Filomat 30:8 (2016), 2261–2267 DOI 10.2298/FIL1608261E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Extension of Bi-Derivations to the Bidual of Banach Algebras

A. Erfanian Attar^a, S. Barootkoob^b, H.R. Ebrahimi Vishki^c

^aDepartment of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran ^bDepartment of Mathematics, University of Bojnord, P.O. Box 1339, Bojnord, Iran ^cDepartment of Pure Mathematics, Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

Abstract. We present some necessary and sufficient conditions such that the (Arens) extensions of a bi-derivation on Banach algebras are again bi-derivations. We then examine our results for some Banach algebras. In particular, we show that the (Arens) extensions of a bi-derivation on C^* -algebras are bi-derivations. Some results on extensions of an inner bi-derivation are also included.

1. Introduction

Let \mathscr{A} be a Banach algebra and \mathscr{X} be a Banach \mathscr{A} —module. A bounded bilinear mapping $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}$ is called a bi-derivation if it is a derivation in each argument. For example, for every $x \in Z(\mathscr{X}) := \{x \in \mathscr{X}; ax = xa \text{ for all } a \in \mathscr{A}\}$, the mapping $(a, b) \mapsto x[a, b]$ is a bi-derivation $([\cdot, \cdot]$ stands for the Lie bracket), which is called an inner bi-derivation implemented by x. To give a non-inner bi-derivation, it is easy to verify that for every non-zero (bounded) derivation $\delta : \mathscr{A} \to \mathscr{A}$ on a commutative Banach algebra \mathscr{A} , the map $(a, b) \mapsto \delta(a)\delta(b) : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{A}$, defines a non-inner bi-derivation. Bi-derivations are studied from many different approaches, the main one is based on the study of commuting maps. A bounded linear map $h : \mathscr{A} \to \mathscr{X}$ is said to be commuting if [h(a), a] = 0 for every $a \in \mathscr{A}$. A commuting map h gives rise to a bi-derivation $(a, b) \mapsto [h(a), b]$. For more applications of bi-derivations in some other field, see the survey article [5, Section 3]. Some algebraic aspects of bi-derivations on certain algebras were investigated by many authors; see for example [4, 10], where the structures of bi-derivations on triangular algebras and generalized matrix algebras are discussed, and particularly the question of whether bi-derivations on these algebras are inner, was considered.

In this paper we study the (Arens) extensions of a bi-derivation. The main motivation comes from the papers [6, 9, 13], where the extension of derivations from a Banach algebra \mathscr{A} to certain Banach modules have been investigated. Let $\delta : \mathscr{A} \longrightarrow \mathscr{X}$ be a derivation, the question "is the second adjoint δ^{**} of δ a derivation?" was studied by Dales et al. in [9], for the special case $\mathscr{X} = \mathscr{A}^*$. They showed that δ is a derivation if and only if $\delta^{**}(\mathscr{A}^{**}).\mathscr{A}^{**} \subseteq \mathscr{A}^*$ (see [9, Theorem 7.1]). Then Mohammadzadeh and Vishki answered the question for a general dual Banach \mathscr{A} -module \mathscr{X}^* , (see [13, Theorem 4.2]). Barootkoob and Vishki [3] have also generalized the results of [6, 9, 13] for derivations into the various duals of a Banach \mathscr{A} -module \mathscr{X} .

²⁰¹⁰ Mathematics Subject Classification. Primary 46H25; Secondary 47B47, 16W25, 17A36

Keywords. Arens products, Bi-derivation, Derivation, Third adjoint, Banach module

Received: 04 June 2014; Accepted: 08 August 2014

Communicated by Prof. Mohammad Sal Moslehian

Email addresses: az_erfanian@yahoo.com (A. Erfanian Attar), sbk_923@yahoo.com (S. Barootkoob), vishki@um.ac.ir (H.R. Ebrahimi Vishki)

The question which is of interest is under what conditions the Arens extensions (i.e. the third adjoints $\mathscr{D}^{***}, \mathscr{D}^{t***t}$) of a bounded bi-derivation $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}$ (or \mathscr{X}^*) is again a bi-derivation? In this respect, we shall give some necessary and sufficient conditions such that the extensions \mathscr{D}^{***} and \mathscr{D}^{t**t} are again bi-derivations (Theorems 3.2, 4.2). We conclude that this is the case for Banach algebras with property (WC), which include the C^* -algebras (Corollaries 5.2, 5.3). We also provide some conditions under which the extensions of an inner bi-derivation is again an inner bi-derivation.

