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Abstract. Our goal is to investigate and exploit an analogy between the scaled hyperpower family (SHPI
family) of iterative methods for computing the matrix inverse and the discretization of Zhang Neural
Network (ZNN) models. A class of ZNN models corresponding to the family of hyperpower iterative
methods for computing generalized inverses is defined on the basis of the discovered analogy. The Simulink
implementation in Matlab of the introduced ZNN models is described in the case of scaled hyperpower
methods of the order 2 and 3. Convergence properties of the proposed ZNN models are investigated as
well as their numerical behavior.

1. Introduction and Preliminaries

Following the usual notation, the set of all m × n complex matrices is denoted byCm×n, while the set of
m × n complex matrices of rank r is denoted byCm×n

r . Further, ||A||1, AH, rank(A), R(A) and N(A) denote
the matrix 2-norm, the conjugate transpose, the rank, the range space and the null space of A ∈ Cm×n. For
A∈Cn×n, the smallest nonnegative integer j such that rank(A j+1) = rank(A j) is called the index of A and is
denoted by ind(A). The inverse of a nonsingular square matrix A is a matrix A−1 satisfying AA−1 = A−1A = I,
where I denotes the identity matrix of an appropriate order. Generalized inverses are defined in the case
when A is rectangular or singular. They are defined as matrices possessing some properties of the inverse
matrix, but not necessarily all of them. The key point in the investigation and computation of generalized
inverses of A∈Cm×n

r are Penrose equations with respect to unknown matrix X:

(1) AXA = A (2) XAX = X (3) (AX)H = AX (4) (XA)H = XA.
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The set of S-inverses satisfies some of equations (1)–(4) and it is denoted by A{S}. A single element of
the set A{1, 2, 3, 4} is called the Moore-Penrose inverse A† of A.

The Drazin inverse of a square matrix A ∈ Cn×n is the unique matrix X ∈ Cn×n which fulfills the matrix
equation (2) in conjunction with

(1k) Al+1X = Al, l ≥ ind(A), (5) AX = XA,

and it is denoted by X = AD (for more details see [18]). In the case ind(A) = 1, the Drazin inverse becomes
the group inverse X = A#. The outer inverse of A ∈ Cm×n

r with prescribed range T and null space S, denoted
by A(2)

T,S, satisfies the matrix equation (2) and two additional properties: R(X) = T and N(X) = S. Various

representations of the generalized inverse A(2)
T,S as well as corresponding algorithms for its computation

have been investigated frequently in the last years. There exist two categories of the numerical algorithms:
direct and iterative methods. The direct method means that the accurate solutions for the problem are
computed in finite steps. An iterative method for computing A† is a set of instructions for generating a
sequence {Xk} converging to A†. The instructions specify how to select the initial approximation X0, how to
proceed from Xk to Xk+1 for each k, and when to stop, having obtained a reasonable approximation. Main
results can be found at [14, 15, 20, 23].

One of the most important methods for computing the matrix inverse and various generalized inverses
is the family of hyperpower iterations. These iterations possess an arbitrary order of the convergence p ≥ 2,
and are given by the standard form

Xk+1 = Xk

(
I + Rk + · · · + Rp−1

k

)
= Xk

p−1∑
i=0

Ri
k, Rk = I − AXk. (1.1)

The hyperpower iterative family has been investigated extensively in a number of papers. The references
[3, 6, 7, 9] can be highlighted as the most important.

All iterative methods, in general, require initial conditions which are strict and sometimes cannot be
fulfilled easily. The continuous-time neural learning algorithms have emerged as parallel distributed
computational models for real-time applications.

In recent years, many studies have been developed for developing gradient neural network (GNN)
models and Zhang neural network (ZNN) models for computing the matrix inverse and various classes of
generalized inverses. The authors of the paper [8] investigated five complex-valued ZNN models which
are aimed to computation of time-varying complex matrix generalized inverses. ZNN models for online
time-varying full-rank matrix pseudoinversion were considered in [24]. An RNN with the linear activation
function for the Drazin inverse computation was proposed by Stanimirović, Zivković, and Wei in [17]. The
relationship between the Zhang matrix inverse and the Drazin inverse, discovered in [25], leads to the same
dynamic state equation which was considered in [17] in the time invariant matrix case. The dynamical
equation and corresponding artificial recurrent neural network for computing the Drazin inverse of an
arbitrary square real matrix, without any restriction on eigenvalues of its rank invariant powers, were
proposed in [16]. A discrete-time model of ZNN for matrix inversion, which is depicted by a system
of difference equations, was investigated in [27]. A general recurrent neural network model for online
inversion of time-varying matrices was presented in [28]. The simulation and verification of such a ZNN
were investigated in [26]. ZNN models for computing online time-varying Moore-Penrose inverse of a
full-rank matrix were generalized, investigated and analyzed in [24]. Two complex Zhang neural network
(ZNN) models for computing the Drazin inverse of arbitrary time-varying complex square matrix were
presented in [21]. The design of the ZNNs defined in [21] is based on corresponding matrix-valued error
functions arising from the limit representations of the Drazin inverse.

