Filomat 30:9 (2016), 2405–2412 DOI 10.2298/FIL1609405U

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Classification of Totally Umbilical Slant Submanifolds of a Kenmotsu Manifold

Siraj Uddin^a, Zafar Ahsan^b, Abdul Hadi Yaakub^b

^aDepartment of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia ^bDepartment of Mathematics, Aligarh Muslim University, 202002 Aligarh, India ^cInstitute of Mathematical Sciences, Faculty of Science,University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract. The purpose of this paper is to classify totally umbilical slant submanifolds of a Kenmotsu manifold. We prove that a totally umbilical slant submanifold M of a Kenmotsu manifold \overline{M} is either invariant or anti-invariant or dimM = 1 or the mean curvature vector H of M lies in the invariant normal subbundle. Moreover, we find with an example that every totally umbilical proper slant submanifold is totally geodesic.

1. Introduction

Slant submanifolds of an almost Hermitian manifold were defined by Chen as a natural generalization of both holomorphic and totally real submanifolds [6]. On the other hand, A. Lotta [13] has introduced the notion of slant immersions into almost contact metric manifolds and obtained the results of fundamental importance. He has also studied the intrinsic geometry of 3–dimensional non anti-invariant slant submanifolds of *K*–contact manifolds [14]. Later on, Cabrerizo et. al [3] studied the geometry of slant submanifolds in more specialized settings of *K*–contact and Sasakian manifolds and obtained many interesting results.

On the other hand, in 1954, J.A. Schouten studied the totally umbilical submanifolds and proved that every totally umbilical submanifold of $dim \ge 4$ in a conformally flat space is conformally flat [15]. After that many authors studied the geometrical aspects of these submanifolds in different settings, including those of [1, 4, 5, 7, 8, 16]. In this paper, we consider M, a totally umbilical slant submanifold tangent to the structure vector field ξ of a Kenmotsu manifold \overline{M} and obtain a classification result that either (*i*) M is anti-invariant or (*ii*) dimM = 1 or (*iii*) $H \in \Gamma(\mu)$, where μ is the invariant normal subbundle under ϕ . We also prove that every totally umbilical proper slant submanifold is totally geodesic. To, this end, we provide an example to justify our results.

2. Preliminaries

A (2n + 1)-dimensional manifold (\overline{M}, g) is said to be an *almost contact metric manifold* if it admits an endomorphism ϕ of its tangent bundle $T\overline{M}$, a vector field ξ , called *structure vector field* and η , the dual 1–form of ξ satisfying the following [2]:

Keywords. Totally umbilical, Totally geodesic, Mean curvature, Slant submanifold, Kenmotsu manifold Received: 16 June 2014; Accepted: 26 February 2015

Communicated by Ljubica Velimirović

²⁰¹⁰ Mathematics Subject Classification. 53C40, 53C42, 53B25

Email addresses: siraj.ch@gmail.com (Siraj Uddin), zafar.ahsan@rediffmail.com (Zafar Ahsan), abdhady@um.edu.my (Abdul Hadi Yaakub)

$$\phi^{2} = -I + \eta \otimes \xi, \ \eta(\xi) = 1, \ \phi(\xi) = 0, \ \eta \circ \phi = 0$$
⁽¹⁾

and

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi)$$
⁽²⁾

for any X, Y tangent to M. An almost contact metric manifold is known to be Kenmotsu manifold [11] if

$$(\bar{\nabla}_X \phi)Y = g(\phi X, Y)\xi - \eta(Y)\phi X \tag{3}$$

consequently, we also have

$$\bar{\nabla}_X \xi = X - \eta(X)\xi \tag{4}$$

for any vector fields X, Y on \overline{M} , where $\overline{\nabla}$ denotes the Riemannian connection with respect to *q*.

