Filomat 30:6 (2016), 1493–1496 DOI 10.2298/FIL1606493Z



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# On the Arens Product and Approximate Identity in Locally Convex Algebras

# A. Zivari-Kazempour<sup>a</sup>

<sup>a</sup>Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran.

**Abstract.** Let  $\mathcal{A}'$  and  $\mathcal{A}''$  be the dual and bidual spaces of a locally convex algebra  $\mathcal{A}$  with dual and weak<sup>\*</sup> topology, respectively. In this paper, we show that  $\mathcal{A}$  has a bounded right (left) approximate identity if and only if  $\mathcal{A}''$  has a right (left) unit with respect to the first (second) Arens product.

## 1. Introduction

Let  $\mathcal{A}$  be a Banach algebra. It is well known that on the second dual space  $\mathcal{A}''$  of  $\mathcal{A}$ , there are two multiplications, called the first and second Arens products, which make  $\mathcal{A}''$  into a Banach algebra [1]. In [3], Civin and Yood proved that the Banach algebra  $\mathcal{A}$  has a weak right identity if and only if  $\mathcal{A}''$  has a right unit with respect to the first Arens product. In the other word an element  $E \in \mathcal{A}''$  is a right unit for  $\mathcal{A}''$  if and only if it is a weak\* cluster point of some bounded right approximate identity  $(e_{\alpha})_{\alpha \in I}$  in  $\mathcal{A}$ , [2]. In this paper, as a main theorem we extend this result for locally convex algebras and we obtain some related results.

# 2. Definitions and Notations

Throughout this paper we will assume that  $\mathcal{A}$  is a locally convex algebra with hypo-continuous multiplication. We say that the product  $\mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$  is left (right) hypo-continuous if for each neighborhood U of 0 and for each bounded set B of  $\mathcal{A}$  there exists a second neighborhood V of 0 such that  $VB \subset U$  ( $BV \subset U$ ). The multiplication in  $\mathcal{A}$  is said to be hypo-continuous if it is both left and right hypo-continuous.

The dual  $\mathcal{A}'$  of  $\mathcal{A}$ , is the space of all continuous, complex valued linear maps on  $\mathcal{A}$ . The dual topology (resp. weak\* topology ) on  $\mathcal{A}'$  is the topology of uniform convergence on the bounded sets (resp. finite point sets) of  $\mathcal{A}$ . It is clear that if  $\mathcal{A}$  is normable, then the dual topology on  $\mathcal{A}'$  is the norm topology. In this paper we consider  $\mathcal{A}'$  with dual topology, where  $\mathcal{A}'$  with this topology is certainly a locally convex topological vector space. The bidual of  $\mathcal{A}$  is the dual of  $\mathcal{A}'$  which is denoted by  $\mathcal{A}''$ . The bidual topology on  $\mathcal{A}''$  is the topology of uniform convergence on the bounded sets of  $\mathcal{A}'$ . The second topology on  $\mathcal{A}''$  is the weak\* topology (the uniform convergence topology on finite point sets of  $\mathcal{A}'$ ).

Let  $\pi$  denotes the canonical embedding of  $\mathcal{A}$  into  $\mathcal{A}''$ . Then for all  $a \in \mathcal{A}$ ,  $\pi(a)$  is linear and continuous for the weak<sup>\*</sup> topology on  $\mathcal{A}'$ , and hence for the stronger dual topology on  $\mathcal{A}'$ . Therefore  $\pi(a)$  is in  $\mathcal{A}''$ .

Keywords. Arens regular, bounded approximate identity, weakly quasi-complete, topological centre.

<sup>2010</sup> Mathematics Subject Classification. Primary 46H05.