Our basic motivation is the fact that the scaled Newton method for the usual matrix inversion appears
after the discretization of the Zhang Neural Network (ZNN) designed for the matrix inversion. The
discretization was introduced in [27]. We intend to generalize the significant result
From Zhang neural network to Newton iteration for matrix inversion,
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derived in [27], into the more general goal
From Zhang neural network to scaled hyperpower iterations for matrix inversion and vice versa.

More precisely, main goals in the present paper are summarized as follows.
(1) Generalize the discretization from [27] and consequently define the scaled hyperpower iterative

methods (SHPI shortly) of arbitrary order p ≥ 2.
(2) In addition, our intention is to define a ZNN model (called ZNNCM) whose discretization produces

the scaled Chebyshev iterative method introduced in [13].
(3) Numerical behavior as well as the convergence properties of the ZNNCM model are investigated.
(4) A combination of the ZNNCM and the ZNNM model, called the ZNNHM model, is also defined

and considered in numerical testing.
The remainder of the paper is organized as follows. Section 2 defines a generalization of the discretization

of the ZNN model which was defined in [27]. The generalization describes the ZNN model corresponding
to the hyperpower iterative method of an arbitrary order p ≥ 2 as well as the discretization of this model,
corresponding to the scaled hyperpower iterations (SHPI shortly) of an arbitrary order p ≥ 2. The ZNN
model corresponding to the third order hyperpower method, called ZNNCM, is investigated in details
in Section 3. The convergence of the complex neural network model ZNNCM based on two activation
functions is investigated in Section 4. Simulation results and comparison of the ZNNCM, ZNNNM and the
ZNNHM models among themselves and with the GNN model are presented in Section 5.

2. Scaled Hyperpower Iterations as Discretized ZNN Models

It is assumed that the matrix A is a constant n × n nonsingular matrix. For the sake of completeness,
we restate main steps of the discretization which was defined in [27]. The matrix-valued error-monitoring
function (ZF) of the form

E(X(t), t) := AX(t) − I (2.1)

was used to derive the dynamic equation determined by the general pattern

dE(X(t), t)
dt

= −ΓH (E(X(t), t)) , (2.2)

where Γ ∈ Rn×n is a positive-definite matrix used to scale the inversion process and H(·) : Rn×n
→ Rn×n

denotes an appropriate matrix-valued activation-function mapping. An application of the general pattern
(2.2) on the Zhang error-monitoring function (2.1) in the case H = I and Γ = γI, where γ > 0 is a
scalar-valued design parameter, leads to the following implicit dynamic equation of ZNN:

AẊ(t) = −γ (AX(t) − I)) . (2.3)

Further, assume that the linear activation functionH = I is used and the discretization of the continuous-
time model (2.3) is performed by using the Euler forward-difference rule

Ẋ(t) ≈ (Xk+1 − Xk)/τ,

where τ denotes the sampling time and Xk = X(t = kτ), k = 1, 2, . . .. Then the discrete-time model of (2.3) is
defined by

AXk+1 = AXk − β (AXk − I) , (2.4)

where β = τ γ > 0 is the step size that should appropriately be selected for the convergence to the theoretical
inverse A−1. Since A is nonsingular, the implicit discrete-time ZNN model can be rewritten as

Xk+1 = Xk − βA−1 (AXk − I) . (2.5)
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According to [28], the state matrix X(t) converges to A−1 in the continuous-time ZNN model (2.3). Hence, it
is justifiably to replace A−1 by its approximation Xk. This replacement yields the following explicit difference
equation of the discrete-time ZNN for the nonsingular matrix inversion:

Xk+1 = Xk − βXk (AXk − I) = Xk
(
I + β (I − AXk)

)
. (2.6)

The iterative rule (2.6) is exactly of the form of the scaled Newton iteration for computing outer inverses
with prescribed range and null space, introduced in [11, 12]:

Xk+1 = (1 + β)Xk − βXkAXk, X0 = αG, β ∈ (0, 1], (2.7)

where G ∈ Cm×n
r is a given matrix, α, β are real constants and G ∈ Cn×m

s is a chosen matrix and 0 < s ≤ r.
In the case β = 1 the iterative process (2.7) produces well known generalization of the Schultz iterative
method, intended for computing outer inverses [4, 22].

Charif et all. in [2] developed a new fast online algorithms for motion estimation which is based on
the Horn & Schunck algorithm with the Discrete Zhang Neural Networks (DZNN) defined by (2.6) and
Simoncelli’s matched-pair 5 tap filters. A novel implementation of the multi-dimensional Capon spectral
estimator was proposed in [1]. The algorithm is derived using the discrete Zhang neural network for the
online covariance matrix inversion.

In order to extend defined discretization, we start from the continuous-time model which is based on
the error-monitoring function defined by the second and the third term of the hyperpower iterative process:

EC(X(t), t) := I − AX(t) + (I − AX(t))2 = 2I − 3AX(t) + (AX(t))2 . (2.8)

In view of the general ZNN pattern (2.2), the Zhang error-monitoring function (2.8) leads to the following
implicit dynamic equation

ĖC(X(t), t) = −AẊ(t) − AẊ(t) (I − AX(t)) + (I − AX(t))
(
−AẊ(t)

)
= −3AẊ(t) + AẊ(t)AX(t) + AX(t)AẊ(t) = −ΓH (2I − AX(t) (3I − AX(t))) .