Now, let *M* be a submanifold of \overline{M} . We will denote by ∇ , the induced Riemannian connection on *M* and *g*, the Riemannian metric on \overline{M} as well as the metric induced on *M*. Let *TM* and $T^{\perp}M$ be the Lie algebras of vector fields tangent to *M* and normal to *M*, respectively and ∇^{\perp} the induced connection on $T^{\perp}M$. Denote by $\mathcal{F}(M)$ the algebra of smooth functions on *M* and by $\Gamma(TM)$ the $\mathcal{F}(M)$ -module of smooth sections of *TM* over *M*. Then the Gauss and Weingarten formulas are given by

$$\nabla_X Y = \nabla_X Y + h(X, Y) \tag{5}$$

$$\nabla_X N = -A_N X + \nabla_X^2 N, \tag{6}$$

for each *X*, $Y \in \Gamma(TM)$ and $N \in \Gamma(T^{\perp}M)$, where *h* and A_N are the second fundamental form and the shape operator (corresponding to the normal vector field *N*) respectively for the immersion of *M* into \overline{M} . They are related as

$$g(h(X,Y),N) = g(A_NX,Y).$$
⁽⁷⁾

Now, for any $X \in \Gamma(TM)$, we write

$$\phi X = TX + FX,\tag{8}$$

where *TX* and *FX* are the tangential and normal components of ϕX , respectively. Similarly for any $N \in \Gamma(T^{\perp}M)$, we have

$$\phi N = tN + fN,\tag{9}$$

where *tN* (resp. *fN*) is the tangential (resp. normal) component of ϕN .

$$g(TX,Y) = -g(X,TY).$$
⁽¹⁰⁾

The covariant derivatives of the endomorphisms ϕ , *T* and *F* are defined respectively as

$$(\bar{\nabla}_X \phi)Y = \bar{\nabla}_X \phi Y - \phi \bar{\nabla}_X Y, \ \forall X, Y \in \Gamma(T\bar{M})$$
(11)

$$(\nabla_X T)Y = \nabla_X TY - T\nabla_X Y, \ \forall X, Y \in \Gamma(TM)$$
(12)

$$(\nabla_X F)Y = \nabla_X^{\perp} FY - F \nabla_X Y \quad \forall X, Y \in \Gamma(TM).$$
(13)

Throughout, the structure vector field ξ assumed to be tangential to M, otherwise M is simply antiinvariant [13]. For any $X \in \Gamma(TM)$, on using (4) and (5), we may obtain

(a)
$$\nabla_X \xi = X - \eta(X)\xi$$
, (b) $h(X,\xi) = 0.$ (14)

2406

On using (3), (5), (6), (8), (9) and (11)-(13), we obtain

$$(\nabla_X T)Y = g(TX, Y)\xi - \eta(Y)TX + A_{FY}X + th(X, Y)$$
(15)

$$(\nabla_X F)Y = fh(X, Y) - h(X, TY) - \eta(Y)FX.$$
(16)

A submanifold M of an almost contact metric manifold \overline{M} is said to be *totally umbilical* if

$$h(X,Y) = q(X,Y)H,$$
(17)

where *H* is the mean curvature vector of *M*. Furthermore, if h(X, Y) = 0, for all $X, Y \in \Gamma(TM)$, then *M* is said to be *totally geodesic* and if H = 0, them *M* is *minimal* in \overline{M} .

For a totally umbilical submanifold M tangent to the structure vector field ξ of a Kenmotsu manifold \overline{M} , we have

$$q(X,\xi)H = 0, \quad \forall X \in \Gamma(TM).$$
⁽¹⁸⁾

There are two possible cases arise, hence we conclude the following:

Case (i): When X and ξ are linearly dependent, i.e., $X = \alpha \xi$, for some non-zero $\alpha \in \mathbb{R}$, then $g(X, \xi) = \alpha$. In this case, from (18), we get H = 0 with dimM = 1, which is trivial case of totally geodesic 1–dimensional submanifold.

Case (ii): When *X* and ξ are orthogonal, then from (18), it is not necessary that *H* = 0, which is the case has to be discussed for totally umbilical submanifolds.

In the following section, we will discuss all possible cases of totally umbilical slant submanifolds.

3. Slant Submanifolds

A submanifold M tangent to the structure vector filed ξ of an almost contact metric manifold \overline{M} is said to be *slant submanifold* if for any $x \in M$ and $X \in T_x M - \langle \xi \rangle$, the angle between ϕX and $T_x M$ is constant. The constant angle $\theta \in [0, \pi/2]$ is then called *slant angle* of M in \overline{M} . Thus, for a slant submanifold M, the tangent bundle TM is decomposed as

$$TM = D \oplus \langle \xi \rangle$$

where the orthogonal complementary distribution D of $\langle \xi \rangle$ is known as *slant distribution* on M. The normal bundle $T^{\perp}M$ of M is decomposed as

$$T^{\perp}M = F(TM) \oplus \mu,$$

where μ is the invariant normal subbundle with respect to ϕ orthogonal to *F*(*TM*).

