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Abstract. This article continues the investigation of matrix constructions motivated by their applications
to the design of classification systems. Our main theorems strengthen and generalize previous results
by describing all centroid sets for classification systems that can be generated as one-sided ideals with
the largest weight in structural matrix semirings. Centroid sets are well known in data mining, where
they are used for the design of centroid-based classification systems, as well as for the design of multiple
classification systems combining several individual classifiers.

1. Introduction

This article continues the investigation of matrix constructions motivated by applications for classi-
fication. Here we strengthen and generalize previous results obtained in the recent article [24] devoted
to centroid sets in matrix semirings. Centroid sets are very well known, since they are used for the de-
sign of centroid-based classification systems, also called classifiers, as well as for the design of multiple
classification systems combining several individual initial classifiers (cf. [1, 18, 26].

Many interesting results on structural matrix rings have been obtained in the literature, for example,
see [9–11]. Let us refer the readers to [9, 24] and the monograph [17] for a comprehensive bibliography
on structural matrix rings. More general structural matrix semirings were introduced in [24], where the
authors investigated centroid sets that can be generated as two-sided ideals in this construction. This study
is important, because semirings have valuable applications in computer science (cf. [7, 8, 12]).

The present article strengthens previous results by describing optimal sets of centroids that can be
generated for the design of classification systems as one-sided ideals of the largest weight in structural
matrix semirings. The concept of an ideal is very important and has many applications in several branches
of modern mathematics. The class of one-sided ideals is larger than that of two-sided ideals. It is important
to handle this larger class for several reasons. First, considering the larger class of ideals may lead to the
design of classification systems with better properties. Secondly, it turns out that the results we obtain in
the present paper not only generalize previous formulas, but also make it possible to simplify them.

We refer to the book [26] for more information on the design of classifiers and their roles in data
mining. More details are also given in Section 2 below. In particular, special sets satisfying certain optimal

2010 Mathematics Subject Classification. Primary 68T05; Secondary 68T10
Keywords. Matrix semirings, Ideals, Classification
Received: 16 June 2014; Accepted: 28 November 2015
Communicated by Dragan S. Djordjević
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properties are required for the design of centroid-based classifiers, as well as for the design of multiple
classifiers combining several individual or initial classifiers, see [1, 23]. Such classifiers were also used,
for example, in [2, 3, 21, 25]. Our main theorems give complete descriptions of centroid sets with largest
weights that can be generated as one-sided ideals in structural matrix semirings.

As mentioned above, it is interesting that considering the larger class of one-sided ideals in the present
paper has made it possible to obtain descriptions involving simpler formulas that may be easier to use in
applications as compared to the formulas obtained in the literature previously. It is also essential to handle
all one-sided ideals, since considering the more general type of centroid sets may lead to the design of
classification systems with better properties.

The paper is organised as follows. Background information and preliminaries on the applications of
matrix constructions for the design of classification systems in data mining is given in Section 2. The main
results of the present paper are Theorems 3.1 and 3.2 presented in Section 3. These theorems describe all
centroid sets that can be generated as right ideals with largest weight among all right ideals in structural
matrix semirings, and all centroid sets that can be generated as left ideals with largest weight among all left
ideals in structural matrix semirings, respectively. Complete proofs are included in Section 4.

2. Motivation and Preliminaries

This section contains a concise review of the main definitions required for our new theorems. We
use standard notions and terminology and refer to [4–6, 12, 14, 15, 17] for preliminaries, background
information, more detailed explanations and illustrating examples explaining these concepts and notation.

The design of efficient classifiers is very important in data mining, see [26]. Matrix semirings can be
used in order to generate convenient sets of centroids for centroid-based classifiers and to design combined
multiple classifiers capable of correcting the errors of individual initial classifiers. Classification deals with
known classes of data. These classes are represented by given samples of data. The samples are used for
supervised training of the classifier to enable it to recognize new elements of the same known classes. The
classification process begins with feature extraction and representation of data in a standard vector space
Fn, where F can be regarded as a semifield. Recall that a semifield is a semiring, where the set of nonzero
elements forms a group with respect to multiplication.

Every centroid-based classifier selects special elements c1, . . . , ck in Fn, called centroids (see [26]). For
i = 1, . . . , k, each centroid ci defines its class K(ci) consisting of all vectors v such that ci is the nearest centroid
of v. Every vector is assigned to the class of its nearest centroid.