(2.9)

The expected convergence of X(t) to A−1 approves the substitution AX(t) = I in the left hand side of (2.9),
which in the case Γ = γI,H = I leads to

AẊ(t) = γ (2I − AX(t) (3I − AX(t)))

= −γ
(
− (AX(t))2 + 3AX(t) − 2I

)
,

(2.10)

where X(0) is appropriately defined initial point. Further, the discrete-time model of (2.10) based on the
Euler forward-difference rule is defined by

AXk+1 = AXk + β (2I − AXk (3I − AXk)) ,

where β = τ γ > 0 is the step size. After the replacement of A−1 by Xk, the implicit discrete-time ZNN model
for the usual matrix inversion can be stated as

Xk+1 = Xk

(
I + β

(
2I − 3AXk + (AXk)2

))
, (2.11)

i.e. in the form of scaled hyperpower iterative method of the order 3. This method was proposed by
Srivastava and Gupta in [13] for estimating the Moore-Penrose inverse. The scaled hyperpower iterative
method (2.11) of the order 3 is developed by extending the scaled hyperpower iterative method (2.7) of the
order 2.

As a consequence, it is reasonable to investigate the ZNN model defined in (2.10), initiated by the ZF
defined in (2.8).
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Our intention is to extend just defined principle in the widest sense, which assumes an arbitrary
hyperpower method of the order p ≥ 2. In view of the previously exploited principle, the corresponding
continuous-time model starts from the error-monitoring function defined by

EH(X(t), t) :=
p−1∑
i=1

R(t)i =

p−1∑
i=1

(I − AX(t))i .

The principle of mathematical induction reveals

˙R(t)i = −

i−1∑
l=0

(I − AX(t))l AẊ(t) (I − AX(t))i−1−l .

Then the general ZNN design model (2.2) leads to the following implicit dynamic equation in the case
H = I:

−

p−1∑
i=1

i−1∑
l=0

(I − AX(t))l AẊ(t) (I − AX(t))i−1−l = −γ

p−1∑
i=1

(I − AX(t))i . (2.12)

After the substitution AX(t) = I in the left hand side of the implicit dynamics (2.12), one can verify

AẊ(t) = γ

p−1∑
i=1

(I − AX(t))i . (2.13)

The discretization of the ZNN model (2.13) corresponding to the Euler forward-difference rule is given as

AXk+1 = AXk + β

p−1∑
i=1

(I − AXk)i , β = τ γ > 0.

The inverse A−1 can be approximated by Xk, so that the implicit discrete-time ZNN model of (2.13),
aimed for the matrix inversion, is given as

Xk+1 = Xk

I + β

p−1∑
i=1

(I − AXk)i

 . (2.14)

The iterative rule (2.14) is referred as the scaled hyperpower iterative methods (SHPI shortly) of an arbitrary
order p ≥ 2.

In conclusion, it is reasonable to define the ZNN model (2.3) as the continuous-time version of the
scaled Chebyshev iterative method, in the same way as the ZNN model (2.10) represents the continuous-
time version of the scaled Newton iterative method. A comparison between these two concurrent ZNN
models will be investigated in the present article.

3. Neural Network Architecture

The graphical editor, customizable block libraries and solvers available in Matlab Simulink are used for
modeling and simulating the proposed dynamic systems. As it was mentioned in [29], the ZNN modeling
could be readily developed, expanded and finally realized by using Matlab Simulink tool. This fact was
our motivation to use the Matlab Simulink tool in the implementation of defined ZNN models. The ZNN
model (2.3) will be denoted by ZNNNM. Also, the ZNN model (2.10) is termed as ZNNCM. In addition,
we define a hybrid method which starts from the ZNN model (2.3) and finishes with (2.10). Finally, GNN
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denotes the gradient based neural network from [30] in the nonsingular case, corresponding to the case
G = AT in the RNN1 model.

The Simulink implementation of the ZNNNM model (2.3), restated in the equivalent form

Ẋ(t) = (I − A)Ẋ(t) − γH (AX(t) − I)) . (3.1)

is presented in Figure 1.
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Figure 1: Simulink implementation of the ZNNNM model.

In order to ensure the implementation, (2.10) is transformed into the following equivalent form:

Ẋ(t) = (I − A)Ẋ(t) − γH
(
− (AX(t))2 + 3AX(t) − 2I

)
. (3.2)

The Matlab Simulink implementation of the ZNNCM model, based on (3.2), is presented in Figure 2.
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Figure 2: Simulink implementation of the ZNNCM model.

Two appropriate activation functions, introduced in [5], will be exploited in nodes of two developed
ZNNs. Their definitions will be restated here in order to complete the presentation. It is assumed that
A ∈ Cn×n is written as B + ιC, where ι =

√
−1 denotes the imaginary unit and B ∈ Rn×n, C ∈ Rn×n are

two real matrices. The matrices B,C correspond to real and imaginary part of the complex entries of
A, respectively. Additionally, let F (D) be an odd and monotonically increasing function element-wise
applicable to elements of D = (dkj) ∈ Rn×n according to the rule F (D) = ( f (dkj)), where f (·) is an odd and
monotonically increasing function.

