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Abstract. Let G be a connected claw-free graph on n vertices and G be its complement. Let µ(G) be the
spectral radius of G. Denote by Nn−3,3 the graph consisting of Kn−3 and three disjoint pendent edges. In this
note we prove that:
(1) If µ(G) ≥ n − 4, then G is traceable unless G = Nn−3,3.

(2) If µ(G) ≤ µ(Nn−3,3) and n ≥ 24, then G is traceable unless G = Nn−3,3.
Our works are counterparts on claw-free graphs of previous theorems due to Lu et al., and Fiedler and
Nikiforov, respectively.

1. Introduction

Let G be a graph. The eigenvalues of G are the eigenvalues of the adjacency matrix of G. Since the
adjacency matrix of G is real and symmetric, all its eigenvalues are real. The spectral radius of G, denoted
by µ(G), is the spectral radius of its adjacency matrix, i.e., the maximum among the absolute values of its
eigenvalues. By Perron-Frobenius’ theorem (see Theorem 0.3 of [4]), µ(G) is equal to the largest eigenvalue
of G.

Let G be a graph. We use e(G) to denote the number of edges of G. Let S ⊂ V(G). We use G[S] to denote the
subgraph of G induced by S and G − S to denote the subgraph of G induced by V(G)\S. For a subgraph H
of G, we use G−H instead of G−V(H). For two subgraphs H,H′ of G, we use eG(H,H′) (or shortly, e(H,H′))
to denote the number of edges with one vertex in H and the other one in H′.

By G we denote the complement of G. Let G1 and G2 be two graphs. We denote by G1 + G2 the disjoint
union of G1 and G2, and by G1 ∨ G2 the join of G1 and G2.

A graph G is traceable if it has a Hamilton path, i.e., a path containing all vertices of G; and G is
Hamiltonain if it has a Hamilton cycle, i.e., a cycle containing all vertices of G. Note that every Hamiltonian
graph is traceable. Hamiltonian properties of graphs have received much attention from graph theorists.
A fundamental theorem due to Dirac [5] states that every graph on n vertices is traceable if the degree of
every vertex is at least (n − 1)/2. Up to now, there also has been some references on the spectral conditions
for Hamilton paths or cycles. We refer the reader to [3, 8, 10, 15, 17, 19].
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In particular, Fiedler and Nikiforov [8] gave tight sufficient conditions for the existence of a Hamilton
path in terms of the spectral radii of a graph and its complement.

Theorem 1 (Fiedler and Nikiforov [8]). Let G be a graph on n vertices. If µ(G) ≥ n−2, then G is traceable unless
G = Kn−1 + K1.

Theorem 2 (Fiedler and Nikiforov [8]). Let G be a graph on n vertices. If µ(G) ≤
√

n − 1, then G is traceable
unless G = Kn−1 + K1.

Remark 1. Note that µ(Kn−1 + K1) = µ(Kn−1) = n − 2 and µ(Kn−1 + K1) = µ(K1,n−1) =
√

n − 1.

Since the connectedness is necessary for studying traceability of graphs. Lu, Liu and Tian [15] presented
a sufficient condition for a connected graph to be traceable.

Theorem 3 (Lu, Liu and Tian [15]). Let G be a connected graph of order n ≥ 7. If µ(G) ≥
√

(n − 3)2 + 3, then G
is traceable.

Lu et al.’s lower bound of spectral radius was sharpened in [17].

Theorem 4 (Ning and Ge [17]). Let G be a connected graph on n ≥ 7 vertices. If µ(G) ≥ n− 3, then G is traceable
unless G = K1 ∨ (Kn−3 + 2K1).