2. Preliminaries

In [2] Arens showed that every bounded bilinear map $f : \mathscr{X} \times \mathscr{Y} \longrightarrow \mathcal{Z}$ on normed spaces has two natural but, in general, different extensions f^{***} and f^{t***t} from $\mathscr{X}^{**} \times \mathscr{Y}^{**}$ to \mathcal{Z}^{**} . The third adjoint f^{***} is defined recursively by $f^{***} = (f^{**})^*$ and $f^{**} = (f^*)^*$, where the adjoint $f^* : \mathcal{Z}^* \times \mathscr{X} \longrightarrow \mathscr{Y}^*$ of f is defined by

$$\langle f^*(\tau, x), y \rangle = \langle \tau, f(x, y) \rangle$$
 $(x \in \mathcal{X}, y \in \mathcal{Y} \text{ and } \tau \in \mathbb{Z}^*).$

Then $f^{***}: \mathscr{X}^{**} \times \mathscr{Y}^{**} \longrightarrow \mathbb{Z}^{**}$ is the unique extension of f such that $f^{***}(\cdot, n)$ and $f^{***}(x, \cdot)$ are w^* -continuous for every $n \in \mathscr{Y}^{**}, x \in \mathscr{X}$. Similarly $f^{t***t}: \mathscr{X}^{**} \times \mathscr{Y}^{**} \longrightarrow \mathbb{Z}^{**}$ is the unique extension of f such that $f^{t***t}(m, \cdot)$ and $f^{t***t}(\cdot, y)$ are w^* -continuous for every $m \in \mathscr{X}^{**}, y \in \mathscr{Y}$; where the flip map $f^t: \mathscr{Y} \times \mathscr{X} \to \mathbb{Z}$ is defined by $f^t(y, x) = f(x, y)$ ($x \in \mathscr{X}, y \in \mathscr{Y}$). If $f^{***} = f^{t***t}$ then f is said to be Arens regular. Some characterizations for the Arens regularity of f are proved in [13].

For the multiplication $\pi : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{A}$ of a Banach algebra \mathscr{A} , π^{***} and π^{t***t} are called the first and second Arens products of \mathscr{A} and will be denoted by \Box and \diamond , respectively. A Banach algebra \mathscr{A} is said to be Arens regular if the multiplication map π is Arens regular, or equivalently $\Box = \diamond$ on the whole of \mathscr{A}^{**} . For example, every C^* -algebra is Arens regular; to see a proof for this fact and also for the complete account on Arens regularity of Banach algebras one may refer to [7, 8] and references therein.

Let \mathscr{A} be a Banach algebra, \mathscr{X} be a Banach space and let $\pi_{\ell} : \mathscr{A} \times \mathscr{X} \longrightarrow \mathscr{X}, \pi_r : \mathscr{X} \times \mathscr{A} \longrightarrow \mathscr{X}$ be bounded bilinear maps. Then the triple $(\pi_{\ell}, \mathscr{X}, \pi_r)$ is said to be a Banach \mathscr{A} -module if $\pi_{\ell}(ab, x) = \pi_{\ell}(a, \pi_{\ell}(b, x)), \pi_r(x, ab) = \pi_r(\pi_r(x, a), b)$ and $\pi_{\ell}(a, \pi_r(x, b)) = \pi_r(\pi_{\ell}(a, x), b)$ for every $a, b \in \mathscr{A}$ and $x \in \mathscr{X}$. Throughout the paper, when there is no ambiguity, we usually write \mathscr{X} instead of $(\pi_{\ell}, \mathscr{X}, \pi_r)$.

For a Banach \mathscr{A} –module $(\pi_{\ell}, \mathscr{X}, \pi_r)$ it is obvious that $(\pi_r^{t*t}, \mathscr{X}^*, \pi_{\ell}^*)$ is a Banach \mathscr{A} –module which is called the dual of (π_{ℓ}, X, π_r) . A direct verification also reveals that $(\pi_{\ell}^{***}, \mathscr{X}^{**}, \pi_r^{***})$ is a Banach (\mathscr{A}^{**}, \Box) –module while $(\pi_{\ell}^{t***t}, \mathscr{X}^{**}, \pi_r^{t***t})$ is a Banach $(\mathscr{A}^{**}, \diamond)$ –module. Arens regularity of certain module operations are studied in [12].

3. Extending of a General Bi-derivation

Let \mathscr{X} be a Banach \mathscr{A} -module. A direct verification reveals that the second adjoint $\delta^{**} : \mathscr{A}^{**} \longrightarrow \mathscr{X}^{**}$ of a derivation $\delta : \mathscr{A} \longrightarrow \mathscr{X}$ is always a derivation. However, as we have illustrated in the next example, this is not the case for a bi-derivation, in general.

