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Abstract. We first prove a formula which relates the characteristic polynomial of a matrix (or of a weighted
graph), and some invariants obtained from its principal submatrices (resp. vertex deleted subgraphs).
Consequently, we express the spectral radius of the observed objects in the form of power series. In
particular, as is relevant for the spectral graph theory, we reveal the relationship between spectral radius
of a simple graph and its combinatorial structure by counting certain walks in any of its vertex deleted
subgraphs. Some computational results are also included in the paper.

1. Introduction

As well-known, square matrices can be interpreted as weighted (di)graphs, and vice versa. Therefore, to
a given real square matrix A = (ai j), we can associate a weighted (di)graph G = G(A) whose vertex set
corresponds to rows (or columns) of A, with two vertices vi and v j of G joined by an arc whenever ai j , 0;
then ai j is the weight of this arc. Note, if vi = v j then a weighted directed or undirected loop, no matter
which, arises. Clearly, if A is symmetric then two arcs joining the same pair of (distinct) vertices can be
replaced by a single weighted edge whose weight is ai j (= a ji). On the other hand, if a weighted (di)graph G
is given then A (= A(G)) can be uniquely determined. So square matrices and weighted (di)graphs can be
identified. This approach is very common in the combinatorial matrix theory, since many important features
of matrices can be revealed just from the structure of the so called underlying (di)graph of the associated
weighted (di)graph, i.e. (di)graph without arc or edge weights. For more details on these connections, see
for example [3]. Throughout the paper we will restrict ourselves only to symmetric matrices, and thus to
weighted graphs.

There are many formulas in the literature (see, for example, [6]) for computing or expressing spectral
invariants of matrices, or associated weighted graphs, in terms of their combinatorial structure. For
example, in the spectral graph theory the Schwenk formulas for computing (by recursion) the characteristic
polynomial of a graph are well-known – see [10], or [1] for the weighted counterpart. In some other formulas
various invariants stemming, say from eigenspaces, are included, like graph angles (see, for example, [6]).
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Here we will plug in some purely structural graph invariants, or more precisely, we will include into
considerations weighted walks between certain vertices in weighted graphs (or corresponding matrices).
Needless to add, any matrix invariant (like spectrum or characteristic polynomial) will be considered as a
graph invariant and vice-versa. In addition, every concept from the graph theory, not given here, can be
found in [5, 6], or also in [2].

The rest of the paper is organized as follows: in Section 2 we give our main results and in Section
3 we consider some applications, especially in the spectral graph theory; in Section 4 we provide some
computational results, while Section 5 is left for a conclusion.

2. Main Results

Let A be a real symmetric matrix of order n, and let Au be its principal submatrix obtained by deleting the
u-th row and column. Interchangeably, in the spirit of Section 1, these two matrices can be considered as
weighted graphs G and Gu, respectively. Clearly, Gu is a vertex deleted subgraph of G = (V(G),E(G)); so
V(Gu) = V(G) \ {u}. Next we have

(xI − Au)−1 = x−1(I −
1
x

Au)−1 =

∞∑
k=0

1
xk+1

Ak
u, (1)

where |x| is sufficiently large (or its reciprocal value sufficiently small). Let U be the set of neighbours of u
in G. So U ⊆ V(Gu), and let wU ∈ Rn−1 be the weight vector for U in which the v-th entry (v , u) is equal to
(u, v) entry of A. Then, from the above we obtain

wt
U(xI − Au)−1wU =

∞∑
k=0

Wk(U; Gu)
xk+1

, (2)

where

Wk(U; Gu) = wt
UAk

uwU. (3)

Clearly, Wk(U; Gu) is equal to the sum of weights of all “weighted” walks of length k in Gu which start and
terminate in the vertices from U. Recall, the weight of some walk is the product of weights of all edges
belonging to the walk in question.

Let

Au = µ1P1 + µ2P2 + · · · + µrPr (4)

be the spectral decomposition of Au. Here µ1, µ2, . . . , µr are the distinct eigenvalues of Au (or Gu), and
P1,P2, . . . ,Pr are the corresponding projection matrices of Au (resp. of “labeled graph” Gu). Note also that
wt

UPswU = ||PswU ||
2, since PT

s = Ps and P2
s = Ps. Next we easily obtain

wt
U[

r∑
s=1

Ps

x − µs
]wU =

∞∑
k=0

Wk(U; Gu)
xk+1

, (5)

and therefore
r∑

s=1

||PswU ||
2

x − µs
=

∞∑
k=0

Wk(U; Gu)
xk+1

. (6)

Using the generalized form of Rowlinson’s formula (given in [11], see also [6, 9] for its original form)
we obtain

ΦG(x) = ΦGu (x)[x − auu −

r∑
s=1

||PswU ||
2

x − µs
],

where Φ stands for the characteristic polynomial of a matrix, or equivalently its corresponding weighted
graph. So we easily arrive at the following result:
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Theorem 2.1. Let G (= G(A)) be the weighted graph associated to a real symmetric matrix A, and let u be a non-
isolated vertex of G, while U the set of neighbours of u in G. If Au = A(Gu), denote by Wk(U; Gu) the sum of all
entries of Ak

u whose indices belong to U. Then, provided the series below converges, we have

x − auu −
ΦG(x)
ΦGu (x)

=

∞∑
k=0

Wk(U; Gu)
xk+1

. (7)

At this place the following remark deserves to be mentioned:

Remark 2.2. First auu is a weight of the loop at vertex u and W0(U; Gu) is equal to the sum of squares of weights of
the edges incident to u (note, the loop at u is excluded).