The bipartite graph K1,3 is called a claw. A graph is called claw-free if it contains no induced subgraph
isomorphic to K1,3. Claw-free graphs have been a very popular field of study, not only in the context of
Hamiltonian properties. One reason is that the very natural class of line graphs turns out to be a subclass
of the class of claw-free graphs. However, not every claw-free graph is Hamiltonian. There are examples
of 3-connected non-Hamiltonian claw-free (even line) graphs, but it is a long-standing conjecture that all
4-connected claw-free graphs are Hamiltonian (and then, traceable). It is interesting to note that the lower
bound on the degrees in Dirac’s theorem for traceability was lowered to (n− 2)/3 by Matthews and Sumner
[16] for claw-free graphs. For a survey on claw-free graphs, we refer the reader to Faudree et al. [7].

Motivated by the relationship between Dirac’s theorem and Matthews-Sumner’s theorem, in this note
we will improve the lower bound in Theorem 3 and give an analogue of Theorem 2 for connected claw-free
graphs.

Our main results will be listed as follows. By Nn−3,3 we denote the graph consisting of a complete graph
Kn−3 with three disjoint pendent edges.

Kn−3

Fig. 1. Graph Nn−3,3.

Theorem 5. Let G be a connected claw-free graph on n vertices. Ifµ(G) ≥ n−4, then G is traceable unless G = Nn−3,3.

Theorem 6. Let G be a connected claw-free graph on n ≥ 24 vertices. If µ(G) ≤ µ(Nn−3,3), then G is traceable unless
G = Nn−3,3.
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2. Preliminaries

In this section, we first extend the concept of claw-free graphs to a general one. Let R be a given graph.
The graph G is called R-free if G contains no induced subgraph isomorphic to R. We will also use three
special graphs L, M and N (see Fig. 2). Note that N = N3,3.

a1

b1

b′
1

a2 b2

a3 b3

L

a1b1c1d1

a2 b2

a3 b3

M

a1b1

a2 b2

a3 b3

N

Fig. 2. Graphs L, M and N.

The following two theorems concerning traceability of claw-free graphs are used in our proofs.

Theorem 7 (Duffus, Gould and Jacobson [6]). Every connected claw-free and N-free graph is traceable.

Adopting the terminology of [9], we say that a graph is a block-chain if it is nonseparable or it has
connectivity 1 and has exactly two end-blocks.

Theorem 8 (Li, Broersma and Zhang [13]). Let G be a block-chain. If G is claw-free and M-free, then G is
traceable.

One important tool for studying Hamiltonian properties of claw-free graphs is the closure theory
introduced by Ryjáček [18]. It is also useful for our proof. To ensure the completeness of our text, we
include all the terminology and notations as follows. For other more information, see [18].

Let G be a graph. Following [18], for a vertex x ∈ V(G), if the neighborhood of x induces a connected
but non-complete subgraph of G, then we say that x is eligible in G. Set BG(x) = {uv : u, v ∈ N(x), uv < E(G)}.
The graph G′x, constructed by V(G′x) = V(G) and E(G′x) = E(G)∪ BG(x), is called the local completion of G at x.

As shown in [18], the closure of a claw-free graph G, denoted by cl(G), is defined by a sequence of graphs
G1,G2, . . . ,Gt, and vertices x1, x2 . . . , xt−1 such that
(1) G1 = G, Gt = cl(G);
(2) xi is an eligible vertex of Gi, Gi+1 = (Gi)

′
xi

, 1 ≤ i ≤ t − 1; and
(3) cl(G) has no eligible vertices.

Theorem 9 (Ryjáček [18]). Let G be a claw-free graph. Then cl(G) is also claw-free.

Theorem 10 (Brandt, Favaron and Ryjáček [1]). Let G be a claw-free graph. Then G is traceable if and only if
cl(G) is traceable.

A claw-free graph G is said to be closed if cl(G) = G. It is not difficult to see that for every vertex x of a
closed graph G, NG(x) is either a clique, or the disjoint union of two cliques in G (see [18]). In the following,
we say a vertex x of a graph G is a bad vertex of G if NG(x) is neither a clique, nor the disjoint union of two
cliques. So every closed graph has no bad vertices.

Lemma 1. Let G be a closed claw-free graph. If there are two nonadjacent vertices of G have degree sum at least n−1,
then G is traceable.