For a proper slant submanifold M of an almost contact metric manifold \overline{M} with the slant angle θ , Lotta [13] proved that

 $T^2 X = -\cos^2 \theta (X - \eta(X)\xi) \tag{19}$

for any $X \in \Gamma(TM)$.

Recently, Cabrerizo et. al [3] extended the above result into a characterization for a slant submanifold in a contact metric manifold. In fact, they have obtained the following theorem.

Theorem 3.1. [3] Let M be a submanifold of an almost contact metric manifold \overline{M} such that $\xi \in TM$. Then M is slant if and only if there exists a constant $\lambda \in [0, 1]$ such that

$$T^2 = \lambda(-I + \eta \otimes \xi).$$

Furthermore, in such a case, if θ *is slant angle, then it satisfies that* $\lambda = \cos^2 \theta$ *.*

Hence, for a slant submanifold M of an almost contact metric manifold \overline{M} , the following relations are consequences of the above theorem.

$$g(TX, TY) = \cos^2 \theta[g(X, Y) - \eta(X)\eta(Y)]$$

$$g(FX, FY) = \sin^2 \theta[g(X, Y) - \eta(X)\eta(Y)]$$
(20)
(21)

for any $X, Y \in \Gamma(TM)$.

In the following theorem we consider M as a totally umbilical slant submanifold of a Kenmotsu manifold \overline{M} .

Theorem 3.2. Let M be a totally umbilical slant submanifold of a Kenmotsu manifold \overline{M} . Then at least one of the following statements is true

- (i) M is invariant
- (ii) M is anti-invariant
- (iii) M is totally geodesic
- (iv) dimM = 1
- (v) If M is proper slant, then $H \in \Gamma(\mu)$

where H is the mean curvature vector of M.

Proof. As *M* is a totally umbilical slant submanifold, then we have

$$h(TX, TX) = g(TX, TX)H = \cos^2 \theta \{ \|X\|^2 - \eta^2(X) \} H.$$

_

Using (5), we obtain

$$\cos^2 \theta \{ \|X\|^2 - \eta^2(X) \} H = \overline{\nabla}_{TX} T X - \nabla_{TX} T X.$$

Then from (8), we get

$$\cos^2 \theta \{ \|X\|^2 - \eta^2(X) \} H = \bar{\nabla}_{TX} \phi X - \bar{\nabla}_{TX} F X - \nabla_{TX} T X.$$

By (6) and (11), we derive

$$\cos^2 \theta\{\|X\|^2 - \eta^2(X)\}H = (\bar{\nabla}_{TX}\phi)X + \phi\bar{\nabla}_{TX}X + A_{FX}TX - \nabla_{TX}^{\perp}FX - \nabla_{TX}TX$$

Using (3) and (5), we obtain

$$\begin{aligned} \cos^2 \theta \{ \|X\|^2 - \eta^2(X) \} H &= g(\phi T X, X) \xi - \eta(X) \phi T X + \phi(\nabla_{TX} X + h(X, TX)) \\ &+ A_{FX} T X - \nabla_{TX}^\perp F X - \nabla_{TX} T X. \end{aligned}$$

From (8), (10), (17) and the fact that X and TX are orthogonal vector fields on M, we arrive at

$$\begin{aligned} \cos^2 \theta \{ \|X\|^2 - \eta^2(X) \} H &= -g(TX, TX)\xi - \eta(X)T^2X - \eta(X)FTX + T\nabla_{TX}X \\ &+ F\nabla_{TX}X + A_{FX}TX - \nabla_{TX}^\perp FX - \nabla_{TX}TX. \end{aligned}$$

Then, by Theorem 3.1 and the relation (20), we get

$$\cos^{2} \theta\{\|X\|^{2} - \eta^{2}(X)\}H = -\cos^{2} \theta\{\|X\|^{2} - \eta^{2}(X)\}\xi - \cos^{2} \theta\eta(X)\{-X + \eta(X)\xi\} - \eta(X)FTX + T\nabla_{TX}X + F\nabla_{TX}X + A_{FX}TX - \nabla_{TX}^{\perp}FX - \nabla_{TX}TX.$$
(22)

Taking the inner product with *TX* in (22), for any $X \in \Gamma(TM)$, we obtain

$$0 = g(T\nabla_{TX}X, TX) + g(A_{FX}TX, TX) - g(\nabla_{TX}TX, TX).$$
(23)