The type I activation function is defined by

H1(A) = H1(B + ιC) = F (B) + ιF (C). (3.3)

Similarly, the type II activation function exploits the Hadamard product U◦V = (ukjvkj) of matrices U = (ukj)
and V = (vkj),and it is defined as

H2(A) = H2(B + ιC) = F (Γ) ◦ exp(ιΘ), (3.4)

where Γ = |B + ιC| ∈ Rn×n and Θ = Θ(B + ιC) ∈ (−π, π]n×n denote element-wise modulus and the element-
wise arguments, respectively, of the complex matrix B + ιC. In sequel, we use the notationHk as a universal
replacement forH1 orH2.
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The hybrid method starts using the ZNNCM method and then continues with the ZNNNM method.
The starting point x0 of the ZNNNM method is just the output of the ZNNCM method and the finishing
time of the ZNNCM method is the initial time of the ZNNNM method. The hybrid method will be denoted
by ZNNHM(t0), where t0 denotes the time when the ZNNNCM stops and ZNNNM continues. More
precisely, the ZNNCM method evaluates in the time interval [0, t0], while the ZNNNM method evaluates
in the time interval [t0, t], where [0, t] denotes the considered time interval of the hybrid method. Since the
ZNNNM model is globally exponentially convergent to the exact time-varying inverse A(t)−1, the output
x0 of the ZNNCM method could be submitted as the initial point of the ZNNNM method.

4. Convergence of the ZNNCM Model

In this section, it is proven the convergence of the complex neural network model (2.10) based on both
the activation functionsH1 andH2.

Theorem 4.1. Let the invertible complex matrix A ∈ Cn×n be given. Then the state matrix X(t) ∈ Cn×n of the
complex neural network model (2.10) based on the activation function H1 converges to the matrix inverse A−1, and
the solution is stable in the sense of Lyapunov.

Proof. Let X̃(t) := A−1
−X(t). Then X(t) = A−1

− X̃(t) and ˙̃X(t) = −Ẋ(t). Substituting the above two equations
into (2.10) yields

A ˙̃X(t) = γH1

(
−

(
I − AX̃(t)

)2
+ 3

(
I − AX̃(t)

)
− 2I

)
. (4.1)

After substituting X(t) = A−1
− X̃(t) in the ZF defined by (2.8), one can verify

EC(X̃(t), t) = AX̃(t) + (AX̃(t))2. (4.2)

In the view of the definition of activation functionH1(·), taking into account EC(t) = Re(EC(t)) + ιIm(EC(t)),
the general model Ė(t) = −γH1(E(t)) splits into the following two equations in the real domain:

Re(ĖC(t)) = −γF (Re(EC(t)))

and

Im(ĖC(t)) = −γF (Im(EC(t))).

In order to verify the convergence, the Lyapunov function candidate is defined as

L(X̃(t), t) = L(t) =
‖EC(t)‖2F

2
=

Tr
(
EC(t)HEC(t)

)
2

. (4.3)

Then the following identities can be verified:

dL(t)
dt

=
Tr

(
ĖC(t)HEC(t) + EC(t)HĖC(t)

)
2

= −
1
2
γTr

{(
F (Re (EC(t)))T

− ιF (Im (EC(t)))T
)

(Re (E(t)) + ιIm (EC(t)))

+
(
Re (EC(t))T

− ιIm (EC(t))T
)

(F (Re (EC(t))))T + ιF (Im (EC(t)))
}

= −γTr
{
Re (EC(t))T

F (Re (EC(t))) + Im (EC(t))T
F (Im (EC(t)))

}
.

Since F (C) = ( f (ckj)) and f (·) is an odd and monotonically increasing function, it follows that

Tr
{
Re (EC(t))T

F (Re (EC(t))) + Im (EC(t))T
F (Im (EC(t)))

}
= Tr

{
Re (EC(t))T

F (Re (EC(t)))
}

+ Tr
{
Im (EC(t))T

F (Im (EC(t)))
}
≥ 0.
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To simplify notation, let us denote (i, j)th element of Re (EC(t)) by ei j and (i, j)th element of Im (EC(t)) by e′i j.
Then

Tr
{
Re (EC(t))T

F (Re (EC(t))) + Im (EC(t))T
F (Im (EC(t)))

}
=

∑
j

ei j f (ei j) +
∑

j

e′i j f (e′i j) ≥ 0

and finally
dL(X̃(t), t)

dt

{
< 0 if EC(X̃(t), t) , 0,
= 0 if EC(X̃(t), t) = 0.

Since X̃(t) = 0 is an equilibrium point of the system (4.1), and E(0) = 0 it follows that

dL(X̃(t), t)
dt

≤ 0, ∀X̃(t) , 0.

As a consequence of the Lyapunov stability theory, the equilibrium state X̃(t) = 0 is stable. Since X̃(t) :=
A−1
− X(t), we have X(t)→ A−1, t→∞ .

Theorem 4.2. Let the invertible complex matrix A ∈ Cn×n be given. Then the state matrix X(t) ∈ Cn×n of the
complex neural network model (2.10) based on the activation function H2 converges to the matrix inverse A−1, and
the solution is stable in the sense of the Lyapunov.

Proof. Analogically as in the proof of Theorem 4.1, the general model is given by

ĖC(t) = −γH2(E(t)),

where E(X̃(t), t) = EC(t) is defined in (4.2). The definition ofH2(·) implies

H2(EC(t)) = F (|EC(t)|) ◦ exp(ιΘ(EC(t))).