Proof. Let x, y be two nonadjacent vertices of G with degree sum at least n − 1. Note that a vertex is
nonadjacent to itself. Hence x, y have at least one common neighbor.

Firstly we assume that x, y have at least three common neighbors, say z, z′, z′′. Since G is claw-free,
either zz′ or zz′′ or z′z′′ is in E(G). Without loss of generality, we assume that zz′ ∈ E(G). Then z is a bad
vertex, a contradiction.



B. Ning, B. Li / Filomat 30:9 (2016), 2445–2452 2448

Secondly we assume that x, y have two common neighbors, say z, z′. If zz′ ∈ E(G), then z will be
a bad vertex. So we have that zz′ < E(G). Let Cx,C

′
x,Cy,C

′
y be the maximal cliques of G containing

{x, z}, {x, z′}, {y, z}, {y, z′}, respectively. Clearly H = G[Cx∪C′x∪Cy∪C′y] has a Hamilton cycle. Note that there
is at most one vertex in V(G)\V(H). Since G is connected, we have that G is traceable.

Finally we assume that x, y have only one common neighbor z. Then every vertex is adjacent either to x
or to y. This implies that G consists of at most four maximal cliques and G is a block-chain. Clearly in this
case G is traceable.

The following two lemmas are crucial in the proofs of our two theorems. We guess that they are of
interest in their own rights.

Lemma 2. Let G be a connected claw-free graph on n vertices and m edges. If

m ≥
(

n − 3

2

)

+ 2,

then G is traceable unless G = Nn−3,3 or L.

Proof. Let G′ = cl(G) be the closure of G. Then

e(G′) ≥ m ≥
(

n − 3

2

)

+ 2.

If G′ is N-free, then by Theorems 7 and 9, G′ is traceable, and so is G by Theorem 10. Now we assume that
G′ contains an induced subgraph H ∼ N. We denote the vertices of H as in Fig. 2. In the following part of
this proof, we set NH(x) = NG′(x) ∩V(H) and dH(x) = |NH(x)|.

For any x ∈ V(G − H), note that the neighborhood of x in G′ is either a clique or the disjoint union of
two cliques. But any at least four vertices of H do not form a clique or a disjoint union of two cliques. This
implies that dH(x) ≤ 3 for any x ∈ V(G −H). Thus

e(G′) = e(H) + e(G′ −H) + eG′ (H,G
′ −H) ≤ 6 +

(

n − 6

2

)

+ 3(n − 6) =

(

n − 3

2

)

+ 3.

Recall that e(G′) ≥ (n−3
2

)

+ 2. Thus we have e(G′) =
(n−3

2

)

+ 2 or
(n−3

2

)

+ 3.

Case 1. e(G′) =
(n−3

2

)

+ 3.

In this case, G′ − H is complete and every vertex in G′ − H has exactly three neighbors in H. Suppose
first that there is a vertex x in G′ − H such that NH(x) = {a1, a2, a3}. We claim for every vertex x′ in G′ − H,
NH(x′) = {a1, a2, a3}. Since NH(x′) , {b1, b2, b3}, we assume without loss of generality that a1 ∈ NH(x′). Note
that xx′ ∈ E(G) and G′[NG′(x)] is a clique or disjoint union of two cliques. We can see that a2, a3 ∈ NH(x′).
Hence as we claimed NH(x′) = {a1, a2, a3}. Thus G′ = Nn−3,3.

Suppose that E(G′)\E(G) , ∅. Then e(G) =
(n−3

2

)

+ 2 and there is only one edge e in E(G′)\E(G). If e is a
pendant edge, then G is disconnected, a contradiction. So we assume that e = uv is not a pendant edge.
Suppose without loss of generality that a1 is a vertex in {a1, a2, a3}\{u, v}. Then the subgraph induced by
{a1, b1, u, v} is a claw in G, a contradiction. This implies that E(G′)\E(G) = ∅. Hence G = G′ = Nn−3,3.