Now, we compute the first and last term of (23) as follows

$$g(T\nabla_{TX}X,TX) = \cos^2 \theta \{g(\nabla_{TX}X,X) - \eta(X)g(\nabla_{TX}X,\xi)\}.$$
(24)

Also, we have

$$g(\nabla_{TX}TX,TX) = g(\nabla_{TX}TX,TX)$$

Using the property of Riemannian connection the above equation will be

$$g(\nabla_{TX}TX,TX) = \frac{1}{2}TXg(TX,TX) = \frac{1}{2}TX\{\cos^2\theta(g(X,X) - \eta(X)\eta(X))\}.$$

Again by the property of Riemannian connection, we derive

$$g(\nabla_{TX}TX,TX) = \cos^2 \theta \{g(\bar{\nabla}_{TX}X,X) - \eta(X)g(\bar{\nabla}_{TX}X,\xi)\} - \cos^2 \theta \eta(X)g(\bar{\nabla}_{TX}\xi,X).$$
(25)

Using (4) and the fact that X and TX are orthogonal vector fields on M, the last term of (25) is identically zero, then by (5), we obtain

$$g(\nabla_{TX}TX, TX) = \cos^2 \theta \{ g(\nabla_{TX}X, X) - \eta(X)g(\nabla_{TX}X, \xi) \}.$$
(26)

Thus, from (24) and (26), we get

$$g(T\nabla_{TX}X,TX) = g(\nabla_{TX}TX,TX).$$
(27)

Using this fact in (23), we obtain

$$0 = g(A_{FX}X, TX) = g(h(TX, TX), FX).$$

As M is totally umbilical slant, then from (2.17) and (3.2), we get

$$0 = \cos^2 \theta\{\|X\|^2 - \eta^2(X)\}g(H, FX).$$
(28)

Thus, from (28), we conclude that either $\theta = \pi/2$, that is *M* is anti-invariant which is a part (ii) or the vector field *X* is parallel to the structure vector field ξ , i.e., *M* is 1–dimensional submanifold which is fourth part of the theorem or $H \perp FX$, for all $X \in \Gamma(TM)$, i.e., $H \in \Gamma(\mu)$ which is the last part of the thorem or H = 0, i.e., *M* is totally geodesic which is (iii) or FX = 0, $\forall X \in \Gamma(TM)$, i.e., *M* is invariant which is part (i). This proves the theorem completely. \Box

Now, if we consider M, a proper slant submanifold of a Kenmotsu manifold \overline{M} , then neither M is invariant nor anti-invariant (by definition of proper slant) and also neither dimM = 1. Hence, by the above result, only possibility is that $H \in \Gamma(\mu)$ for a totally umbilical proper slant submanifold. Thus, we prove the following main result.

Theorem 3.3. Every totally umbilical proper slant submanifold of a Kenmotsu manifold is totally geodesic.

Proof. Let *M* be a totally umbilical proper slant submanifold of a Kenmotsu manifold \overline{M} , then for any *X*, *Y* $\in \Gamma(TM)$, we have

$$\bar{\nabla}_X \phi Y - \phi \bar{\nabla}_X Y = g(\phi X, Y)\xi - \eta(Y)\phi X.$$

From (5) and (8), we obtain

$$\bar{\nabla}_X TY + \bar{\nabla}_X FY - \phi(\nabla_X Y + h(X, Y)) = g(TX, Y)\xi - \eta(Y)TX - \eta(Y)FX$$

Again using (5), (6) and (8), we get

$$g(TX,Y)\xi - \eta(Y)TX - \eta(Y)FX = \nabla_X TY + h(X,TY) - A_{FY}X + \nabla_X^{\perp}FY - T\nabla_X Y - F\nabla_X Y - \phi h(X,Y).$$

As *M* is totally umbilical, then

 $g(TX, Y)\xi - \eta(Y)TX - \eta(Y)FX = \nabla_X TY + g(X, TY)H - A_{FY}X + \nabla_X^{\perp}FY - T\nabla_X Y - F\nabla_X Y - g(X, Y)\phi H.$ (29) Taking the inner product with ϕH in (29) and using the fact that $H \in \Gamma(\mu)$ (by Theorem 3.2 (v)), we obtain

$$g(\nabla_X^{\perp} FY, \phi H) = g(X, Y) ||H||^2$$

Using (6) and the property of Riemannian connection, the above equation takes the form

$$g(FY, \nabla_X^{\perp} \phi H) = -g(X, Y) ||H||^2.$$
(30)