Example 3.1. Let $\delta : \mathscr{A} \longrightarrow \mathscr{A}$ be a derivation on a Banach algebra \mathscr{A} . Then it can be easily verified that the map $\mathscr{D}_{\delta} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{A}$ defined by $\mathscr{D}_{\delta}(a, b) = \delta(a)\delta(b)$ is a bi-derivation in the case where $\delta(A) \subseteq Z(\mathscr{A})$; for example this is satisfied if \mathscr{A} is commutative. More precisely, one may show that \mathscr{D}_{δ} is a bi-derivation if and only if $[\delta(a), b]\delta(c) = 0 = \delta(c)[\delta(a), b]$ for every $a, b, c \in \mathscr{A}$. Moreover it is easy to verify that $\mathscr{D}_{\delta}^{***}(m, n) = \delta^{**}(m) \Box \delta^{**}(n)$; so $\mathscr{D}_{\delta}^{***}$ is a bi-derivation if and only if $[\delta^{**}(m), n]\delta^{**}(p) = 0 = \delta^{**}(p)[\delta^{**}(m), n]$ for all $m, n, p \in \mathscr{A}^{**}$. In particular, $\mathscr{D}_{\delta}^{***}$ is a bi-derivation if (\mathscr{A}^{**}, \Box) is commutative. We recall that the bidual (\mathscr{A}^{**}, \Box) of a commutative Banach algebra \mathscr{A} is commutative if and only if \mathscr{A} is Arens regular, [7].

Therefore it is quite easy to find examples of bi-derivations whose third adjoints are not bi-derivations. Indeed, by choosing a suitable nonzero derivation δ on a commutative non-Arens regular Banach algebra \mathscr{A} we can have a bi-derivation $\mathscr{D}_{\delta} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{A}$ for which the third adjoint $\mathscr{D}_{\delta}^{***} : (\mathscr{A}^{**}, \Box) \times (\mathscr{A}^{**}, \Box) \longrightarrow (\mathscr{A}^{**}, \Box)$ may not be a bi-derivation.

In the next result we provide a necessary and sufficient condition such that the third adjoint \mathscr{D}^{***} of a bi-derivation $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}$ is again a bi-derivation.

Theorem 3.2. Let $(\pi_{\ell}, \mathscr{X}, \pi_r)$ be a Banach \mathscr{A} -module and let $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}$ be a bi-derivation. Then $\mathscr{D}^{***} : (\mathscr{A}^{**}, \Box) \times (\mathscr{A}^{**}, \Box) \longrightarrow \mathscr{X}^{**}$ is a bi-derivation if and only if for every $a \in \mathscr{A}, \tau \in \mathscr{X}^*$ the bilinear maps

$$\begin{array}{cccc} \varphi_a : \mathscr{A} \times \mathscr{A} & \to & \mathscr{X} \\ (c,b) & \mapsto & \pi_r(\mathscr{D}(a,b),c) \end{array} \quad and \quad \begin{array}{cccc} \psi_\tau : \mathscr{A} \times \mathscr{A} & \to & \mathscr{A}^* \\ (c,b) & \mapsto & \mathscr{D}^*(\pi_\ell^*(\tau,b),c) \end{array}$$

are Arens regular.

Proof. For arbitrary elements $m, n, p \in \mathscr{A}^{**}$ put $\{a_{\alpha}\}, \{b_{\beta}\}, \{c_{\gamma}\}$ be bounded nets in \mathscr{A} , converging in w^* -topology to m, n, p, respectively. Note that \mathscr{X}^{**} as an (\mathscr{A}^{**}, \Box) -module is equipped with the module operations given by $(\pi_{\ell}^{***}, \mathscr{X}^{**}, \pi_{r}^{***})$. Then

$$\mathcal{D}^{***}(m\Box p, n) = w^* - \lim_{\alpha} \lim_{\gamma} \lim_{\beta} \mathcal{D}(a_{\alpha}c_{\gamma}, b_{\beta})$$

$$= w^* - \lim_{\alpha} \lim_{\gamma} \lim_{\beta} \left(\pi_{\ell}(a_{\alpha}, \mathcal{D}(c_{\gamma}, b_{\beta})) + \pi_r(\mathcal{D}(a_{\alpha}, b_{\beta}), c_{\gamma}) \right)$$

$$= \pi_{\ell}^{***}(m, \mathcal{D}^{***}(p, n)) + w^* - \lim_{\alpha} \pi_r^{t***t}(\mathcal{D}^{***}(a_{\alpha}, p), n).$$

On the other hand,

$$\pi_{\ell}^{***}(m,\mathcal{D}^{***}(p,n)) + \pi_{r}^{***}(\mathcal{D}^{***}(m,n),p) = \pi_{\ell}^{***}(m,\mathcal{D}^{***}(p,n)) + w^{*} - \lim_{\alpha} \pi_{r}^{***}(\mathcal{D}^{***}(a_{\alpha},p),n) + w^{*} - \lim_{\alpha} \pi_{r}^{***}(\mathcal{D}^{**}(a_{\alpha},p),n) + w^{*} - \lim_{\alpha} \pi_{r}^{**}(\mathcal{D}^{**}(a_{\alpha},p),n) + w^{*} - \lim_{\alpha} \pi_{r}^{**}$$

Therefore, $\mathcal{D}^{***}(\cdot, n)$ is a derivation if and only if

$$w^* - \lim_\alpha \pi_r^{***}(\mathcal{D}^{***}(a_\alpha, p), n) = w^* - \lim_\alpha \pi_r^{t***t}(\mathcal{D}^{***}(a_\alpha, p), n);$$

or equivalently, for all $a \in \mathcal{A}$,

$$\pi_r^{***}(\mathcal{D}^{***}(a,p),n) = \pi_r^{t***t}(\mathcal{D}^{***}(a,p),n).$$

And the latter is equivalent to the Arens regularity of φ_a .