Now we assume that for every vertex x ∈ V(G −H), NH(x) , {a1, a2, a3}.
If V(G′ − H) = ∅, then G′ = N = N3,3. By the analysis above, we can also see that G = G′ = N3,3. So we

assume that V(G′ −H) , ∅.
Let x be a vertex in G′ − H. Thus NH(x), and then N(x) induces two disjoint cliques. Note that

NH(x) , {b1, b2, b3}. We assume without loss of generality that a1 ∈ NH(x). If a2 ∈ NH(x), then a3 ∈ NH(x);
otherwise a1 will be a bad vertex of G′. But in this case NH(x) = {a1, a2, a3}, a contradiction. This implies
that a2 < NH(x) and similarly, a3 < NH(x). Note that NH(x) , {a1, b2, b3}. We have b1 ∈ NH(x). Without loss
of generality, we assume that NH(x) = {a1, b1, b2}. If G′ − H has the only one vertex x, then b1a1xb2a2a3b3
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is a Hamilton path of G′. By Theorem 10, G is traceable. Now we assume that there is a second vertex
x′ ∈ V(G′ −H).

Since both {x, x′, b1, b2} and {x, x′, b2, a2} induce no claws, it follows either a1, b1 ∈ NH(x′) or b2 ∈ NH(x′). If
a1, b1 ∈ NH(x′), then b2 < NH(x′); otherwise x is a bad vertex of G′. Similarly as the case of x above, we can
see that a2, a3 < NH(x′). Thus NH(x′) = {a1, b1, b3}. If b2 ∈ NH(x′), then a1, b1 < NH(x′); otherwise x is a bad
vertex of G′. If a2 ∈ NH(x′), then b2 is a bad vertex of G′, a contradiction. Thus we have NH(x′) = {b2, a3, b3}.
In conclusion, either NH(x′) = {a1, b1, b3} or NH(x′) = {b2, a3, b3}.

Suppose that there is a third vertex x′′. Then similarly as the case of x′, NH(x′′) = {a1, b1, b3} or NH(x′′) =
{b2, a3, b3}. But if x′ and x′′ have the same neighborhood in H, then x′ will be a bad vertex, a contradiction.
So we assume without loss of generality that NH(x′) = {a1, b1, b3} and NH(x′′) = {b2, a3, b3}. Then x′ is also a
bad vertex, a contradiction. Thus x, x′ are the only two vertices in G −H, and b1xx′b3a3a1a2b2 is a Hamilton
path of G′. By Theorem 10, G is traceable.

Case 2. e(G′) =
(n−3

2

)

+ 2.

In this case G = G′ and there is a vertex x in G−H such that dH(x) = 2 or xx′ < E(G) for some x′ ∈ V(G−H).
Let G1 = G − x. Since every vertex in G −H − x is adjacent to three vertices in H, G1 is connected. Note that

e(G1) = e(G) − d(x) =

(

n − 3

2

)

+ 2 − (n − 5) =

(

n − 4

2

)

+ 3.

Using the conclusion of Case 1, we can obtain that G1 is traceable or G1 = Nn−4,3.
Suppose first that G1 = Nn−4,3. Let a1b1, a2b2, a3b3 be the three pendent edges of G1, where a1, a2, a3 are

contained in a clique of G1. Note that G is closed and N(x) is either a clique or the disjoint union of two
cliques. Also note that if x is adjacent to some two vertices of a maximal clique of G, then x will be adjacent
to every vertex of the maximal clique of G. Since d(x) = n − 5, the neighborhood of x does not include
V(G1)\{b1, b2, b3}. If x is adjacent to two pendant vertices, say b1, b2, then let P be a Hamilton path of the
complete graph G1 − {b1, b2, b3} from a2 to a3. Then b1xb2a2Pa3b3 is a Hamilton path of G. Now we assume
that x is adjacent to exactly one vertex of {b1, b2, b3}. Suppose without loss of generality that b1 ∈ N(x). Since
d(x) = n − 5, we can see that n = 7, G1 = N and N(x) = {a1, b1}. Hence G = L.