Received: 27 April 2014; Accepted: 08 August 2014

Communicated by Dragan S. Djordjević

Email address: zivari@abru.ac.ir (A. Zivari-Kazempour)

Also  $\pi$  is an algebra homomorphism and  $\pi(\mathcal{A})$  is weak<sup>\*</sup> dense in  $\mathcal{A}''$  [5]. For each  $a, b \in \mathcal{A}$ ,  $f \in \mathcal{A}'$  and  $\Phi \in \mathcal{A}''$ , the elements  $f \cdot a, a \cdot f, \Phi \cdot f$  and  $f \cdot \Phi$  of  $\mathcal{A}'$  are defined as follows:

$$(f \cdot a)b = f(ab), \quad (a \cdot f)b = f(ba).$$

 $(\Phi \cdot f)a = \Phi(f \cdot a), \quad (f \cdot \Phi)a = \Phi(a \cdot f).$ 

The first and second Arens products of  $\Phi, \Psi \in \mathcal{A}''$ , which we denote by  $\Box$  and  $\diamond$  respectively, are defined by the formula [5],

$$(\Phi \Box \Psi)f = \Phi(\Psi \cdot f), \quad (\Phi \diamond \Psi)f = \Psi(f \cdot \Phi).$$

The locally convex algebra  $\mathcal{A}$  is said to be Arens regular if the products  $\Box$  and  $\diamond$  coincide on  $\mathcal{A}''$ . The bilinear mapping  $(\Phi, \Psi) \longrightarrow \Phi \Box \Psi$  is a separately continuous with bidual topology on  $\mathcal{A}''$ , therefore  $(\mathcal{A}'', \Box)$  with bidual topology is an associative locally convex topological algebra [5].

Also for any fixed  $\Phi \in \mathcal{A}''$ , the map  $\Psi \mapsto \Psi \Box \Phi$  is weak\*-weak\* continuous on  $\mathcal{A}''$ , but in general, the map  $\Psi \mapsto \Phi \Box \Psi$  is not weak\*-weak\* continuous on  $\mathcal{A}''$ . We define the first topological centre  $Z_t^1(\mathcal{A}'')$  of  $\mathcal{A}''$  by

$$Z^{1}_{t}(\mathcal{A}'') = \{ \Phi \in \mathcal{A}'' : \Psi \longmapsto \Phi \Box \Psi \text{ is } w^{*} - w^{*} \text{ continuous on } \mathcal{A}'' \}.$$

It is easy to check that

$$Z_t^1(\mathcal{A}'') = \{ \Phi \in \mathcal{A}'' : \ \Phi \Box \Psi = \Phi \diamond \Psi \ (\Psi \in \mathcal{A}'') \}.$$

The algebra  $\mathcal{A}$  is called left strongly Arens irregular if  $Z_t^1(\mathcal{A}'') = \mathcal{A}$ , [4]. For more information about the Arens product and topological centres, we refer the reader to Memoire [4]. An element *E* of  $\mathcal{A}''$  is said to be a mixed unit if *E* is a right unit for the first Arens product and a left unit for the second Arens product, i.e, for each  $\Phi$  in  $\mathcal{A}''$ ,  $\Phi \Box E = E \diamond \Phi = \Phi$ . A bounded net  $(e_\alpha)_{\alpha \in I}$  in  $\mathcal{A}$  is a bounded left approximate identity (BLAI for short) if, for each  $a \in \mathcal{A}$ ,  $e_\alpha a \longrightarrow a$ . Bounded right approximate identity (BRAI) and bounded approximate identity (BAI) can be defined similarly.

The quasi-product of elements *a* and *b* in  $\mathcal{A}$  is the element *aob* of  $\mathcal{A}$  defined by *aob* = *a* + *b* - *ab*.

The proof of the following result contained in [7].

**Theorem 2.1.** Let G be an infinite locally compact group. Then  $L^1(G)$  is not Arens regular.

Throughout the paper we identify an element of  $\mathcal{A}$  with its canonical image in  $\mathcal{A}''$ .

## 3. First Arens Product and Right Approximate Identity

For the proof of the main theorem we need the following result which generalized proposition 2, § 11 of [2].

**Proposition 3.1.** Let *B* be a bounded subset of *A* such that for each  $a \in A$  and for every neighborhood *U* of 0 there exists  $b \in B$  such that  $a - ab \in U$ . Then *A* has a BAI.