The time derivative of the Lyapunov function candidate (4.3) is equal to

dL(t)
dt

=
Tr

(
EC(t)HĖ(t) + ĖC(t)HEC(t)

)
2

= −
1
2
γTr

(
E(t)H

H2 (EC(t)) + E(t)H2 (EC(t))H
)

= −
1
2
γTr

(
EC(t)H

H2 (EC(t)) +
(
EC(t)H

H2 (EC(t))
)H

)
= −γTr

(
Re

(
EC(t)H

H2 (EC(t))
))

= −γTr
{
Re

[
EC(t)H

F (|EC(t)|) ◦ exp (ιΘ(EC(t)))
]}
.

Since EC(t) = |EC(t)| ◦ exp(ιΘ(EC(t))), it follows that

dL(t)
dt

= −γTr
{
Re

[
exp

(
−ιΘ

(
EC(t)H

)
◦

∣∣∣EC(t)H
∣∣∣) (F (|EC(t)|) ◦ exp (ιΘ (EC(t)))

)]}
.

Again, using that F (·) is monotonically increasing, it follows the inequality F (|EC(t)|) > 0, for E(t) , 0, and
F (|EC(t)|) = 0, for EC(t) = 0 which implies that

dL(X̃(t), t)
dt

≤ 0, ∀X̃(t) , 0.

According to the Lyapunov stability theory, the equilibrium state X̃(t) = 0 is stable and, X(t) → A−1, t →
∞.
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5. Simulation Results and its Comparison

Example 5.1. As it was observed in [10], the GNN models are not appropriate for calculating the inverse
of a matrix with a big condition number. So this is a reason to apply the ZNNCM model to a matrix with a
big condition number. The following matrix A is considered for this purpose:

A =



1 0 0 0 0 0
1 1 1 1 1 1
1 2 4 8 16 32
1 3 9 27 81 243
1 4 16 64 256 1024
1 5 25 125 625 3125


with the condition number cond(A) = 5.7689e+04. The theoretical inverse of A is equal to

A−1 =



1 0 0 0 0 0
−

137
60 5 −5 10

3 −
5
4

1
5

15
8 −

77
12

107
12 −

13
2

61
24 −

5
12

−
17
24

71
24 −

59
12

49
12 −

41
24

7
24

1
8 −

7
12

13
12 −1 11

24 −
1

12
−

1
120

1
24 −

1
12

1
12 −

1
24

1
120


.

For γ = 106, with the Power-Sigmoid activation function and ode45 solver, after t = 10−5s sec, the ZNNCM
model gives the results ZNNCM(A) equal to

0.999999999294662 −0.000000000000000 −0.000000000000000 0.000000000000000 −0.000000000000000 −0.000000000000000
−2.283333331722813 4.999999996473304 −4.999999996473306 3.333333330982192 −1.249999999118328 0.199999999858933

1.874999998677495 −6.416666662140734 8.916666660377395 −6.499999995415274 2.541666664873933 −0.416666666372777
−0.708333332833721 2.958333331246700 −4.916666663198751 4.083333330453185 −1.708333332128381 0.291666666460944

0.124999999911833 −0.583333332921884 1.083333332569217 −0.999999999294657 0.458333333010054 −0.083333333274555
−0.008333333327456 0.041666666637277 −0.083333333274555 0.083333333274555 −0.041666666637278 0.008333333327456


with the absolute error ‖X(t) −A−1

‖1 = 1.4106399215397e−08. Trajectories of convergence behavior in 10−5s
under zero initial conditions in the ZNNCM model are shown in Figure 3.
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Figure 3: Trajectories in 10−5s under zero initial conditions in the ZNNCM model.
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Trajectories of the residual errors ‖X(t) − A−1
‖1 of the model ZNNCM are illustrated in Figure 4.
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Figure 4: Trajectories of the residual errors of the model ZNNCM.

Trajectories of the residual errors ‖X(t)−A−1
‖1 of both the ZNNCM and ZNNNM models are illustrated

in Figure 5.
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Figure 5: Trajectories of the residual errors of the models ZNNNM and ZNNCM.

The ZNNNM method produces the result with the absolute error ‖X(t) − A−1
‖1 = 3.5446017745966e−

08 while the GNN model corresponding to the usual matrix inversion, from [19] does not achieve the
convergence and stops with the absolute error equal to ‖X(t) − A−1

‖1 = 19.509081114657. So, the ZNNCM
model can be used to compute the inverses of ill-conditioned matrices. This is one more advantage for the
ZNNCM model over the GNN model.

In the subsequent examples, the matrix A is a randomly generated n×n matrix and x(0) is a vectorization
of a given n× n matrix X(0). It is assumed that x(0) is the same for all models ZNNNM, ZNNCM and GNN
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in the actual table. The ordered triple (t,n, solver) in headings of subsequent tables will include the time t,
the dimension n of the input matrix and the used Matlab solver. Let us mention that the best results in all
tables are marked in bold.

Example 5.2. According to Theorem 4.1 and Theorem 4.2, the solution of the complex neural network
model (2.10) is stable in the sense of the Lyapunov. Therefore, it is desirable to choose the zero initial state
X(0). In this example, X(0) is randomly generated n × n matrix in order to test behavior of the ZNNCM
model. The activation functionH is linear.

Table 5.1. Comparison of models ZNNNM, ZNNCM and GNN.