Now we assume that G1 is traceable. Let P = v1v2 . . . vn−1 be a Hamilton path of G1. If v1x ∈ E(G) or
vn−1x ∈ E(G), then G is traceable. So we assume that v1x, vn−1x < E(G). If x is adjacent to two successive
vertices on P, then G is traceable. So we assume that x is not adjacent to two successive vertices on P. This
implies that n− 1− d(x) ≥ d(x)+ 1. Since d(x) = n− 5, we have n ≤ 8. Note that n ≥ 7. We can see that either
xv2 or xvn−2 is in E(G). We assume without loss of generality that xv2 ∈ E(G). Thus v1v3 ∈ E(G); otherwise
the subgraph induced by {v2, v1, v3, x} is a claw. Hence P′ = xv2v1v3 . . . vn−1 is a Hamilton path of G.

Lemma 3. Let G be a connected claw-free graph on n ≥ 24 vertices and m edges. If

m >

(

n

2

)

−
(

1 +
√

3n − 8
)2
,

then G is traceable unless G ⊆ Nn−3,3.

Proof. We assume the opposite.

Claim 1. G is a block-chain.

Proof. Suppose that G is not a block-chain. Since G is claw-free, every cut-vertex of G is contained in exactly
two blocks. This implies that G has a block B0 which contains at least three cut-vertices of G. Let a1, a2, a3 be
three cut-vertices of G contained in B0. Let Bi, i = 1, 2, 3, be the component of G−B0 which has a neighbor of

ai. Let H0 = G−(
⋃3

i=1 Bi) and Hi = G[V(Bi)∪{ai}], i = 1, 2, 3. Note that ν(H0) ≥ 3. If ν(H1) = ν(H2) = ν(H3) = 2,
then G ⊆ Nn−3,3. Now we assume without loss of generality that ν(H1) ≥ 3.
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Note that
∑3

i=0 ν(Hi) = n + 3. Thus

e(G) =

3
∑

i=0

e(Hi) ≤
3

∑

i=0

(

ν(Hi)

2

)

≤
(

n − 4

2

)

+ 5 ≤
(

n

2

)

−
(

1 +
√

3n − 8
)2

(noting that n ≥ 24), a contradiction.

Let G′ = cl(G). If G′ is M-free, then by Theorems 8 and 10, G′, and then G, is traceable. Now we assume
that G′ has an induced subgraph H ∼M. We denote the vertices of H as in Fig. 2.

Claim 2. Every vertex in G′ − H has at most 5 neighbors in H; and there is at most one vertex in G′ − H having
exactly 5 neighbors in H.

Proof. Let x be a vertex in G′ − H. Note that NH(x) is either a clique or the disjoint union of two cliques.
This implies that dH(x) ≤ 5. Moreover, if dH(x) = 5, then NH(x) = {a1, a2, a3, c1, d1}.

If there are two vertices, say x and x′, such that each one has 5 neighbors in H, then NH(x) = NH(x′) =
{a1, a2, a3, c1, d1}. But in this case x will be a bad vertex of G′, a contradiction.

By Claim 2, we have

e(G) ≤ e(G′) = e(H) + e(G′ −H) + eG′(H,G
′ −H) ≤ 8 +

(

n − 8

2

)

+ 4(n − 8) + 1.

Thus

8 +

(

n − 8

2

)

+ 4(n − 8) + 1 >

(

n

2

)

−
(

1 +
√

3n − 8
)2
.

This implies that n ≤ 20, a contradiction.

The next theorem we need is a famous theorem due to Hong [12]. In fact, the spectral inequality also works
for graphs without isolated vertices, see [12].

Theorem 11 (Hong [12]). Let G be a connected graph on n vertices and m edges. Then

µ(G) ≤
√

2m − n + 1.

The equality holds if and only if G = Kn or K1,n−1.

Theorem 12 (Hofmeister [11]). Let G be a graph. Then

µ(G) ≥

√

∑

v∈V(G) d2(v)

n
.

