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Abstract. The purpose of this paper is to classify totally umbilical slant submanifolds of a Kenmotsu
manifold. We prove that a totally umbilical slant submanifold M of a Kenmotsu manifold M̄ is either
invariant or anti-invariant or dimM = 1 or the mean curvature vector H of M lies in the invariant normal
subbundle. Moreover, we find with an example that every totally umbilical proper slant submanifold is
totally geodesic.

1. Introduction

Slant submanifolds of an almost Hermitian manifold were defined by Chen as a natural generalization
of both holomorphic and totally real submanifolds [6]. On the other hand, A. Lotta [13] has introduced the
notion of slant immersions into almost contact metric manifolds and obtained the results of fundamental
importance. He has also studied the intrinsic geometry of 3−dimensional non anti-invariant slant subman-
ifolds of K−contact manifolds [14]. Later on, Cabrerizo et. al [3] studied the geometry of slant submanifolds
in more specialized settings of K−contact and Sasakian manifolds and obtained many interesting results.

On the other hand, in 1954, J.A. Schouten studied the totally umbilical submanifolds and proved that
every totally umbilical submanifold of dim ≥ 4 in a conformally flat space is conformally flat [15]. After that
many authors studied the geometrical aspects of these submanifolds in different settings, including those of
[1, 4, 5, 7, 8, 16]. In this paper, we consider M, a totally umbilical slant submanifold tangent to the structure
vector field ξ of a Kenmotsu manifold M̄ and obtain a classification result that either (i) M is anti-invariant
or (ii) dimM = 1 or (iii) H ∈ Γ(µ), where µ is the invariant normal subbundle under φ. We also prove that
every totally umbilical proper slant submanifold is totally geodesic. To, this end, we provide an example
to justifiy our results.

2. Preliminaries

A (2n + 1)−dimensional manifold (M̄, 1) is said to be an almost contact metric manifold if it admits an
endomorphism φ of its tangent bundle TM̄, a vector field ξ, called structure vector field and η, the dual
1−form of ξ satisfying the following [2]:
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φ2 = −I + η ⊗ ξ, η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0 (1)

and

1(φX, φY) = 1(X,Y) − η(X)η(Y), η(X) = 1(X, ξ) (2)

for any X,Y tangent to M̄. An almost contact metric manifold is known to be Kenmotsu manifold [11] if

(∇̄Xφ)Y = 1(φX,Y)ξ − η(Y)φX (3)

consequently, we also have

∇̄Xξ = X − η(X)ξ (4)

for any vector fields X,Y on M̄, where ∇̄ denotes the Riemannian connection with respect to 1.
Now, let M be a submanifold of M̄. We will denote by ∇, the induced Riemannian connection on M and

1, the Riemannian metric on M̄ as well as the metric induced on M. Let TM and T⊥M be the Lie algebras of
vector fields tangent to M and normal to M, respectively and ∇⊥ the induced connection on T⊥M. Denote
by F (M) the algebra of smooth functions on M and by Γ(TM) the F (M)-module of smooth sections of TM
over M. Then the Gauss and Weingarten formulas are given by

∇̄XY = ∇XY + h(X,Y) (5)
∇̄XN = −ANX + ∇⊥XN, (6)

for each X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental form and the shape
operator (corresponding to the normal vector field N) respectively for the immersion of M into M̄. They are
related as

1(h(X,Y),N) = 1(ANX,Y). (7)

Now, for any X ∈ Γ(TM), we write

φX = TX + FX, (8)

where TX and FX are the tangential and normal components of φX, respectively. Similarly for any
N ∈ Γ(T⊥M), we have

φN = tN + f N, (9)

where tN (resp. f N) is the tangential (resp. normal) component of φN.

1(TX,Y) = −1(X,TY). (10)

The covariant derivatives of the endomorphisms φ, T and F are defined respectively as

(∇̄Xφ)Y = ∇̄XφY − φ∇̄XY, ∀X,Y ∈ Γ(TM̄) (11)
(∇XT)Y = ∇XTY − T∇XY, ∀X,Y ∈ Γ(TM) (12)
(∇XF)Y = ∇⊥XFY − F∇XY ∀X,Y ∈ Γ(TM). (13)

Throughout, the structure vector field ξ assumed to be tangential to M, otherwise M is simply anti-
invariant [13]. For any X ∈ Γ(TM), on using (4) and (5), we may obtain

(a) ∇Xξ = X − η(X)ξ, (b) h(X, ξ) = 0. (14)
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On using (3), (5), (6), (8), (9) and (11)-(13), we obtain

(∇XT)Y = 1(TX,Y)ξ − η(Y)TX + AFYX + th(X,Y) (15)
(∇XF)Y = f h(X,Y) − h(X,TY) − η(Y)FX. (16)

A submanifold M of an almost contact metric manifold M̄ is said to be totally umbilical if

h(X,Y) = 1(X,Y)H, (17)

where H is the mean curvature vector of M. Furthermore, if h(X,Y) = 0, for all X,Y ∈ Γ(TM), then M is said
to be totally geodesic and if H = 0, them M is minimal in M̄.