(10−9, 10, ode45) (10−11, 10, ode45)
Method γ ‖X − A−1

‖1 Method γ ‖X − A−1
‖1

ZNNNM 108 9.6055 ZNNNM 108 10.6051
ZNNCM 108 8.6367 ZNNCM 108 10.5938
GNN 108 10.4382 GNN 108 10.6126
ZNNNM 109 3.9053 ZNNNM 109 10.5101
ZNNCM 109 8.7346 ZNNCM 109 10.3980
GNN 109 9.8657 GNN 109 10.5877
ZNNNM 1010 4.8369e−04 ZNNNM 1010 9.6055
ZNNCM 1010 0.0013 ZNNCM 1010 8.6367
GNN 1010 8.4838 GNN 1010 10.4382
ZNNNM 1011 2.8613e−06 ZNNNM 1011 3.9053
ZNNCM 1011 7.9558e−05 ZNNCM 1011 8.7346
GNN 1011 2.1187 GNN 1011 9.8657
ZNNNM 1012 1.0572e−05 ZNNNM 1012 4.8369e−04
ZNNCM 1012 3.4264e−05 ZNNCM 1012 0.0013
GNN 1012 9.8238e−06 GNN 1012 8.4838
ZNNNM 1013 2.1264e−05 ZNNNM 1013 2.8613e−06
ZNNCM 1013 0.0010 ZNNCM 1013 7.9558e−05
GNN 1013 5.7854e−06 GNN 1013 2.1187
ZNNNM 1014 2.0846e−06 ZNNNM 1014 1.0572e−05
ZNNCM 1014 0.0015 ZNNCM 1014 3.4264e − 05
GNN 1014 3.3838e−06 GNN 1014 9.8238e−06

According to the results arranged in Table 5.1, the following observations could be emphasized.
(a) The property ”as large as possible” of the scaling parameter γ is valid for ZNNNM and GNN methods,
especially for the GNN method, and it is not applicable in the case of the ZNNCM method.
(b) The ZNNCM method produces better results within the smaller time period [0, 10−11] than in the time
period [0, 10−9].
(c) The ZNNCM method produces the best results during the time [0, 10−11] and smaller values of γ:
γ = 108, 109, 1010.
(d) In the case of a nonzero initial state X(0), the ZNNCM method should be used in a short time [0, 10−11]
and with smaller values of γ ≤ 1010.

Example 5.3. In this example, X(0) is randomly generated n × n matrix and the activation function H is
linear.

Table 5.2. Comparison of models ZNNNM, ZNNCM and ZNNHM.

(10−11, 30, ode45) (10−11, 30, ode15s)
Method γ ‖X − A−1

‖1 Method γ ‖X − A−1
‖1
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(10−11, 30, ode45) (10−11, 30, ode15s)
Method γ ‖X − A−1

‖1 Method γ ‖X − A−1
‖1

ZNNNM 1010 12.6304 ZNNNM 1010 16.3735
ZNNCM 1010 11.9629 ZNNCM 1010 1.8502e + 03
ZNNHM(10−12) 1010 11.2585 ZNNHM(10−12) 1010 19.4103
ZNNHM(10−14) 1010 11.4939 ZNNHM(10−14) 1010 18.2060
ZNNNM 1011 5.1351 ZNNNM 1011 6.6561
ZNNCM 1011 5.1555e + 15 ZNNCM 1011 7.6935
ZNNHM(10−12) 1011 4.7521 ZNNHM(10−12) 1011 680.4448
ZNNHM(10−14) 1011 4.6613 ZNNHM(10−14) 1011 7.4102
ZNNNM 1012 6.3565e − 04 ZNNNM 1012 8.2654e − 04
ZNNCM 1012 6.1391e + 15 ZNNCM 1012 4.7134e − 04
ZNNHM(10−12) 1012 2.7946e + 11 ZNNHM(10−12) 1012 7.7231e − 04
ZNNHM(10−14) 1012 5.6655e − 04 ZNNHM(10−14) 1012 9.6796e − 04
ZNNNM 1013 6.7814e − 06 ZNNNM 1013 5.4011e − 12
ZNNCM 1013 1.0634e + 16 ZNNCM 1013 1.7082e − 13
ZNNHM(10−12) 1013 2.7107e − 05 ZNNHM(10−12) 1013 3.7240e − 11
ZNNHM(10−14) 1013 6.2916e − 06 ZNNHM(10−14) 1013 1.9452e − 10
ZNNHM(10−16) 1013 3.5050e − 06 ZNNHM(10−16) 1013 3.0346e − 12
ZNNNM 1014 1.9529e − 05 ZNNNM 1014 3.2919e − 14
ZNNCM 1014 5.1555e + 15 ZNNCM 1014 8.8654e − 14
ZNNHM(10−12) 1014 7.3399e − 05 ZNNHM(10−12) 1014 3.8212e − 14
ZNNHM(10−14) 1014 7.3399e − 05 ZNNHM(10−14) 1014 3.6538e − 14
ZNNHM(10−16) 1014 6.1610e − 06 ZNNHM(10−16) 1014 4.2286e − 14

The following observations rise from the numerical results arranged in Table 5.2.
(a) The hybrid method ZNNHM produces the best results in the case when the underlying solver is ode45.
(b) the ZNNNM or CNNCM give the best results in the case when the underlying solver is ode15s.
(c) The solver ode15s is more appropriate than ode45 with respect to the ZNNCM method in the case when
X0 is a nonzero value.
(d) ZNNCM model is sensitive on the choice of the initial point X0 and the best choice is X0 = 0.