Proof. We first show that for every neighborhood *U* of 0 and for each finite subset *F* of  $\mathcal{A}$  there exist  $w \in BoB = \{bob' : b, b' \in B\}$  such that

$$x - xw \in U \qquad (x \in F).$$

Let *U* be a neighborhood of 0. Choose the balanced neighborhoods *V* and *W* of 0 such that

$$V \subseteq W, V^2 \subseteq W$$
 and  $W + W \subseteq U$ .

Since *B* is bounded, so we can choose  $\lambda > 1$  such that  $B \subset \lambda V$ . Given  $F = \{x_1, x_2\}$ , then there exist  $b, b' \in B$  such that

$$(x_1 - x_1b) \in \lambda^{-1}V$$
 and  $(x_2 - x_2b) - (x_2 - x_2b)b' \in U$ 

Put w = bob', then we have  $x_i - x_i w \in U$  (i = 1, 2). Assume that the result has been established for sets of n elements. Let  $F = \{x_1, ..., x_{n+1}\}$ , and U be a neighborhood of 0. For  $\lambda > 1$  suppose that  $\{x_1, ..., x_n\}B \subseteq \lambda V$ . By assumption there exists  $y \in BoB$  such that  $(x_i - x_i y) \in \lambda^{-1}V$  for i = 1, ..., n. Hence for  $H = \{y, x_{n+1}\}$ , there exists  $w \in BoB$  such that

$$(y-yw) \in \lambda^{-1}V$$
 and  $(x_{n+1}-x_{n+1}w) \in \lambda^{-1}V$ .

Then for i = 1, ..., n we have

$$\begin{aligned} x_i - x_i w &= (x_i - x_i y) + (x_i y - x_i y w) + (x_i y w - x_i w) \\ &= (x_i - x_i y) + x_i (y - y w) - (x_i y - x_i) w \\ &\in (\lambda^{-1} V) + (\lambda V)(\lambda^{-1} V) + (\lambda^{-1} V)(\lambda V) \\ &\subseteq W + W + W \subseteq U. \end{aligned}$$

Now let *I* denotes the set of all pairs (*U*, *F*), where  $U \subset \mathcal{A}$  is a neighborhood of 0 and  $F \subset \mathcal{A}$  is a finite set. Define an order on *I* by

$$(U_1, F_1) \leq (U_2, F_2) \iff U_1 \supset U_2 \quad and \quad F_1 \subset F_2.$$

Then *I* is a directed set. For each  $\alpha = (U, F) \in I$  there exists  $e_{\alpha} \in B$  such that  $a - ae_{\alpha} \in U$  for all  $a \in F$ . Therefore  $(e_{\alpha})_{\alpha \in I}$  is a BRAI for  $\mathcal{A}$ . Similarly,  $\mathcal{A}$  has a BLAI and so has a BAI, as required.

Now we can prove the main result.

**Theorem 3.2.** *A* has a BRAI if and only if the topological algebra ( $\mathcal{A}'', \Box$ ) has a right unit.

Proof. Assume that  $\mathcal{A}$  have a BRAI  $(e_{\alpha})_{\alpha \in I}$  and let

$$\Gamma = \{\pi(e_{\alpha}) : \alpha \in I\}.$$

Then  $\Gamma$  is a equicontinuous family on  $\mathcal{A}'$ , so we may suppose, by passing to a subnet, that  $\pi(e_{\alpha})$  is weak<sup>\*</sup> convergent to  $E \in \mathcal{A}''$ . Then for all  $a \in \mathcal{A}$ ,  $f \in \mathcal{A}'$  we have

$$\pi(e_{\alpha})(f \cdot a) = (f \cdot a)e_{\alpha} = f(ae_{\alpha}) \longrightarrow f(a),$$

and so  $(E \cdot f)a = E(f \cdot a) = f(a)$ . Hence for each  $\Phi \in \mathcal{A}''$  and  $f \in \mathcal{A}'$ ,

$$(\Phi \Box E)f = \Phi(E \cdot f) = \Phi(f)$$

Therefore  $\Phi \Box E = \Phi$  and so *E* is a right unit for  $(\mathcal{A}'', \Box)$ .