On the other hand, multiple classifiers are often used in analysis of data to combine individual initial
classifiers (see, for example, [2, 3, 20, 25]). A well-known method for the design of multiple classifiers
consists in designing several simpler initial or individual classifiers, and then combining them into one
multiple classification scheme with several classes. This method is very effective, and is often recommended
for various applications, see [26], Section 7.5 and [13]. The main advantage of using combined multiple
classifiers is in their ability to correct errors of individual classifiers and produce correct classifications
despite individual classification errors.

Denote the number of initial classifiers being combined by n. If x1, . . . , xn are the outputs of the initial
classifiers, then the sequence (x1, . . . , xn) is called a vector of outputs of the initial classifiers. In order to define
the multiple classifier and enable correction of errors of the initial classifiers, a set of centroids c1, . . . , ck
is again selected in Fn. For i = 1, . . . , k, the class K(ci) of the centroid ci is again defined as the set of all
observations with the vector outputs of the initial classifiers having ci as its nearest centroid.

The design of multiple classifiers by combining individual classifiers is quite common in the literature.
We refer to [24] and [26] for a list of properties required of the sets of centroids. In particular, it is essential
to find sets of centroids with large weights and small numbers of generators. The weight wt(v) of v ∈ Fn is
the number of nonzero components or coordinates in v. The weight of a set C ⊆ Fn is the minimum weight
of a nonzero element in C. For additional references and discussion related to these properties we refer the
readers to [1, 13, 16, 22, 23]. In particular, it is essential to find sets of centroids with large weights and small
numbers of generators, see [24].
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Recall that a semiring is a set Q with two binary operations, addition + and multiplication ·, such that
the following conditions are satisfied:

(S1) (Q,+) is a commutative semigroup with zero 0,

(S2) (Q, ·) is a semigroup,

(S3) multiplication distributes over addition,

(S4) zero 0 annihilates Q, i.e., 0 ·Q = Q · 0 = 0.

If the multiplicative semigroups (Q, ·) has an identity element 1, then Q is called a semiring with identity
element, see [12, 24].

Let F be a semiring. For m ∈ N, consider the semiring Mm(F) of all m × m matrices over F. Denote
the set of all positive integers by N and put N0 = N ∪ {0}. For i, j ∈ [1 : m] denote by ei, j the standard
elementary matrix in Mm(F) with 1 in the intersection of i-th row and j-th column and zeros in all other
entries. Let % be a binary relation on the set [1 : m] = {1, . . . ,m}. It is well known and easy to verify that the
set M%(F) =

⊕
(i, j)∈% Fei, j is a subsemiring of Mm(F) if and only if the relation % is transitive, i.e., (i, j), ( j, k) ∈ %

implies (i, k) ∈ % for all i, j, k. In this case M%(F) is called a structural matrix semiring. Clearly, Mm(F) = 0 if
and only if % = ∅. Throughout we assume that Mm(F) , 0 and % , ∅. Many valuable results on structural
matrix rings have been obtained in the literature (see, for example, [11, 19]). Known facts and references
concerning structural matrix rings can be also found in [17].

If |%| = n, then the additive semigroup of M%(F) is isomorphic to Fn and we can introduce multiplication
in Fn by identifying it with M%(F). Further we consider sets of centroids as subsets generated in M%(F).

Here we deal with centroid sets that can be generated as one-sided ideals in the semiring M%(F). Let us
recall the definitions of ideals and one-sided ideals. Suppose that G is a subset of M%(F). An ideal generated
by G in M%(F) is the set

C(G) =

 k∑
i=1

`i1iri

∣∣∣∣∣∣∣ k ∈N0, 1i ∈ G, `i, ri ∈M%(F) ∪N

 , (1)

where it is assumed that the identity element 1 ofN acts as an identity on the whole M%(F) too. A right ideal
generated by G is the set

Cr(G) =

 k∑
i=1

1iri

∣∣∣∣∣∣ k ∈N0, 1i ∈ G, ri ∈M%(F) ∪N

 , (2)

and a left ideal generated by G is the set

C`(G) =

 k∑
i=1

`i1i

∣∣∣∣∣∣ k ∈N0, 1i ∈ G, `i ∈M%(F) ∪N

 . (3)

The set G is called a generating set. A finitely generated ideal (resp., right ideal, left ideal) is an ideal (resp., right
ideal, left ideal) that has a finite set of generators. A one-sided ideal is a set that is a right ideal or a left ideal.