Secondly, in the case that A is a symmetric non-negative matrix, which is also irreducible (then G is connected),
the question of convergence of the above series can be resolved as follows. By the spectral decomposition (cf. (4)) we
easily obtain

Wk(U; Gu) = wt
UAk

uwU = µk
1sum(P1; U) + µk

2sum(P2; U) + · · · + µk
rsum(Pr; U), (8)

where sum(Pi; U) denotes the sum of all entries of Pi whose both indices belong to U. Actually, Wk(U; Gu) is a sum
of weights of all (weighted) walks of length k in Gu which start and terminate in the vertices from U. Next, with our
assumptions, for large values of k, Wk(U; Gu) is asymptotically equivalent to cµk

1, for some constant c (note µ1 is the
largest eigenvalue of Au). So, if |x| > µ1 we indeed have a convergence due to standard tools on power series.

In particular, if x = ρ, where ρ is a spectral radius of A (or also of G), then in view of the above remark
ρ > µ1, and the convergence does hold (if necessary, see [5] Subsection 0.3, with focus on non-negative
matrices and Interlacing theorem). Therefore we arrive at the following result:

Corollary 2.3. Let A be be a real symmetric non-negative irreducible matrix, and let G = G(A). Let u be a vertex
of G and U the set of neighbours of u, and let Au = A(Gu). Denote by Wk(U; Gu) the sum of all entries of Ak

u whose
indices belong to U (see (3)). Then ρ, the spectral radius of G, satisfies

ρ = auu +

∞∑
k=0

Wk(U; Gu)
ρk+1

. (9)

In particular, under the same assumptions, if the underlying graph of G is bipartite then

ρ = auu +

∞∑
k=0

W2k(U; Gu)
ρ2k+1

. (10)

Proof. First, (9) follows from (7) by putting in it x = ρ (see also Remark 2.2). Secondly, if G is bipartite then,
clearly, W2k+1 = 0 for each k and we immediately obtain (10). Alternatively, by putting in (9) that x = ±ρ
and summing up the obtained expressions we also arrive at (10).

3. Applications in the Spectral Graph Theory

In the spectral graph theory, we usually consider simple graphs, i.e. finite undirected graphs without loops
or multiple edges. Then the quantity Wk(U; G) defined in Section 2 (cf. (3)) for a given graph G = (V,E) and
its vertex subset U ⊂ V counts just the walks of length k which start and terminate in the vertices from U.
So Wk(U; Gu) has a nice combinatorial interpretation. Further on we will also use the notation

W(U; G) := (W0(U; G),W1(U; G), . . .) (11)

to stand for a corresponding walk sequence of G.
We now consider various applications of the results from Section 2 having in view their combinatorial

interpretations pointed above. In particular, we will pay attention on the following subtopics:
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(i) Generating functions: Let

1(x; U) :=
∞∑

k=0

Wk(U; G)xk (12)

be the generating function for the number of walks of length k in a simple graph G which start and terminate
in the vertices belonging to the subset U of V(G). Using Theorem 2.1 (see (7)) we obtain

1(x; U) =
1
x2 −

1
x

ΦGu ( 1
x )

ΦG( 1
x )
, (13)

where Gu is a supergraph of G obtained by adding to G a vertex u adjacent only to vertices from U.
In particular, if U is a singleton, say U = {v}, then by using [5, Formula (2.2)], i.e. the particular case of

Schewenk’s formula (see (19)), we then obtain

1(x; U) =
1
x

ΦGv ( 1
x )

ΦG( 1
x )
. (14)

Needless to add, then only closed walks which start and terminate in v are counted. On the other hand, if
U = V(G), i.e. if it is the whole vertex set of G, then all possible walks in G are counted.

Remark 3.1. First, the problem of counting walks in graphs is widely studied in the literature, among others due
to considerable interest in chemistry and physics (see, for example, [5]). At this place we emphasize the fact that the
closed walks of some graph starting and terminating at the fixed vertex are mostly studied (then (14) is used). Note
also that all walks in G of length k starting and terminating in U are not in one-to-one correspondence with all closed
walks in Gu of length k + 2 starting and terminating at vertex u in Gu.

Secondly, for us it is noteworthy that powers of the adjacency matrix can be easily computed either by using
recurrent relations based on the minimal polynomial (whose degree is the number of distinct eigenvalues), or by using
the spectral decomposition technique.