Similarly we shall prove that $\mathscr{D}^{***}(m, \cdot)$ is a derivation if and only if ψ_{τ} is Arens regular for all $\tau \in \mathscr{X}^*$. To do this, first we have

$$\begin{split} \langle \mathcal{D}^{***}(m,n\Box p),\tau\rangle &= \lim_{\alpha}\lim_{\beta}\lim_{\gamma}\langle\tau,\mathcal{D}(a_{\alpha},b_{\beta}c_{\gamma})\rangle\\ &= \lim_{\alpha}\lim_{\beta}\lim_{\gamma}\langle\tau,\left(\pi_{\ell}(b_{\beta},\mathcal{D}(a_{\alpha},c_{\gamma}))+\pi_{r}(\mathcal{D}(a_{\alpha},b_{\beta}),c_{\gamma}\right)\rangle\\ &= \lim_{\alpha}\lim_{\beta}\langle p,\mathcal{D}^{*}(\pi_{\ell}^{*}(\tau,b_{\beta}),a_{\alpha})\rangle + \langle\pi_{r}^{***}(\mathcal{D}^{***}(m,n),p),\tau\rangle\\ &= \langle \mathcal{D}^{*t***t}(\pi_{\ell}^{****}(\tau,n),m),p\rangle + \pi_{r}^{***}(\mathcal{D}^{***}(m,n),p),\tau\rangle. \end{split}$$

On the other hand,

$$\langle \left(\pi_{\ell}^{***}(n, \mathcal{D}^{***}(m, p)) + \pi_{r}^{***}(\mathcal{D}^{***}(m, n), p)\right), \tau \rangle = \langle \mathcal{D}^{****}(\pi_{\ell}^{****}(\tau, n), m), p \rangle + \langle \pi_{r}^{***}(\mathcal{D}^{***}(m, n), p), \tau \rangle.$$

Therefore $\mathscr{D}^{***}(m, \cdot)$ is a derivation if and only if for every $\tau \in \mathscr{X}^*$,

$$\mathcal{D}^{*t***t}(\pi_{\ell}^{****}(\tau,n),m) = \mathcal{D}^{****}(\pi_{\ell}^{****}(\tau,n),m),$$

and this is equivalent to the Arens regularity of ψ_{τ} , and this completes the proof. \Box

Remark 3.3. It should be remarked, however, that $(\pi_{\ell}^{***}, \mathscr{X}^{**}, \pi_{r}^{***})$ is a Banach (\mathscr{A}^{**}, \Box) -module, but in the proof of Theorem 3.2 we merely used the fact that $(\pi_{\ell}^{***}, \mathscr{X}^{**})$ is a left (\mathscr{A}^{**}, \Box) -module and that $(\mathscr{X}^{**}, \pi_{r}^{***})$ is a right (\mathscr{A}^{**}, \Box) -module. As $(\pi_{\ell}^{***t}, \mathscr{X}^{**})$ and $(\mathscr{X}^{**}, \pi_{r}^{***t})$ are left and right Banach $(\mathscr{A}^{**}, \diamond)$ -module, respectively, similar to what was presented in Theorem 3.2, one may prove the next statements for a bi-derivation $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}$.

2263

(1) $\mathscr{D}^{***}: (\mathscr{A}^{**}, \diamond) \times (\mathscr{A}^{**}, \Box) \longrightarrow \mathscr{X}^{**}$ is a bi-derivation if and only if for every $a \in \mathscr{A}, \tau \in \mathscr{X}^{*}$ the maps

$$\begin{array}{cccc} \omega_a : \mathscr{A} \times \mathscr{A} & \to & \mathscr{X} \\ (c,b) & \mapsto & \pi_\ell(c, \mathscr{D}(a,b)) \end{array} \quad and \qquad \begin{array}{cccc} \psi_\tau : \mathscr{A} \times \mathscr{A} & \to & \mathscr{A}^* \\ (c,b) & \mapsto & \mathscr{D}^*(\pi_\ell^*(\tau,b),c) \end{array}$$

are Arens regular.

(2)
$$\mathscr{D}^{***}: (\mathscr{A}^{**}, \Box) \times (\mathscr{A}^{**}, \diamond) \longrightarrow \mathscr{X}^{**}$$
 is a bi-derivation if and only if for every $a \in \mathscr{A}, \tau \in \mathscr{X}^{*}$ the maps

$$\begin{array}{cccc} \varphi_a : \mathscr{A} \times \mathscr{A} & \to & \mathscr{X} \\ (c,b) & \mapsto & \pi_r(\mathscr{D}(a,b),c) \end{array} \quad and \quad \begin{array}{cccc} \chi_\tau : \mathscr{A} \times \mathscr{A} & \to & \mathscr{A}^* \\ (c,b) & \mapsto & \mathscr{D}^*(\pi_r^{t*}(\tau,b),c) \end{array}$$

are Arens regular.