Example 5.4. In the left column of Table 5.3 this example, X(0) is randomly generated n×n matrix and X(0)
n × n zero matrix in the right column. The activation functionH is Power Sigmoid activation function.

Table 5.3. Comparison of models ZNNNM, ZNNCM and ZNNHM with Power Sigmoid activation

functionH , defined by the parameter p = 3.

(10−7, 20, ode15s), X0 is arbitrary (10−7, 30, ode15s), X0 = 0
Method γ ‖X − A−1

‖1 Method γ ‖X − A−1
‖1

ZNNNM 1012 2.7645e − 14 ZNNNM 1012 1.4903e − 12
ZNNCM 1012 4.3998e − 14 ZNNCM 1012 6.1530e − 12
ZNNHM(10−12) 1012 2.3267e − 14 ZNNHM(10−12) 1012 1.6522e − 12
ZNNHM(10−14) 1012 2.7345e − 14 ZNNHM(10−14) 1012 1.7446e − 12
ZNNHM(10−16) 1012 2.9818e − 14 ZNNHM(10−16) 1012 1.6834e − 12
ZNNNM 1013 2.6716e − 14 ZNNNM 1013 1.7769e − 12
ZNNCM 1013 4.5023e − 14 ZNNCM 1013 4.1402e − 12
ZNNHM(10−12) 1013 3.1053e − 14 ZNNHM(10−12) 1013 1.7335e − 12
ZNNHM(10−14) 1013 2.7970e − 14 ZNNHM(10−14) 1013 1.6732e − 12
ZNNHM(10−16) 1013 2.8306e − 14 ZNNHM(10−16) 1013 2.0054e − 12
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(10−7, 20, ode15s), X0 is arbitrary (10−7, 30, ode15s), X0 = 0
Method γ ‖X − A−1

‖1 Method γ ‖X − A−1
‖1

ZNNNM 1014 2.7645e − 14 ZNNNM 1014 5.3491e − 12
ZNNCM 1014 4.3998e − 14 ZNNCM 1014 5.4503e − 12
ZNNHM(10−12) 1014 2.3267e − 14 ZNNHM(10−12) 1014 1.9956e − 12
ZNNHM(10−14) 1014 2.7345e − 14 ZNNHM(10−14) 1014 2.0058e − 12
ZNNHM(10−16) 1014 2.9818e − 14 ZNNHM(10−16) 1014 2.4750e − 12

Table 5.4. Comparison of models ZNNNM, ZNNCM and ZNNHM with Power Sigmoid activation

function defined by the parameter p = 3.

(10−10, 30, ode15s), X0 = 0 (10−5, 30, ode15s), X0 = 0
Method γ ‖X − A−1

‖1 Method γ ‖X − A−1
‖1

ZNNNM 1012 1.2136e − 12 ZNNNM 1012 1.6829e − 12
ZNNCM 1012 1.8007e − 09 ZNNCM 1012 3.7154e − 12
ZNNHM(10−12) 1012 1.2410e − 11 ZNNHM(10−12) 1012 2.3492e − 12
ZNNHM(10−14) 1012 1.8332e − 12 ZNNHM(10−14) 1012 1.3554e − 12
ZNNHM(10−16) 1012 1.8565e − 12 ZNNHM(10−16) 1012 1.8953e − 12
ZNNNM 1013 1.6428e − 12 ZNNNM 1013 1.9011e − 12
ZNNCM 1013 4.4561e − 11 ZNNCM 1013 5.9375e − 12
ZNNHM(10−12) 1013 1.7544e − 12 ZNNHM(10−12) 1013 1.7805e − 12
ZNNHM(10−14) 1013 1.5256e − 12 ZNNHM(10−14) 1013 1.7413e − 12
ZNNHM(10−16) 1013 1.6547e − 12 ZNNHM(10−16) 1013 2.0168e − 12
ZNNNM 1014 1.7526e − 12 ZNNNM 1014 1.9145e − 12
ZNNCM 1014 4.4716e − 12 ZNNCM 1014 4.6704e − 12
ZNNHM(10−12) 1014 1.7646e − 12 ZNNHM(10−12) 1014 1.9448e − 12
ZNNHM(10−14) 1014 1.2410e − 12 ZNNHM(10−14) 1014 1.5412e − 12
ZNNHM(10−16) 1014 2.0978e − 12 ZNNHM(10−16) 1014 1.9367e − 12

The following conclusion arises from the results presented in Table 5.3 and Table 5.4:
(a) The ZNNHM method gives best results for appropriately selected intermediate time t0. This value is, in
most cases, equal to t0 = 10−14.

Example 5.5. The results produced by the Simulink and based on the power sigmoid activation function
are arranged in Table 5.5.

Table 5.5. Comparison of models ZNNNM and ZNNCM with the power sigmoid activation function.