Conversely assume that  $\mathcal{A}''$  has a right unit, namely *E*. Since  $\pi(\mathcal{A})$  is weak<sup>\*</sup> dense in  $\mathcal{A}''$ , so there exists net  $(x_{\alpha})_{\alpha \in I}$  in  $\mathcal{A}$  such that  $\pi(x_{\alpha}) \longrightarrow E$  in weak<sup>\*</sup> topology of  $\mathcal{A}''$ . Hence  $\{\pi(x_{\alpha}) : \alpha \in I\}$  is bounded subset in  $\mathcal{A}''$ . It follows that  $(x_{\alpha})_{\alpha \in I}$  is weakly bounded and therefore is a bounded net in  $\mathcal{A}$  by Theorem 3.18 of [6]. Suppose that *B* is the convex hull of  $(x_{\alpha})$ , then *B* is a bounded subset in  $\mathcal{A}$  and for all  $a \in \mathcal{A}$ , the weak closure and original closure of *aB* is equal by Theorem 3.12 of [6]. Let  $a \in \mathcal{A}$  and  $f \in \mathcal{A}'$ , then

$$f(ax_{\alpha}) = (f \cdot a)x_{\alpha} = \pi(x_{\alpha})(f \cdot a) \longrightarrow E(f \cdot a)$$
$$= \pi(a)(E \cdot f) = (\pi(a)\Box E)f = \pi(a)(f) = f(a).$$

Hence  $ax_{\alpha} \longrightarrow a$  in the weak topology, and so

$$a \in \overline{\{(ax_{\alpha}) : \alpha \in I\}}^{\omega} \subseteq \overline{(aB)}^{\omega} = \overline{(aB)}.$$

Thus for every neighborhood *U* of 0 there exist  $b \in B$  such that  $a - ab \in U$ . Now the result follows from above proposition.

One can verify that the left case of theorem 3.2 is also valid, i.e.,  $\mathcal{A}$  has a BLAI if and only if  $(\mathcal{A}'', \diamond)$  has a left unit.

As an consequence of this theorem we have the following results.

**Corollary 3.3.** Let  $\mathcal{A}$  be an Arens regular. Then  $\mathcal{A}''$  has a unit element if and only if  $\mathcal{A}$  has a BAI.

**Corollary 3.4.** Let  $(\mathcal{A}'', \Box)$  has a unit element and  $\pi(\mathcal{A})$  is an ideal in  $\mathcal{A}''$ . Then  $\mathcal{A}$  is Arens regular.

Proof. Assume that  $\Phi, \Psi, \Lambda \in \mathcal{A}''$ . Then there exist net  $(x_{\alpha})_{\alpha \in I}$  in  $\mathcal{A}$  such that  $\pi(x_{\alpha}) \longrightarrow \Lambda$  in the weak<sup>\*</sup> topology of  $\mathcal{A}''$ . Since  $\pi(\mathcal{A})$  is an ideal of  $\mathcal{A}''$ , we have

$$\pi(x_{\alpha})\Box(\Phi\Box\Psi) = (\pi(x_{\alpha})\Box\Phi)\Box\Psi$$
$$= (\pi(x_{\alpha})\Box\Phi)\diamond\Psi$$
$$= (\pi(x_{\alpha})\diamond\Phi)\diamond\Psi$$
$$= \pi(x_{\alpha})\Box(\Phi\diamond\Psi).$$

Therefore for all  $\Lambda$  in  $\mathcal{A}''$ ,  $\Lambda \Box (\Phi \Box \Psi) = \Lambda \Box (\Phi \diamond \Psi)$  by the right weak<sup>\*</sup> continuity of the first Arens product. Take  $\Lambda = E$ , where *E* is the unit element of  $(\mathcal{A}'', \Box)$ , thus we have  $\Phi \Box \Psi = \Phi \diamond \Psi$ , as desired.