3. Proofs of the Main Results

Proof of Theorem 5. By Theorem 11, µ(G) ≤
√

2m − n + 1. Thus n − 4 ≤
√

2m − n + 1 and

m ≥
⌈

(n − 3)(n − 4) + 3

2

⌉

=

(

n − 3

2

)

+ 2.

Note that µ(M) = 2.6935 . . . < 3. By Lemma 2, G is traceable or G = Nn−3,3.



B. Ning, B. Li / Filomat 30:9 (2016), 2445–2452 2451

Proof of Theorem 6. We first give a bound on the value of µ(Nn−3,3). By using Theorem 2.8 in [4] and some
computing, we know

µ(Kk ∨ (n − k)K1) =
k − 1 +

√

4kn − (3k − 1)(k + 1)

2
.

Thus µ(K3 ∨ (n − 3)K1) = 1 +
√

3n − 8. From the fact Nn−3,3 ⊂ K3 ∨ (n − 3)K1, we obtain

µ(Nn−3,3) < 1 +
√

3n − 8

for any n ≥ 6.
Now we prove the theorem. The idea of our proof comes from [8]. We assume that G is not traceable.

Let G′ = cl(G). By Theorem 10, G′ is not traceable. By Lemma 1, for any pair of nonadjacent vertices u, v of
G′, dG′(u) + dG′(v) ≤ n − 2, and hence

dG′(u) + dG′(v) ≥ 2(n − 1) − (n − 2) = n.

Furthermore, we have
∑

v∈V(G)

d2

G′
(v) =

∑

uv∈E(G′)

(dG′(u) + dG′(v)) ≥ ne(G′).

Note that G′ ⊆ G. By Theorem 12,

µ(G) ≥ µ(G′) ≥

√

∑

v∈V(G) d2

G′
(v)

n
≥

√

e(G′).

Thus we have

e(G′) =

(

n

2

)

− e(G′) ≥
(

n

2

)

− µ2(G) >

(

n

2

)

−
(

1 +
√

3n − 8
)2
.

Recall that G′ is claw-free and not traceable. By Lemma 3, G′ ⊆ Nn−3,3. Thus G ⊆ Nn−3,3. But if G ⊂ Nn−3,3,

then µ(G) > µ(Nn−3,3), a contradiction. This implies G = Nn−3,3. The proof is complete.

4. Concluding Remarks

In this section, we give a brief discussion of the existence of Hamilton cycles in claw-free graphs under
spectral condition.

Following the notations in [2], we use P to denote the class of graphs obtained by taking two vertex-
disjoint triangles a1a2a3a1 and b1b2b3b1, and by joining every pair of vertices {ai, bi} by a triangle or by a path
of order at least 3. We use Pxi,x2,x3

to denote the graph from P, where xi = T if {ai, bi} is joined by a triangle;
and xi = ki if {ai, bi} is joined by a path of order ki ≥ 3.

PT,T,T P3,T,T P3,3,T P3,3,3

Fig. 3. 2-connected claw-free non-Hamiltonian graphs of order 9.
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Brousek [2] showed that every 2-connected claw-free non-Hamiltonian graph contains a graph inP as an
induced subgraph. By Brousek’s result, we can see that the smallest 2-connected claw-free non-Hamiltonian
graphs have order 9, and there are exactly four such graphs, namely, PT,T,T, P3,T,T, P3,3,T and P3,3,3, see Fig. 3.

Let H be a graph from Fig. 3, and let G be a graph obtained from H by replacing one triangle by a
complete graph Kn−6. Then G is not Hamiltonian and µ(G) > n − 7. Recently, we get the following result.

Theorem 13. Suppose that G is a 2-connected claw-free graph of sufficiently large order n. If µ(G) ≥ n− 7, then G is
Hamiltonian or G is a subgraph of a graph which is obtained from PT,T,T, P3,T,T, P3,3,T or P3,3,3 by replacing a triangle
by Kn−6.

For further works on this topic, we refer the reader to [14].
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