Method γ ‖X − A−1
‖1 Method γ ‖X − A−1

‖1

(10−8, 10, ode45), X0 = 0 (10−8, 10, ode15s), X0 = 0
ZNNNM 106 0.99000742007452 ZNNNM 106 0.99000742007452
ZNNCM 106 11.796704121711 ZNNCM 106 11.796704121712
ZNNHM(10−10) 106 0.98921005121423 ZNNHM(10−10) 106 0.98921005121423

(10−5, 10, ode45), X0 = 0 (10−5, 10, ode15s), X0 = 0
ZNNNM 106 1.7721525005302e − 09 ZNNNM 106 1.7721525005302e − 09
ZNNCM 106 8.9282757020914e − 09 ZNNCM 106 8.9286161242264e − 09
ZNNHM(10−8) 106 1.5373390357755e − 09 ZNNHM(10−8) 106 1.5373790308806e − 09

(10−3, 10, ode45), X0 = 0 (10−3, 10, ode15s), X0 = 0
ZNNNM 106 2.7877256580469e − 15 ZNNNM 106 2.776852376599e − 15∗

ZNNCM 106 9.048317650695e − 15 ZNNCM 106 7.549516567451e − 15
ZNNHM(10−5) 106 2.7947546454768e − 15 ZNNHM(10−5) 106 2.140363747233e − 15
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The sign star in Table 5.5 means that the ZNNM model stopped the computation with the message
”Relative tolerance of 1.0E-15 is too small, setting relative tolerance to 2.8421709430404007E-14”.

Example 5.6. As it was observed in Example 5.3, ode15s is more appropriate solver than ode45 with respect
to the ZNNCM method in the case when X0 is a nonzero value. Comparison of the results produced by the
ZNNCM and based on the linear the power sigmoid defined by p = 3 activation function and ode45 and
ode15s solvers are arranged in Table 5.6. Now, the initial point is X0 = 0.

Table 5.6. Comparison of ode45 and ode15s solvers in ZNNCM.

Solver γ ‖X − A−1
‖1 Solver γ ‖X − A−1

‖1

H is linear H is power sigmoid
(10−8, 10, ode45) 106 11.796704121711 (10−8, 10, ode45) 106 11.796704121711
(10−8, 10, ode15s) 106 11.796706187324 (10−8, 10, ode15s) 106 11.796706181998

H is linear H is power sigmoid
(10−5, 10, ode45) 106 8.9291933014213e − 09 (10−5, 10, ode45) 106 8.9291446458972e − 09
(10−5, 10, ode15s) 106 9.1885836162042e − 09 (10−5, 10, ode15s) 106 8.9691688520688e − 09

H is linear H is power sigmoid
(10−3, 10, ode45) 106 8.0971731383772e − 07 (10−3, 10, ode45) 106 9.5967148786014e − 07
(10−3, 10, ode15s) 106 8.6042284408450e − 15 (10−3, 10, ode15s) 106 1.0158540675320e − 14

H is linear H is power sigmoid
(10−8, 10, ode45) 107 11.796704121711 (10−8, 10, ode45) 107 11.796704121711
(10−8, 10, ode15s) 107 11.796705368789 (10−8, 10, ode15s) 107 11.796704581549

H is linear H is power sigmoid
(10−5, 10, ode45) 107 8.9291800342561e − 09 (10−5, 10, ode45) 107 8.9287367777130e − 09
(10−5, 10, ode15s) 107 1.1175724984325e − 08 (10−5, 10, ode15s) 107 9.3463157213591e − 09

H is linear H is power sigmoid
(10−4, 10, ode45) 107 6.3143934525556e − 15 (10−4, 10, ode45) 107 6.1944325618920e − 15
(10−4, 10, ode15s) 107 7.5495165674511e − 15 (10−4, 10, ode15s) 107 6.9781294338186e − 15

According to results arranged in Table 5.6, the significant difference between the sovers ode45 and
ode15s is observable only in the configurations (10−3, 10, ode45) and (10−3, 10, ode15s). In this case, ode15s
is significantly better choice. This further implies that the solver ode15s is more appropriate for smaller
values of γ and longer periods of time. In general, this observation leads to the conclusion that ode15s leads
to a faster convergence of the ZNNCM model, which ensures its better convergence for smaller values of
γ. Also, there is no significant difference in numerical results caused by the choice between the linear and
the power sigmoid activation functions.

6. Conclusion

An analogy between the scaled hyperpower family (SHPI family) of iterative methods for computing
the matrix inverse and the discretization of Zhang Neural Network (ZNN) models is observed. On the basis
of the discovered analogy, a family of ZNN models corresponding to the family of hyperpower iterative
methods are defined. The ZNN model corresponding to the hyperpower method of the order 2 (resp. of the
order 3) is denoted as ZNNNM (resp. ZNNCM). The implementation in Matlab Simulink of the introduced
ZNN models is described in the case of the scaled hyperpower methods of the order 2 and 3.

Derived simulation results indicate that the results derived by the ZNNCM method are not favorable.
But, the ZNNCM model becomes useful in the initialization of the ZNNNM method. For the time being,
it is very difficult to determine or estimate the optimal value of the decisive time moment t0. These
investigations should be interesting topic for further research. In the current research, we recommend only
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heuristics and verification. Additionally, it is observable that ZNNCM is most sensible to the choice of the
initial approximation X0.

Also, general conclusion is that an alternative to matrix iterations is found. The proposed alternative is
based on the ZNN model an its Simulink implementation.
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