Now, for any $X \in \Gamma(TM)$, we have

$$\bar{\nabla}_X \phi H = (\bar{\nabla}_X \phi) H + \phi \bar{\nabla}_X H.$$

Using (3), (6), (8) and the fact that
$$H \in \Gamma(\mu)$$
, we obtain

$$-A_{\phi H}X + \nabla_X^{\perp}\phi H = -TA_HX - FA_HX + \phi \nabla_X^{\perp}H.$$
(31)

Also, for any $X \in \Gamma(TM)$, we have

$$g(\nabla_X^{\perp}H, FX) = g(\bar{\nabla}_X H, FX)$$
$$= -g(H, \bar{\nabla}_X FX)$$

Using (8), we get

$$g(\nabla_X^{\perp}H, FX) = -g(H, \bar{\nabla}_X \phi X) + g(H, \bar{\nabla}_X TX).$$

Then from (5) and (11), we derive

$$g(\nabla_X^{\perp}H, FX) = -g(H, (\bar{\nabla}_X \phi)X) - g(H, \phi \bar{\nabla}_X X) + g(H, h(X, TX))$$

Using (3) and (17), the first and last term of right hand side of the above equation are identically zero and hence by (2), the second term gives

$$g(\nabla_X^{\perp}H, FX) = g(\phi H, \bar{\nabla}_X X)$$

Again, using (5) and (17), finally we obtain

$$q(\nabla_x^{\perp}H, FX) = q(\phi H, H) ||X||^2 = 0$$

This means that

$$\nabla_X^{\perp} H \in \Gamma(\mu). \tag{32}$$

Now, taking the inner product in (31) with *FY*, for any $Y \in \Gamma(TM)$, we get

$$g(\nabla^{\perp}_{X}\phi H,FY) = -g(FA_{H}X,FY) + g(\phi \nabla^{\perp}_{X}H,FY).$$

Using (32), the last term of the right hand side of the above equation will be zero and then from (21), (30), we obtain

$$g(X, Y)||H||^{2} = \sin^{2} \theta \{g(A_{H}X, Y) - \eta(Y)g(A_{H}X, \xi)\}.$$
(33)

Hence, by (7) and (17), the above equation reduces to

$$g(X, Y)||H||^{2} = \sin^{2} \theta \{g(X, Y)||H||^{2} - \eta(Y)g(h(X, \xi), H)\}.$$
(34)

Since, for a Kenmotsu manifold \overline{M} , $h(X, \xi) = 0$, for any X tangent to \overline{M} , thus we obtain

$$g(X, Y) ||H||^2 = \sin^2 \theta g(X, Y) ||H||^2.$$

Therefore, the above equation can be written as

$$\cos^2 \theta g(X, Y) \|H\|^2 = 0.$$
(35)

Since, *M* is proper slant, thus from (35), we conclude that H = 0 i.e., *M* is totally geodesic in \overline{M} . This completes the proof of the theorem. \Box

We now give the following example of a proper slant, totally geodesic submanifold in \mathbb{R}^5 with its standard Kenmotsu structure.

Example 3.4. Consider the 3-dimensional proper slant submanifold with the slant angle $\theta \in (0, \pi/2)$ of \mathbb{R}^5 defined by

$$\alpha(u, v, t) = 2(u\cos\theta, u\sin\theta, v, 0, t)$$

with its usual Kenmotsu structure $\mathbb{R}^5 = \mathbb{C}^2 \times \mathbb{R}$, (ϕ, ξ, η, g)

$$\phi\{\sum_{i=1}^{2} (X_i \frac{\partial}{\partial x^i} + Y_i \frac{\partial}{\partial y^i}) + Z \frac{\partial}{\partial t}\} = \sum_{i=1}^{2} (-Y_i \frac{\partial}{\partial x^i} + X_i \frac{\partial}{\partial y^i}),$$

$$\xi = 2 \frac{\partial}{\partial t}, \quad \eta = \frac{1}{2} dt \quad and \quad g = \eta \otimes \eta + \frac{e^{2t}}{4} \sum_{i=1}^{2} (dx^i \otimes dx^i + dy^i \otimes dy^i)$$

where (x^i, y^i, t) , i = 1, 2 are cartesian coordinates. If we denote by M a slant submanifold, then its tangent space TM span by the vectors

$$e_{1} = \frac{1}{e^{t}} \Big\{ 2 \{ \cos \theta \Big(\frac{\partial}{\partial x^{1}} + y^{1} \frac{\partial}{\partial t} \Big) + 2 \sin \theta \Big(\frac{\partial}{\partial x^{2}} + y^{2} \frac{\partial}{\partial t} \Big) \Big\},$$
$$e_{2} = \frac{2}{e^{t}} \frac{\partial}{\partial y^{1}}, \qquad e_{3} = 2 \frac{\partial}{\partial t} = \xi.$$