**Example 3.5.** Let *G* be a non-discrete compact group and  $\mathcal{A} = L^1(G)$  as a group algebra. Then  $(\mathcal{A}'', \Box)$  does not have a unit element, in otherwise, since  $\pi(\mathcal{A})$  is an ideal in  $\mathcal{A}''$ , so by the preceding corollary  $\mathcal{A}$  is Arens regular, which is contradiction by theorem 2.1.

We recall that the locally convex algebra  $\mathcal{A}$  is called weakly quasi-complete, if every weakly cauchy net in  $\mathcal{A}$  is weakly convergent.

**Proposition 3.6.** Let  $\mathcal{A}$  be weakly quasi-complete with a BRAI  $(e_{\alpha})_{\alpha \in I}$  and let  $\Phi \in Z_t^1(\mathcal{A}'')$  satisfy  $\Phi \mathcal{A} \subseteq \mathcal{A}$ . Then  $\mathcal{A}$  is left strongly Arens irregular.

Proof. Let  $(e_{\alpha})_{\alpha \in I}$  be a BRAI for  $\mathcal{A}$ . By theorem 3.2 each weak<sup>\*</sup> cluster point E of  $\pi(e_{\alpha})$  is a right identity for  $\mathcal{A}''$ . Since  $\pi(e_{\alpha}) \longrightarrow E$  in the weak<sup>\*</sup> topology of  $\mathcal{A}''$ ,  $\Phi \Box \pi(e_{\alpha}) \longrightarrow \Phi \Box E = \Phi$  for all  $\Phi \in Z_t^1(\mathcal{A}'')$ . Hence  $\Phi \Box \pi(e_{\alpha})$  is weakly cauchy and so convergent in  $\mathcal{A}$ . It follows that  $\Phi \in \mathcal{A}$ .

**Corollary 3.7.** Let  $\mathcal{A}$  be weakly quasi-complete with a BRAI  $(e_{\alpha})_{\alpha \in I}$ , and let for each f in  $\mathcal{A}'$ , the net  $(f \cdot e_{\alpha})_{\alpha \in I}$  converges weakly to f. Then  $(\mathcal{A}'', \Box)$  is unital and the unit element of  $(\mathcal{A}'', \Box)$  is in  $\mathcal{A}$ .

Proof. Assume that  $\mathcal{A}$  has a BRAI  $(e_{\alpha})_{\alpha \in I}$ . Then  $(\mathcal{A}'', \Box)$  has a right unit, say E. Therefore for each  $f \in \mathcal{A}'$ , we have

$$(E\Box\Phi)(f\cdot e_{\alpha}) = \pi(e_{\alpha})(E\Box\Phi)f$$

 $=(\pi(e_\alpha)\Box\Phi)f=(\Phi\cdot f)e_\alpha=\Phi(f\cdot e_\alpha)\longrightarrow \Phi(f).$ 

Since  $(f \cdot e_{\alpha})_{\alpha \in I}$  tend to *f* in the weak topology of  $\mathcal{H}'$ , so we have

$$(E\Box\Phi)f = \Phi(f), \quad (f \in \mathcal{A}')$$

Therefore *E* is a unit element of  $(\mathcal{H}'', \Box)$ . The rest of result follows from proposition 3.6.

#### Acknowledgments

The author would like to thank the referee for giving useful suggestion to improve this work.

### References

- [1] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc 2 (1951), 839–848.
- [2] F. F. Bonsall and J. Duncan, Complete normed algebra, Springer-Verlag, New York, 1973.
- [3] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math 11 (1961), 820-847.
- [4] H. G. Dales and A.T.M. Lau, The second dual of Beurling algebras, Amer. Math. Soc 177 (2005), no. 836.
- [5] S. L. Gulick, The bidual of locally multiplicatively-convex algebra, Pacific J. Math 17 (1966), 71–96.
- [6] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
- [7] N. J. Young, The irregularity of multiplication in group algebras, Quart. J. Math Oxford (2), 24 (1973), 59-62.