3. Main Results

Let % be a nonempty binary relation on the set [1 : m]. We introduce the following binary relations

%r = {(i, j) ∈ % | ∃k ∈ [1 : m] : ( j, k) ∈ %}, (4)
%` = {(i, j) ∈ % | ∃k ∈ [1 : m] : (k, i) ∈ %}. (5)
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and subsets in the semiring M%(F):

KR =

x =
∑

(i, j)∈%\%r

xi, jei, j

∣∣∣∣∣∣∣ where 0 , xi, j ∈ F for all i, j

 , (6)

KL =

x =
∑

(i, j)∈%\%`

xi, jei, j

∣∣∣∣∣∣∣ where 0 , xi, j ∈ F for all i, j

 . (7)

Let us also define the sets

R j = {i | (i, j) ∈ %r}, (8)
Li = { j | (i, j) ∈ %`}, (9)

nonnegative integers

NR = max{|R j| : j = 1, . . . ,m}, (10)
NL = max{|Li| : i = 1, . . . ,m} (11)

and the following subsets of the semiring M%(F):

HR =

h =
∑
i∈R j

hi, jei, j

∣∣∣∣∣∣∣ j ∈ [1 : m], |R j| = NR, 0 , hi, j ∈ F

 , (12)

HL =

h =
∑
j∈Li

hi, jei, j

∣∣∣∣∣∣∣ i ∈ [1 : m], |Li| = NL, 0 , hi, j ∈ F

 . (13)

Theorem 3.1. Let M%(F) be a structural matrix semiring over a semifield F, and let Cr be a centroid set that can be
generated as a right ideal of the largest possible weight among all right ideals of M%(F). Then the weight of Cr is given
by the formula

wt(Cr) = max{|% \ %r|,NR} (14)

and Cr contains an element of weight wt(Cr) that belongs toKR ∪HR.

Theorem 3.2. Let M%(F) be a structural matrix semiring over a semifield F, and let C` be a centroid set that can be
generated as a left ideal of the largest possible weight among all left ideals in M%(F). Then the weight of C` is given
by the formula

wt(C`) = max{|% \ %`|,NL} (15)

and C` contains an element of weight wt(C`) that belongs toKL ∪HL.

4. Proofs

For any i ∈ [1 : m], let us define the sets

%(i) = { j | (i, j) ∈ %}, (16)
%−1(i) = { j | ( j, i) ∈ %}. (17)

For any semiring Q, the left annihilator of Q is the set

Ann`(Q) = {x ∈ Q | xQ = 0}, (18)

and the right annihilator of Q is the set

Annr(Q) = {x ∈ Q | Qx = 0}. (19)



M. Chowdhury et al. / Filomat 30:9 (2016), 2397–2403 2401

Lemma 4.1. ([24]) For any structural matrix semiring M%(F) over a semifield F, the following equalities are satisfied:

Annr(M%(F)) = M%\%` (F), (20)
Ann`(M%(F)) = M%\%r (F). (21)

Lemma 4.2. For any structural matrix semiring M%(F) over a semifield F, the following inclusions hold:

(i) KR ⊆ Ann`(M%(F)),

(ii) KL ⊆ Annr(M%(F)).

Proof. Condition (i) follows from (6) and Lemma 4.1(i). Likewise, condition (ii) follows from (7) and
Lemma 4.1(ii).

Lemma 4.3. For any structural matrix semiring M%(F) over a semifield F, the following conditions hold:

(i) wt(Cr(x)) = wt(x) = |% \ %r|, for every x ∈ KR;

(ii) wt(Cr(x)) = wt(x) = NR, for every x ∈ HR;

(iii) wt(C`(x)) = wt(x) = |% \ %`|, for every x ∈ KL;

(iv) wt(C`(x)) = wt(x) = NL, for every x ∈ HL.