For a totally umbilical submanifold M tangent to the structure vector field ξ of a Kenmotsu manifold
M̄, we have

1(X, ξ)H = 0, ∀X ∈ Γ(TM). (18)

There are two possible cases arise, hence we conclude the following:
Case (i): When X and ξ are linearly dependent, i.e., X = αξ, for some non-zero α ∈ R, then 1(X, ξ) = α. In
this case, from (18), we get H = 0 with dimM = 1, which is trivial case of totally geodesic 1−dimensional
submanifold.
Case (ii): When X and ξ are orthogonal, then from (18), it is not necessary that H = 0, which is the case has
to be discussed for totally umbilical submanifolds.

In the following section, we will discuss all possible cases of totally umbilical slant submanifolds.

3. Slant Submanifolds

A submanifold M tangent to the structure vector filed ξ of an almost contact metric manifold M̄ is said
to be slant submanifold if for any x ∈ M and X ∈ TxM − 〈ξ〉, the angle between φX and TxM is constant. The
constant angle θ ∈ [0, π/2] is then called slant angle of M in M̄. Thus, for a slant submanifold M, the tangent
bundle TM is decomposed as

TM = D ⊕ 〈ξ〉

where the orthogonal complementary distribution D of 〈ξ〉 is known as slant distribution on M. The normal
bundle T⊥M of M is decomposed as

T⊥M = F(TM) ⊕ µ,

where µ is the invariant normal subbundle with respect to φ orthogonal to F(TM).
For a proper slant submanifold M of an almost contact metric manifold M̄ with the slant angle θ, Lotta

[13] proved that

T2X = − cos2 θ(X − η(X)ξ) (19)

for any X ∈ Γ(TM).
Recently, Cabrerizo et. al [3] extended the above result into a characterization for a slant submanifold

in a contact metric manifold. In fact, they have obtained the following theorem.

Theorem 3.1. [3] Let M be a submanifold of an almost contact metric manifold M̄ such that ξ ∈ TM. Then M is
slant if and only if there exists a constant λ ∈ [0, 1] such that

T2 = λ(−I + η ⊗ ξ).

Furthermore, in such a case, if θ is slant angle, then it satisfies that λ = cos2 θ.



S. Uddin et al. / Filomat 30:9 (2016), 2405–2412 2408

Hence, for a slant submanifold M of an almost contact metric manifold M̄, the following relations are
consequences of the above theorem.

1(TX,TY) = cos2 θ[1(X,Y) − η(X)η(Y)] (20)
1(FX,FY) = sin2 θ[1(X,Y) − η(X)η(Y)] (21)

for any X,Y ∈ Γ(TM).
In the following theorem we consider M as a totally umbilical slant submanifold of a Kenmotsu

manifold M̄.

Theorem 3.2. Let M be a totally umbilical slant submanifold of a Kenmotsu manifold M̄. Then at least one of the
following statements is true

(i) M is invariant

(ii) M is anti-invariant

(iii) M is totally geodesic

(iv) dimM = 1

(v) If M is proper slant, then H ∈ Γ(µ)

where H is the mean curvature vector of M.

Proof. As M is a totally umbilical slant submanifold, then we have

h(TX,TX) = 1(TX,TX)H = cos2 θ{‖X‖2 − η2(X)}H.

Using (5), we obtain
cos2 θ{‖X‖2 − η2(X)}H = ∇̄TXTX − ∇TXTX.

Then from (8), we get
cos2 θ{‖X‖2 − η2(X)}H = ∇̄TXφX − ∇̄TXFX − ∇TXTX.

By (6) and (11), we derive

cos2 θ{‖X‖2 − η2(X)}H = (∇̄TXφ)X + φ∇̄TXX + AFXTX − ∇⊥TXFX − ∇TXTX.

