 and T2 have the Bishop’ s property (β) at λ0 - i.e., there exists ri > 0, i = 1, 2, such
that for every open subset Ui ⊂ D(λ0, ri) and for any sequence { f i

n}
∞

n=1 ⊂ O(Ui,Xi), limn→∞(Ti − λ) f i
n(λ) = 0

in O(Ui,Xi) implies limn→∞ f i
n(λ) = 0 in O(Ui,Xi). For an arbitrary open subset U ⊂ D(λ0,min{r1, r2}),

let us consider an analytic sequence fn = f 1
n ⊕ f 2

n ⊂ O(U,X1 ⊕ X2), where f i
n ⊂ O(U,Xi). The condition

limn→∞(λI − T1 ⊕ T2) fn(λ) = 0 in O(U,X1 ⊕ X2) implies that limn→∞(λI − Ti) f i
n(λ) = 0 in O(U,Xi), i = 1, 2.

Since T1 and T2 have Bishop’s property (β) at λ0, then limn→∞ f i
n(λ) = 0 in O(U,Xi). Thus, limn→∞ fn(λ) = 0 in

O(U,Xi ⊕ X2).

Remark 3.2. Observe that if T has Bishop’ s property (β) at λ0, then T − λ0 has the Bishop’ s property
(β) at 0. Indeed, suppose T has the Bishop’ s property (β) at λ0 − i.e., there exists r > 0 such that
for every open subset U ⊂ D(λ0, r) and for any sequence { fn}∞n=1 ⊂ O(U,X), limn→∞(T − λI) fn(λ) = 0 in
O(U,X) implies limn→∞ fn(λ) = 0 in O(U,X). Let G ⊂ D(0, r) be open and {1n}

∞

n=1 be a sequence in O(G,X)
such that limn→∞(T − λ0I − λI)1n(λ) = 0 in O(G,X). Define the sequence { fn}∞n=1 be fn(λ) = 1n(λ − λ0).
Then limn→∞(T − (λ0 + λ)I) fn(λ0 + λ) = 0 in O(G,X). Since T has the Bishop’ s property (β) at λ0, then
limn→∞ fn(λ + λ0) = limn→∞1n(λ) = 0 in O(G,X). Thus T − λ0 has the Bishop’ s property (β) at 0.

Recall from [18], the commutator of two operators S,T ∈ L(X) is the operator C(S,T) on L(X) defined by
C(S,T)(A) := SA − AT. By induction it is easy to show the binomial identity

C(S,T)k(A) =

k∑
i=0

( k
i

)
(−1)iSk−iATi.

Obviously, C(S − λI,T − λI)k(A) = C(S,T)k(A) for all λ ∈ C. If there exists an integer k ∈ N for which
C(S,T)k(I) = C(T,S)k(I) = 0, then the operators S and T are said to be nilpotent equivalent. For T,S ∈ L(X)
with ST = TS, it is easily seen that C(S,T)k(I) = (S−T)k for all k ∈N. Thus, S and T are nilpotent equivalent
precisely when S − T is nilpotent.

Theorem 3.3. Let T,S ∈ L(X) be nilpotent equivalent. Then T has Bishop’ s property (β) at λ0 if and only if S has
Bishop’s property (β) at λ0. In particular, if T has Bishop’s property (β) at λ0 and N is nilpotent that commutes with
T, then T + N also has Bishop’s property (β) at λ0.
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Proof. By symmetry, it suffices to show that Bishop’s property (β) at λ0 is transferred from S to T. Suppose
that S has the Bishop’ s property (β) at λ0 − i.e., there exists r > 0 such that for every open subset U ⊂ D(λ0, r)
and for any sequence { fn}∞n=1 ⊂ O(U,X), limn→∞(S − λI) fn(λ) = 0 in O(U,X) implies limn→∞ fn(λ) = 0 in
O(U,X). Let limn→∞(T − λI) fn(λ) = 0 in O(U,X). Thus, we have

C(S,T)k(I) fn(λ) − (S − λI)k fn(λ)

= C(S − λI,T − λI)k(I) fn(λ) − (S − λI)k fn(λ)

=

k∑
i=1

(−1)i(S − λI)k−i(T − λI)i fn(λ)

= [
k∑

i=1

(−1)i(S − λI)k−i(T − λI)i−1](T − λI) fn(λ)

−→ 0 in O(U,X), as n→∞.

Since C(S,T)k(I) = 0, we get that limn→∞(S − λI)k fn(λ) = 0 in O(U,X). As S has Bishop’s property (β) at λ0,
it follows that limn→∞(S − λI)k−1 fn(λ) = 0 in O(U,X). By induction we have that limn→∞ fn(λ) = 0 in O(U,X).
Therefore, T has Bishop’s property (β) at λ0.

Recall that an operator K ∈ L(X) is said to be al1ebraic if there exists a non-trivial complex polynomial
h such that h(K) = 0. Trivially, every nilpotent operator is algebraic and it is know that every finite-
dimensional operator is algebraic. It is also known that every algebraic operator has a finite spectrum. The
proof of the following theorem is strongly inspired by that of [6, theorem 2.3].