(3)
$$\mathscr{D}^{***}: (\mathscr{A}^{**}, \diamond) \times (\mathscr{A}^{**}, \diamond) \longrightarrow \mathscr{X}^{**}$$
 is a bi-derivation if and only if for every $a \in \mathscr{A}, \tau \in \mathscr{X}^{*}$ the maps

$$\begin{array}{cccc} \omega_a : \mathscr{A} \times \mathscr{A} & \to & \mathscr{X} \\ (c,b) & \mapsto & \pi_\ell(c,\mathscr{D}(a,b)) \end{array} \quad and \qquad \begin{array}{cccc} \chi_\tau : \mathscr{A} \times \mathscr{A} & \to & \mathscr{A}^* \\ (c,b) & \mapsto & \mathscr{D}^*(\pi_r^{t*}(\tau,b),c) \end{array}$$

are Arens regular.

Hereafter we only work with the first Arens product.

Parallel to the results [9, Theorem 7.1] and [13, Theorem 4.2] about the extension of a derivation, in the next result we present the same characterization for the extension of a bi-derivation.

Theorem 3.4. Let \mathscr{A} be a Banach algebra and let \mathscr{X} be a Banach \mathscr{A} -module. Then the third adjoint \mathscr{D}^{***} : $(\mathscr{A}^{**}, \Box) \times (\mathscr{A}^{**}, \Box) \longrightarrow \mathscr{X}^{**}$ of a bi-derivation $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}$ is a bi-derivation if and only if

 $\pi_{\ell}^{*****}(\mathscr{D}^{*t****}(\mathscr{A}^{**},\mathscr{A}^{**}),\mathscr{X}^{*}) \subseteq \mathscr{A}^{*} \quad and \quad \mathscr{D}^{****}(\pi_{r}^{t****}(\mathscr{X}^{*},\mathscr{A}^{**}),\mathscr{A}) \subseteq \mathscr{A}^{*}.$

Proof. By Theorem 3.2, \mathscr{D}^{***} is a bi-derivation if and only if the maps φ_a and ψ_{τ} are Arens regular for every $a \in \mathscr{A}$ and $\tau \in \mathscr{X}^*$. On the other hand, by [13, Theorem 2.1], φ_a and ψ_{τ} are Arens regular if and only if $\varphi_a^{****}(\mathscr{X}^*, \mathscr{A}^{**}) \subseteq \mathscr{A}^*$ and $\psi_{\tau}^{****}(\mathscr{A}^{**}, \mathscr{A}^{**}) \subseteq \mathscr{A}^*$. Now the conclusion follows from the fact that $\mathscr{D}^{****}(\pi_r^{t****}(\mathscr{X}^*, \mathscr{A}^{**}), a) = \varphi_a^{****}(\mathscr{X}^*, \mathscr{A}^{**})$ and $\pi_{\ell}^{*****}(\mathscr{D}^{*t***t}(\mathscr{A}^{**}, \mathscr{A}^{**}), \tau) = \psi_{\tau}^{****}(\mathscr{A}^{**}, \mathscr{A}^{**})$. \Box

In the next result, we focus on the inner bi-derivation and study with some conditions under which the third adjoint of an inner bi-derivation is again an inner bi-derivation.

Theorem 3.5. Let \mathscr{X} be a Banach \mathscr{A} –module and let $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}$ be an inner bi-derivation implemented by $x \in Z(\mathscr{X})$. Then the following assertions are equivalent.

- (a) $\mathscr{D}^{***}: (\mathscr{A}^{**}, \Box) \times (\mathscr{A}^{**}, \Box) \longrightarrow \mathscr{X}^{**}$ is an inner bi-derivation implemented by *x*.
- (b) $\mathscr{D}^{***}: (\mathscr{A}^{**}, \diamond) \times (\mathscr{A}^{**}, \diamond) \longrightarrow \mathscr{X}^{**}$ is an inner bi-derivation implemented by *x*.
- (c) $m \Box n = m \Diamond n \text{ on } \pi_r^*(\mathscr{X}^*, x)$, for all $m, n \in \mathscr{A}^{**}$.
- (d) The bilinear map $(a, b) \mapsto \pi_r((\pi_r(x, b), a) : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}$ is Arens regular.