Clearly, we have

$$\phi e_1 = \frac{1}{e^t} \Big\{ 2 \{ \cos \theta \Big(\frac{\partial}{\partial y^1} \Big) + 2 \sin \theta \Big(\frac{\partial}{\partial y^2} \Big) \Big\},$$
$$\phi e_2 = -\frac{2}{e^t} \frac{\partial}{\partial x^1}, \qquad \phi e_3 = 0.$$

Furthermore, using Koszul's formula, we get $\bar{\nabla}_{e_i}e_i = -e_3 = -\xi$, i = 1, 2 and when $i \neq j$, then $\bar{\nabla}_{e_i}e_j = 0$, for i, j = 1, 2, 3. Also, $\bar{\nabla}_{e_3}e_3 = 0$, thus, from Gauss formula and (2.14), we obtain

$$h(e_1, e_1) = 0$$
, $h(e_2, e_2) = 0$, $h(e_3, e_3) = 0$

and

$$h(e_1, e_2) = 0, \quad h(e_1, e_3) = 0, \quad h(e_2, e_3) = 0,$$

hence we conclude that M is totally geodesic.

References

- [1] A. Bejancu, Umbilical CR-submanifolds of a Kaehler manifold, Rend. Mat. 13 (1980), 431-466.
- [2] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, New York, 1976.
 [3] J.L. Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J. 42
- (2000), 125-138.
 [4] C. Calin, On totally contact umbilical submanifolds of a manifold with a sasakian 3-structure, Rev. Tec. Ing. Univ. Zulia 27 (2004), 168-172.
- [5] B.Y. Chen, Classification of totally umbilical submanifolds in symmetric spaces, J. Austral. Math. Soc. 30 (1980), 129-136.
- [6] B.Y. Chen, Slant immersions, Bull. Austral. Math. Soc. 41 (1990), 135-147.
- [7] M. Gonga, R. Kumar and R.K. Nagaich, On totally contact umbilical contact CR-Lightlike submanifolds of indefinite Sasakian manifolds, Demonstratio Math. 47 (2014), 170-178.
- [8] R.S. Gupta, Non-existence of contact totally umbilical proper slant submanifolds of a Kenmotsu manifold, Rend. Sem. Mat. Univ. Politec. Torino 69 (2011), 5155.
- [9] R.S. Gupta, Screen slant lightlike submanifolds of indefinite cosymplectic manifolds, Georgian Math. J. 18 (2011), 83-97.
- [10] S.M.K. Haider, M. Thakur and A. Maseih, Totally contact umbilical screen transversal Lightlike submanifolds of an indefinite Sasakian manifold, Note Mat. 32 (2012), 123-134.
- [11] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103.

- [12] M.A. Khan and M.Z. Khan, Totally umbilical semi-invariant submanifolds of a nearly cosymplectic manifold, Filomat 20 (2006), 33-38.
- [13] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie 39 (1996), 183-198.
- [14] A. Lotta, Three-dimensional slant submanifolds of K-contact manifolds, Balakan J. Geom. Appl. 3 (1998), 37-51.
- [15] J.A. Schouten, Ricci's calculus, Springer-Verlag, Berlin, 1954.
- [16] S. Uddin, C. Ozel and V.A. Khan, A classification of totally umbilical slant submanifolds of cosymplectic manifolds, Abstract Appl. Anal. 2012 (2012), Article ID 716967, 8 pages.
- [17] S. Uddin, C. Ozel and V.A. Khan, Classification of totally umbilical ξ[⊥] CR-submanifolds of cosymplectic manifolds, Rocky Mountain J. Math. (2014)- Priprint.
- [18] A. Upadhyay and R.S. Gupta, Non-existence of contact totally umbilical proper slant submanifolds of a cosymplectic manifold, Diff. Geom. Dyn. Syst. 12 (2010), 271-276.