Using (3) and (5), we obtain

cos2 θ{‖X‖2 − η2(X)}H = 1(φTX,X)ξ − η(X)φTX + φ(∇TXX + h(X,TX))
+ AFXTX − ∇⊥TXFX − ∇TXTX.

From (8), (10), (17) and the fact that X and TX are orthogonal vector fields on M, we arrive at

cos2 θ{‖X‖2 − η2(X)}H = −1(TX,TX)ξ − η(X)T2X − η(X)FTX + T∇TXX
+ F∇TXX + AFXTX − ∇⊥TXFX − ∇TXTX.

Then, by Theorem 3.1 and the relation (20), we get

cos2 θ{‖X‖2 − η2(X)}H = − cos2 θ{‖X‖2 − η2(X)}ξ − cos2 θη(X){−X + η(X)ξ}
− η(X)FTX + T∇TXX + F∇TXX + AFXTX − ∇⊥TXFX − ∇TXTX. (22)

Taking the inner product with TX in (22), for any X ∈ Γ(TM), we obtain

0 = 1(T∇TXX,TX) + 1(AFXTX,TX) − 1(∇TXTX,TX). (23)
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Now, we compute the first and last term of (23) as follows

1(T∇TXX,TX) = cos2 θ{1(∇TXX,X) − η(X)1(∇TXX, ξ)}. (24)

Also, we have
1(∇TXTX,TX) = 1(∇̄TXTX,TX).

Using the property of Riemannian connection the above equation will be

1(∇TXTX,TX) =
1
2

TX1(TX,TX) =
1
2

TX{cos2 θ(1(X,X) − η(X)η(X))}.

Again by the property of Riemannian connection, we derive

1(∇TXTX,TX) = cos2 θ{1(∇̄TXX,X) − η(X)1(∇̄TXX, ξ)} − cos2 θη(X)1(∇̄TXξ,X). (25)

Using (4) and the fact that X and TX are orthogonal vector fields on M, the last term of (25) is identically
zero, then by (5), we obtain

1(∇TXTX,TX) = cos2 θ{1(∇TXX,X) − η(X)1(∇TXX, ξ)}. (26)

Thus, from (24) and (26), we get

1(T∇TXX,TX) = 1(∇TXTX,TX). (27)

Using this fact in (23), we obtain

0 = 1(AFXX,TX) = 1(h(TX,TX),FX).

As M is totally umbilical slant, then from (2.17) and (3.2), we get

0 = cos2 θ{‖X‖2 − η2(X)}1(H,FX). (28)

Thus, from (28), we conclude that either θ = π/2, that is M is anti-invariant which is a part (ii) or the vector
field X is parallel to the structure vector field ξ, i.e., M is 1−dimensional submanifold which is fourth part
of the theorem or H ⊥ FX, for all X ∈ Γ(TM), i.e., H ∈ Γ(µ) which is the last part of the thorem or H = 0, i.e.,
M is totally geodesic which is (iii) or FX = 0, ∀X ∈ Γ(TM), i.e., M is invariant which is part (i). This proves
the theorem completely.

Now, if we consider M, a proper slant submanifold of a Kenmotsu manifold M̄, then neither M is
invariant nor anti-invariant (by definition of proper slant) and also neither dimM = 1. Hence, by the above
result, only possibility is that H ∈ Γ(µ) for a totally umbilical proper slant submanifold. Thus, we prove the
following main result.

Theorem 3.3. Every totally umbilical proper slant submanifold of a Kenmotsu manifold is totally geodesic.

Proof. Let M be a totally umbilical proper slant submanifold of a Kenmotsu manifold M̄, then for any
X,Y ∈ Γ(TM), we have

∇̄XφY − φ∇̄XY = 1(φX,Y)ξ − η(Y)φX.

From (5) and (8), we obtain

∇̄XTY + ∇̄XFY − φ(∇XY + h(X,Y)) = 1(TX,Y)ξ − η(Y)TX − η(Y)FX.

Again using (5), (6) and (8), we get

1(TX,Y)ξ − η(Y)TX − η(Y)FX = ∇XTY + h(X,TY) − AFYX + ∇⊥XFY − T∇XY − F∇XY − φh(X,Y).
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As M is totally umbilical, then

1(TX,Y)ξ − η(Y)TX − η(Y)FX = ∇XTY + 1(X,TY)H − AFYX + ∇⊥XFY − T∇XY − F∇XY − 1(X,Y)φH. (29)

Taking the inner product with φH in (29) and using the fact that H ∈ Γ(µ) (by Theorem 3.2 (v)), we obtain

1(∇⊥XFY, φH) = 1(X,Y)‖H‖2.