Proof. First note that the condition $x \in Z(\mathcal{X})$ implies that $x \in Z(\mathcal{X}^{**})$. That (c) is equivalent to (d) follows trivially. For the equivalency (a) \Leftrightarrow (c), let $m, n \in \mathscr{A}^{**}$ and let $\{a_{\alpha}\}, \{b_{\beta}\}$ be nets in \mathscr{A}, w^* -converging to m and n, respectively. Then for every $\tau \in \mathcal{X}^*$,

$$\langle \mathscr{D}^{***}(m,n),\tau\rangle = \lim_{\alpha}\lim_{\beta}\langle \tau, D(a_{\alpha},b_{\beta})\rangle$$

$$= \lim_{\alpha}\lim_{\beta}\langle \tau, \pi_{r}(x,[a_{\alpha},b_{\beta}])\rangle$$

$$= \lim_{\alpha}\lim_{\beta}\langle \tau, \pi_{r}(x,a_{\alpha}b_{\beta}) - \pi_{r}(x,b_{\beta}a_{\alpha})\rangle$$

$$= \langle \pi_{r}^{***}(x,m\Box n) - \pi_{r}^{***}(x,n\Diamond m),\tau\rangle$$

$$= \langle (m\Box n - n\Diamond m),\pi_{r}^{*}(\tau,x)\rangle.$$

On the other hand,

$$\langle \pi_r^{***}(x, [m, n]), \tau \rangle = \langle \pi_r^{***}(x, (m \Box n - n \Box m)), \tau \rangle$$

= $\langle (m \Box n - n \Box m), \pi_r^*(\tau, x) \rangle.$

Therefore (a) holds if and only if $\mathscr{D}^{***}(m, n) = \pi_r^{***}(x, [m, n])$ and the latter is valid if and only if $m \Box n = m \Diamond n$ on $\pi_r^*(\mathscr{X}^*, x)$. The equivalency (b) \Leftrightarrow (c) follows from a similar argument. \Box

As an immediate consequence we get the next result.

Corollary 3.6. Let \mathscr{X} be a Banach \mathscr{A} -module. If \mathscr{A} is Arens regular then every Arens extension of an inner bi-derivation $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}$ is an inner bi-derivation implemented by the same element.

4. Extending a Dual Module Valued Bi-derivation

We recall that for a Banach \mathscr{A} -module $(\pi_{\ell}, \mathscr{X}, \pi_{r})$, the third dual \mathscr{X}^{***} of \mathscr{X} as a Banach (\mathscr{A}^{**}, \Box) -module can be equipped with two, in general, different module operations. Indeed, $(\pi_{r}^{t*t***}, \mathscr{X}^{***}, \pi_{\ell}^{****})$ and also $(\pi_{r}^{***t*}, \mathscr{X}^{***}, \pi_{\ell}^{****})$ are both (\mathscr{A}^{**}, \Box) -modules, which the first one comes as the bidual of $(\pi_{r}^{t*}, \mathscr{X}^{*}, \pi_{\ell}^{*})$ and the second one is the dual of $(\pi_{\ell}^{**}, \mathscr{X}^{**}, \pi_{r}^{***})$. Similarly there are two, in general, different $(\mathscr{A}^{**}, \diamond)$ -module operations for \mathscr{X}^{***} ; one of them is $(\pi_{r}^{t***t}, \mathscr{X}^{***}, \pi_{\ell}^{t***t})$ and the other one is $(\pi_{r}^{t***r}, \mathscr{X}^{***}, \pi_{\ell}^{*t**t})$. We commence with the next lemma.

Lemma 4.1. Let \mathscr{X} be a Banach \mathscr{A} -module and let $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}^*$ be a bi-derivation such that the map $\Psi_q : \mathscr{A} \times \mathscr{A} \to \mathscr{A}^* : (a, b) \mapsto \mathscr{D}^*(\pi_r^{t*t*}(q, b), a)$ is Arens regular for each $q \in \mathscr{X}^{**}$. Then the following assertions are equivalent.

(i) For every $m, n, p \in \mathscr{A}^{**}$,

$$\pi_r^{t*t***}(n, \mathcal{D}^{***}(m, p)) = \pi_r^{***t*t}(n, \mathcal{D}^{***}(m, p)).$$

(ii) For every $a \in \mathcal{A}$, $n, p \in \mathcal{A}^{**}$

$$\pi_r^{t*t***}(n, \mathscr{D}^{***}(a, p)) = \pi_r^{***t*t}(n, \mathscr{D}^{***}(a, p)).$$

Proof. We only need to show that (ii) implies (i). For arbitrary elements $m, n, p \in \mathscr{A}^{**}$ let $\{a_{\alpha}\}, \{b_{\beta}\}, \{c_{\gamma}\}$ be bounded nets in \mathscr{A}, w^* -converging to m, n, p, respectively. By (ii) and the fact Ψ_q is Arens regular we get

$$\langle \pi_{r}^{*****}(n, \mathcal{D}^{***}(m, p)), q \rangle = \lim_{\beta} \lim_{\alpha} \lim_{\lambda} \langle q, \pi_{r}^{**t}(b_{\beta}, \mathcal{D}(a_{\alpha}, c_{\lambda})) \rangle$$

$$= \lim_{\beta} \lim_{\alpha} \langle \mathcal{D}^{*}(\pi_{r}^{****}(q, b_{\beta}), a_{\alpha}), p \rangle \rangle$$

$$= \lim_{\beta} \lim_{\alpha} \langle \Psi_{q}(a_{\alpha}, b_{\beta}), p \rangle$$

$$= \lim_{\alpha} \lim_{\beta} \lim_{\lambda} \langle q, \pi_{r}^{**t}(b_{\beta}, \mathcal{D}(a_{\alpha}, c_{\lambda})) \rangle$$

$$= \lim_{\alpha} \langle \pi_{r}^{*****}(n, \mathcal{D}^{***}(a_{\alpha}, p)), q \rangle$$

$$= \langle \pi_{r}^{*****}(n, \mathcal{D}^{***}(a_{\alpha}, p)), q \rangle;$$

as claimed. \Box

In the next result, we are concerned with some necessary and sufficient conditions for the (Arens) extension \mathscr{D}^{***} of a dual valued bi-derivation $\mathscr{D}: \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}^*$ to be a bi-derivation.