Proof. (i): Pick an arbitrary nonzero element x =
∑

(i, j)∈%\%r
xi, jei, j ∈ KR. Since xi, j , 0 for all (i, j) ∈ % \ %r by (6),

it follows that wt(x) = |% \ %r|. Obviously, wt(x) ≥ wt(Cr(x). To verify that wt(x) ≤ wt(Cr(x), let us choose a
nonzero element y of minimal weight in Cr(x). It follows from (2) that we can represent y as y = sx+

∑k
t=1 xrt,

where s ∈ N0 and 0 , rt ∈ M%(F) for all t. Condition (i) of Lemma 4.2 implies that xM%(F) = 0. Hence we
get y = sx. Therefore s , 0 and wt(Cr(x)) = wt(y) = wt(x), which means that condition (i) holds true.

(ii): Choose an arbitrary nonzero element h ∈ HR. By (12), we can represent it in the form

h =
∑
i∈R j

hi, jei, j, (22)

where j is an element of [1 : m] such that |R j| = NR, and where 0 , hi, j ∈ F for all i, j. Therefore wt(h) = NR.
Obviously, wt(h) ≥ wt(Cr(h). To verify the reversed inequality, pick a nonzero element y ∈ Cr(h). It follows
from (2) that there exists s ∈N0 such that

y = sh +

k∑
t=1

hrt, (23)

where 0 , rt ∈ M%(F). In view of the distributive law we may assume that all the rt are homogeneous
elements of M%(F), i.e., rt = fteit, jt , for ft ∈ F∗. We can remove all zero products hrt from (23) and assume that
it = j for all t, so that

y = sh +

k∑
t=1

h
(

fte j, jt

)
. (24)

Substituting (22) in (24), we get

y = sh +

k∑
t=1

∑
i∈R j

(hi, j ft)ei, jt

 . (25)

The weight of each summand
∑

i∈R j
(hi, j ft)ei, jt in (25) is equal to |R j| = NR, and these summands do not cancel

with each other, since without loss of generality we may assume from the very beginning that jt1 , jt2 for
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t1 , t2 in (24). Therefore wt(y) ≥ NR = wt(h). Thus wt(Cr(h)) = wt(h), which means that condition (ii) holds
true.

(iii), (iv): The proofs of conditions (iii) and (iv) are dual to those of (i) and (iv), respectively, and so we
omit them.

Proof of Theorem 3.1. Denote the maximum that occurs in the right-hand side of equality (14) by Wr.
Lemma 4.3(i) tells us that M%(F) always contains elements generating right ideals of weight |%\%r|. Therefore
the maximality of the weight of Cr shows that wt(Cr) ≥ |% \ %r|. Similarly, Lemma 4.3(i) implies that M%(F)
always has elements generating right ideals of weight Nr. Hence wt(Cr) ≥ Nr. Therefore we get

wt(Cr) ≥Wr. (26)

To prove the reversed inequality, choose a nonzero element

x =
∑

(i, j)∈%

xi, jei, j (27)

of minimal weight in Cr. The following two cases are possible.
Case 1: There exists (i, j) ∈ %r such that xi, j , 0.
Then (4) implies that ( j, k) ∈ % for some k ∈ [1 : m]. Therefore e j,k ∈M%(F), and so xe j,k ∈ Cr. Since

Xe j,k =
∑
i∈R j

xi, jei,k (28)

we see that xe j,k It follows that wt(xe j,k) ≤ |R j| ≤ NR ≤Wr. Hence we get wt(Cr) = wt(x) ≤ wt(xe j,k) ≤Wr.
Case 2: xi, j = 0 for all (i, j) ∈ %.
Then x belongs to

⊕
(i, j)∈%\%r

Fei, j; whence wt(x) ≤ % \ %r ≤Wr.
Thus, we see that wt(Cr) ≤ Wr in both cases. Hence (26) yields us that wt(Cr) = Wr. Therefore

equality (14) always holds.
In view of equality (14) there are two possible cases. First, the equality wt(Cr) = |% \ %r| may hold. In

this case we can use Lemma 4.3(i) and find an element x in KR such that wt(x) = |% \ %r| = wt(Cr). Second,
the equality wt(Cr) = NR may hold true. In this case, Lemma 4.3(i) tells us that M%(F) always contains an
element x inHR such that wt(x) = NR = wt(Cr). Thus Cr always contains an element of weight wt(Cr) that
belongs toKR ∪HR. This completes the proof. �

Proof of Theorem 3.2 is dual to the proof of Theorem 3.1, and so we omit it. �
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