Using (6) and the property of Riemannian connection, the above equation takes the form

1(FY,∇⊥XφH) = −1(X,Y)‖H‖2. (30)

Now, for any X ∈ Γ(TM), we have
∇̄XφH = (∇̄Xφ)H + φ∇̄XH.

Using (3), (6), (8) and the fact that H ∈ Γ(µ), we obtain

−AφHX + ∇⊥XφH = −TAHX − FAHX + φ∇⊥XH. (31)

Also, for any X ∈ Γ(TM), we have

1(∇⊥XH,FX) = 1(∇̄XH,FX)
= −1(H, ∇̄XFX).

Using (8), we get
1(∇⊥XH,FX) = −1(H, ∇̄XφX) + 1(H, ∇̄XTX).

Then from (5) and (11), we derive

1(∇⊥XH,FX) = −1(H, (∇̄Xφ)X) − 1(H, φ∇̄XX) + 1(H, h(X,TX)).

Using (3) and (17), the first and last term of right hand side of the above equation are identically zero and
hence by (2), the second term gives

1(∇⊥XH,FX) = 1(φH, ∇̄XX).

Again, using (5) and (17), finally we obtain

1(∇⊥XH,FX) = 1(φH,H)‖X‖2 = 0.

This means that

∇
⊥

XH ∈ Γ(µ). (32)

Now, taking the inner product in (31) with FY, for any Y ∈ Γ(TM), we get

1(∇⊥XφH,FY) = −1(FAHX,FY) + 1(φ∇⊥XH,FY).

Using (32), the last term of the right hand side of the above equation will be zero and then from (21), (30),
we obtain

1(X,Y)‖H‖2 = sin2 θ{1(AHX,Y) − η(Y)1(AHX, ξ)}. (33)

Hence, by (7) and (17), the above equation reduces to

1(X,Y)‖H‖2 = sin2 θ{1(X,Y)‖H‖2 − η(Y)1(h(X, ξ),H)}. (34)

Since, for a Kenmotsu manifold M̄, h(X, ξ) = 0, for any X tangent to M̄, thus we obtain

1(X,Y)‖H‖2 = sin2 θ1(X,Y)‖H‖2.

Therefore, the above equation can be written as

cos2 θ1(X,Y)‖H‖2 = 0. (35)

Since, M is proper slant, thus from (35), we conclude that H = 0 i.e., M is totally geodesic in M̄. This
completes the proof of the theorem.
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We now give the following example of a proper slant, totally geodesic submanifold in R5 with its
standard Kenmotsu structure.

Example 3.4. Consider the 3−dimensional proper slant submanifold with the slant angle θ ∈ (0, π/2) of R5 defined
by

x(u, v, t) = 2(u cosθ,u sinθ, v, 0, t)

with its usual Kenmotsu structure R5 = C2
×R, (φ, ξ, η, 1)

φ{
2∑

i=1

(Xi
∂

∂xi + Yi
∂

∂yi ) + Z
∂
∂t
} =

2∑
i=1

(−Yi
∂

∂xi + Xi
∂

∂yi ),

ξ = 2
∂
∂t
, η =

1
2

dt and 1 = η ⊗ η +
e2t

4

2∑
i=1

(dxi
⊗ dxi + dyi

⊗ dyi)

where (xi, yi, t), i = 1, 2 are cartesian coordinates. If we denote by M a slant submanifold, then its tangent space TM
span by the vectors

e1 =
1
et

{
2{cosθ

( ∂
∂x1 + y1 ∂

∂t

)
+ 2 sinθ

( ∂
∂x2 + y2 ∂

∂t

)}
,

e2 =
2
et
∂

∂y1 , e3 = 2
∂
∂t

= ξ.

Clearly, we have

φe1 =
1
et

{
2{cosθ

( ∂
∂y1

)
+ 2 sinθ

( ∂
∂y2

)}
,

φe2 = −
2
et
∂

∂x1 , φe3 = 0.

Furthermore, using Koszul’s formula, we get ∇̄ei ei = −e3 = −ξ, i = 1, 2 and when i , j, then ∇̄ei e j = 0, for
i, j = 1, 2, 3. Also, ∇̄e3 e3 = 0, thus, from Gauss formula and (2.14), we obtain

h(e1, e1) = 0, h(e2, e2) = 0, h(e3, e3) = 0

and
h(e1, e2) = 0, h(e1, e3) = 0, h(e2, e3) = 0,

hence we conclude that M is totally geodesic.
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