Theorem 4.2. Let \mathscr{X} be a Banach \mathscr{A} -module and let $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}^*$ be a bi-derivation. Then $\mathscr{D}^{***} : (\mathscr{A}^{**}, \Box) \times (\mathscr{A}^{**}, \Box) \longrightarrow \mathscr{X}^{***}$ is a bi-derivation if and only if the following assertions hold.

(i) For every $a \in \mathscr{A}$, $q \in \mathscr{X}^{**}$ the maps

$$\begin{array}{cccc} \Phi_a: \mathscr{A} \times \mathscr{A} & \to & \mathscr{X}^* \\ (c,b) & \mapsto & \pi_\ell^*(\mathscr{D}(a,b),c) \end{array} \quad and \quad \begin{array}{cccc} \Psi_q: \mathscr{A} \times \mathscr{A} & \to & \mathscr{A}^* \\ (c,b) & \mapsto & \mathscr{D}^*(\pi_r^{t*t*}(q,b),c) \end{array}$$

are Arens regular.

(ii) For every $a \in \mathcal{A}$, $n, p \in \mathcal{A}^{**}$,

$$\pi_r^{t*t***}(n, \mathcal{D}^{***}(a, p)) = \pi_r^{***t*t}(n, \mathcal{D}^{***}(a, p)).$$
(4.1)

Proof. Applying Theorem 3.2 for $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}^*$, condition (i)–that is the Arens regularity Φ_a and Ψ_q for all $a \in \mathscr{A}, q \in \mathscr{X}^{**}$ – is equivalent to the fact that $\mathscr{D}^{***} : (\mathscr{A}^{**}, \Box) \times (\mathscr{A}^{**}, \Box) \longrightarrow (\mathscr{X}^*)^{**}$ is a bi-derivation, or equivalently, for every m, n, p in \mathscr{A}^{**} ,

$$\mathscr{D}^{***}(m\Box n, p) = \pi_{\ell}^{****}(\mathscr{D}^{***}(m, p), n) + \pi_{r}^{\ell*\ell***}(m, \mathscr{D}^{***}(n, p)),$$

$$(4.2)$$

and

$$\mathscr{D}^{***}(m,n\Box p) = \pi_{\ell}^{****}(\mathscr{D}^{***}(m,n),p) + \pi_{r}^{t*t***}(n,\mathscr{D}^{***}(m,p)).$$
(4.3)

On the other hand \mathscr{D}^{***} : $(\mathscr{A}^{**}, \Box) \times (\mathscr{A}^{**}, \Box) \longrightarrow (\mathscr{X}^{**})^*$ is a bi-derivation if and only if for every m, n, p in \mathscr{A}^{**} ,

$$\mathscr{D}^{***}(m\Box n, p) = \pi_{\ell}^{****}(\mathscr{D}^{***}(m, p), n) + \pi_{r}^{***t*}(m, \mathscr{D}^{***}(n, p)),$$
(4.4)

and

$$\mathscr{D}^{***}(m,n\Box p) = \pi_{\ell}^{****}(\mathscr{D}^{***}(m,n),p) + \pi_{r}^{***t*t}(n,\mathscr{D}^{***}(m,p)).$$
(4.5)

By comparing (4.2) with (4.4) and by applying Theorem 3.2, we can deduce that \mathscr{D}^{***} : $(\mathscr{A}^{**}, \Box) \times (\mathscr{A}^{**}, \Box) \longrightarrow \mathscr{X}^{***}$ is a bi-derivation if and only (i) and (ii) hold. \Box

As remarked in Remark 3.3, Theorem 4.2 can also be obtained by replacing the first Arens product with the second Arens product.

5. Extension of Bi-derivations and Property (WC)

Here, we examine our results for Banach algebras with property (WC). We say that a Banach space \mathscr{X} has property (WC) if every bounded linear operator from \mathscr{X} to \mathscr{X}^* is weakly compact. For example, every C^* -algebra has property (WC). This is a consequence of a well-known result of Akemann [1, Corollry II9], stating that every bounded linear operator from a C^* - algebra to the predual of a W^* -algebra is weakly compact. Godefroy and Iochum [11] have also studied property (WC) and they established some useful links to the geometry of Banach spaces. It should be also reminded that if a Banach algebra has the property (WC) then it is Arens regular (see for example, [11, Remarks I.4]). However, this can also be deduced as a consequence of the next more general result which will be used in the sequel.