Theorem 3.4. Let T ∈ L(X), suppose that K ∈ L(X) is an algebraic operator which commutes with T, and let h be
a non-zero polynomial for which h(K) = 0. If T has Bishop’s property (β) at each of the zeros of h, then T − K has
Bishop’s property (β) at 0. In partircular, if T has Bishop’s property (β), then T + K has Bishop’s property (β).

Proof. An algebraic operator has a finite spectrum. Indeed, by spectral mapping theorem h(σ(K)) = σ(h(K)) =
{0}, so that σ(K) is finite. Let σ(K) = {λ1, ..., λn} and denote Pi as the spectral projection associated with K
and the spectral set {λi}. Set Yi := R(Pi). Therefore, from the classical spectral decomposition, Y1, ...,Yn
are closed linear subspaces of X each of which is invariant under both K and T, and X = Y1 ⊕ ... ⊕ Yn.
Moreover, for arbitrary i = 1, ...,n, Ki := K|Yi and Ti := T|Yi commute and we have σ(Ki) = {λi}. We claim
that Ni := λiI − Ki is nilpotent for every i = 1, ...,n. Since

h({λi}) = h(σ(Ki)) = σ(h(Ki)) = {0},

it then follows that h(λi) = 0. Write

h(µ) = (λi − µ)vq(µ) with q(λi) , 0.

Then
(λiI − Ki)vq(Ki) = h(Ki) = 0

with q(Ki) invertible. Therefore, (λiI − Ki)v = 0 and hence, Ni := λiI − Ki is nilpotent for every i = 1, ...,n, as
desired.

Now observe that
Ti − Ki = (Ti − λiI) − (Ki − λiI) = Ti − λiI −Ni.

Since T has Bishop’s property (β) at λi, we get that T−λiI has Bishop’s property (β) at 0 by Remark 3.2. Since
Bishop’s property (β) is inherited by restrictions to closed invariant subspaces, we conclude that Ti−λiI has
Bishop’s property (β) at 0, and hence, by Theorem 3.3, Ti − Ki = Ti − λiI −Ni also has Bishop’s property (β)
at 0 for all i = 1, ...,n. From Theorem 3.1, it then follows that

T − K = (T1 − K1) ⊕ ... ⊕ (Tn − Kn)
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has Bishop’s property (β) at 0, as desired. With an application of the main result, we can establish the final
claim.

In the sequel we give some applications of the Theorem 3.4.

Corollary 3.5. If T ∈ L(X) has decomposition property (δ) and K ∈ L(X) is an algebraic operator which commutes
with T, then T + K has decomposition property (δ).

Proof. Assume that T has decomposition property (δ), then T∗ has Bishop’s property (β). Obviously, K∗ is
algebraic and commutes with T∗. Hence, (T + K)∗ = T∗ + K∗ has Bishop’s property (β). This implies T + K
has decomposition property (δ).

Since T is decomposable if and only if T satisfies both (β) and (δ), then we get the following consequence
immediately from the Theorem 3.4 and Corollary 3.5.

Corollary 3.6. If T ∈ L(X) is decomposable and K ∈ L(X) is an algebraic operator which commutes with T, then
T + K is decomposable.

Now we give some classes of operators which have attracted the attention of several authors in con-
nection with Bishop’s property (β); see also [15, 19–21] for more details. Let H be a Hilbert space and
T ∈ L(H):

(1) An operator T is called k-quasi-∗-paranormal if ||T∗Tkx||2 ≤ ||Tk+2x||||Tkx||.
(2) An operator T is called k-quasi-paranormal if ||Tk+1x||2 ≤ ||Tk+2x||||Tkx||.
(3) An operator T is called k-quasi-∗-class A if T∗k(|T2

| − |T∗|2)Tk
≥ 0.

(4) An operator T is called k-quasi-class A if T∗k(|T2
| − |T|2)Tk

≥ 0.
It is not hard to check that T is a k-quasi-class A operator implies that T is a k-quasi-paranormal operator. In-
deed, suppose that T is k-quasi-class A - i.e., T∗k|T|2Tk

≤ T∗k|T2
|Tk. Let x ∈ H, then ||Tk+1x||2 = 〈Tk+1x,Tk+1x〉 =

〈T∗k|T|2Tkx, x〉 ≤ 〈T∗k|T2
|Tkx, x〉 ≤ |||T2

|Tkx||||Tx|| = ||Tk+2x||||Tkx||. Hence, T is k-quasi-paranormal.
In [22], Mecheri has proved that if T is k-quasi-class A, then T has Bishop’s property (β). However,

for the k-quasi-∗-class A, k-quasi-∗-paranormal or k-quasi-∗-paranormal operator T, whether T has Bishop’s
property (β) or not is still an open question; see [21]. Therefore, from our Theorem 3.4, we obtain the
following result immediately.

Corollary 3.7. Let T be an k-quasi-class A operator, if K is an algebraic operator that commutes with T, then T + K
has the Bishop’s property (β).
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