Proposition 5.1. Let \mathscr{X} , \mathcal{Z} be Banach spaces. If \mathscr{X} has the property (WC) then every bounded bilinear mapping $f : \mathscr{X} \times \mathscr{X} \longrightarrow \mathcal{Z}$ is Arens regular.

Proof. It follows from [13, Theorem 2.1] and the fact that (by the (WC) property of \mathscr{X}) the linear operator $x \mapsto f^*(\tau, x) : \mathscr{X} \to \mathscr{X}^*$ is weakly compact for every $\tau \in \mathbb{Z}^*$. \Box

Combining Proposition 5.1 and Theorem 3.2 we get the next result for extension of a general bi-derivation.

Corollary 5.2. Let \mathscr{X} be a Banach \mathscr{A} –module. If \mathscr{A} has property (WC) then every Arens extension of a bi-derivation $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}$ is a bi-derivation.

Proof. By Theorem 3.2 it is enough to show that the maps $\varphi_a : \mathscr{A} \times \mathscr{A} \to \mathscr{X}$ and $\psi_{\tau} : \mathscr{A} \times \mathscr{A} \to \mathscr{A}^*$ are Arens regular for all $a \in \mathscr{A}$ and $\tau \in \mathscr{X}^*$; and these follow from Proposition 5.1 and the hypothesis that \mathscr{A} possesses property (WC). \Box

Following Theorem 4.2 we arrive at the next result on the extension of a dual valued bi-derivation on algebras with property (WC).

Corollary 5.3. Let $(\pi_{\ell}, \mathscr{X}, \pi_{r})$ be a Banach \mathscr{A} -module such that π_{r} and π_{r}^{t*} are Arens regular. If \mathscr{A} has property (WC) then the extension $\mathscr{D}^{***} : (\mathscr{A}^{**}, \Box) \to \mathscr{X}^{***}$ of a bi-derivation $\mathscr{D} : \mathscr{A} \times \mathscr{A} \longrightarrow \mathscr{X}^{*}$ is a bi-derivation.

Proof. By Theorem 4.2, \mathscr{D}^{***} is a bi-derivation if and only if $\Phi_a : \mathscr{A} \times \mathscr{A} \to \mathscr{X}^*$, $\Psi_q : \mathscr{A} \times \mathscr{A} \to \mathscr{A}^*$ are Arens regular for all $a \in \mathscr{A}, q \in \mathscr{X}^{**}$, and

$$\pi_r^{t*t***}(n, \mathcal{D}^{***}(a, p)) = \pi_r^{**t*t}(n, \mathcal{D}^{***}(a, p)),$$
(5.1)

for every $a \in \mathcal{A}, n, p \in \mathcal{A}^{**}$. The Arens regularity of Φ_a and Ψ_q follows from (WC) property of \mathcal{A} (see Proposition 5.1) and the equality (5.1) follows from the Arens regularity of π_r and π_r^{t*} . Indeed, as it has been shown in [9, Proposition 4.1] (see also [13, Corollary 2.2]) the Arens regularity of π_r and π_r^{t*} is equivalent to the equality $\pi_r^{t*t***} = \pi_r^{**t*t}$. \Box

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments which improved the original version of the paper.

References

- [1] C. A. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 (1967), 286-302.
- [2] A. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
- [3] S. Barootkoob and H. R. Ebrahimi Vishki, Lifting derivations and *n*-weak amenability of the second dual of Banach algebras, Bull. Austral. Math. Soc. 83 (2011), 122-129.
- [4] D. Benkovič, Biderivations of triangular algebras, Linear Algebra Appl. 431 (2009), 1587-1602.
- [5] M. Brešar, Commuting maps: A survey, Taiwanese J. Math. 8 (2004), 361-397.
- [6] J. W. Bunce and W. L. Paschke, Derivations on a C*-algebra and its double dual, J. Funct. Anal. 37 (1980), 253–247.
- [7] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monographs 24 (Clarendon Press, Oxford, 2000).
- [8] H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (836) (2005).
- [9] H. G. Dales, A. Rodriguez-Palacios and M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. 64(2) (2001), 707-721.
- [10] Y. Du and Y. Wang, Biderivations of generalized matrix algebras, Linear Algebra. Appl. 438 (2013), 4483-4499.
- [11] G. Godefroy and B. Iochum, Arens-regularity of Banach algebras and the geometry of Banach spaces, J. Funct. Anal. 80 (1988), 47-59.
- [12] A. A. Khadem-Maboudi and H. R. Ebrahimi Vishki, Strong Arens irregularity of bilinear mappings and reflexivity, Banach J. Math. Anal. 6 (2012), 155-160.
- [13] S. Mohammadzadeh and H. R. E. Vishki, Arens Regularity of module actions and the second adjoint of a derivation, Bull. Austral. Math. Soc. 77 (2008), 465-476.