Thirdly, the following result from [7] deserves to be mentioned here: given a graph G = (V,E) on n vertices then

Wk(V; G) ≤ dk
1 + dk

2 + · · · + dk
n, (15)

where d1, d2, . . . , dn are its (vertex) degrees. Equality holds if and only if G is regular.

(ii) Cospectral vertex deleted subgraphs: Let G be a (simple) graph, while Gv and Gw its vertex deleted
subgraphs obtained by deleting vertices v and w, respectively. If v and w have the same degrees (this is
always possible in any simple non-trivial graph) then Gv and Gw can be cospectral, i.e. share the same
spectrum. Applying Theorem 2.1 we obtain the following a bit more general result:

Theorem 3.2. Let Gv and Hw be the vertex deleted subgraphs of two cospectral graphs G and H, respectively. Then
Gv and Hw are cospectral if and only if

W(Uv; Gv) =W(Uw; Hw), (16)

where Uv are the neighbours of v in G, while Uw are the neighbours of w in H.

Consider next the well-known Ulam conjecture, and assume that it is false. Let (G,H) be a counter-
example pair. Recall, as pointed by Tutte in [12], G and H are cospectral. Then, for each v ∈ V(G), there
exists w ∈ V(H) such that Gv and Hw are isomorphic. Let Uv and Uw be the neighbours of v in G and of w in
H, respectively. Then, by Theorem 3.2, we have thatW(Uv; Gv) =W(Uw; Hw).

Theorem 3.2 also holds if G and H coincide. Then the problem of cospectrality of Gv and Gw arises. It
turns to be important in studying perfect state transfer in graphs (see, for example, [8] for more details).
See also the first part of Remark 3.1. Next, following Godsil and his slides from 2011 we have:

Two vertices v and w in the graph G are cospectral, or equivalently Gv and Gw are cospectral if and only
if any of the following (equivalent) conditions holds:
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(i) ||Piev|| = ||Piew|| for each i i.e. the corresponding quantities are the same (see [6, Proposition 2.2.6]);

(ii) the generating function for the closed walks in G starting at v is equal to the generating function for
the closed walks in G starting at w;

(iii) the generating function for the walks in Gv starting at vertex in Uv (the neighbourhood of v in G)
and terminating also in Uv is equal to the generating function for the walks in Gw starting at Uw (the
neighbourhood of w in G) and terminating also in Uw.

Recall, the quantities appearing in item (i) are called graph angles (see, for example, [6]). Note also that
in item (ii) we consider graph G and its closed walks between vertices starting and terminating at v, or w.
On the other hand, in item (iii) we considerer only the walks in subgraphs Gv and Gw, respectively. Also,
the walks from item (ii) can revisit vertex v (or w); on the other hand, the walks from item (iii), if imbedded
in G and extended with the vertex v (resp. w) and appropriate edges can revisit v only once (in the last
step). So items (ii) and (iii) are counting different walks.

(iii) Spectral radius of a graph: In Corollary 2.3 we have already given two formulas involving spectral
radius. Now for any simple graph G of radius ρ in the right hand side we have essentially to count the
number of walks of fixed lengths which start and terminate in the vertices from U (see (9) and (10)). So (9)
is reduced to

ρ =

∞∑
k=0

Wk(U; Gu)
ρk+1

, (17)

or to

ρ =

∞∑
k=0

W2k(U; Gu)
ρ2k+1

(18)

if G is bipartite.

Remark 3.3. A particular case of this formula when u is a dominating vertex in G has been shown to the third author
by his former students Vladimir Božin and Vladimir Baltić (the proof given here is the original one).

In what follows we offer some examples in which formula (17) is used.
Let H be the (disjoint) union of k not necessarily equal r-regular graphs Hi (i = 1, 2, . . . , k). So H = H1 ∪

H2∪· · ·∪Hk. Next, let G be the conus over H, that is, G = K1∇H (here∇ stand for the join or direct sum of two
graphs). Denote by ρ the spectral radius of G. By (17), observing that that Wn(V(H); H) =

∑k
j=1 Wn(V(H j); H),

where n j = |V(H j)| and Wn(V(H j); H) = n jrn, (cf. (15)). Therefore, it easily follows that

ρ =
r +
√

r2 + 4h
2

,

where h = n1 + · · · + nk. At this place we can add some comments. First for r = 0 the corresponding graph
G is a star with h legs and we obtain the expected result; for r = 1 G is a friend-ship graph and then we also
get an expected formula. On the other hand, for r ≥ 3 we have that components of H (so Hi’s) can be of
different orders and structures, but the spectral radius of H has always the same value. That means that
we can generate arbitrarily large families of graphs with the same spectral radius which does not depend
on structures of Hi’s.

Assume now that H = Kp,q is a complete bipartite graph, and let G be a bipartite graph obtained from H
by adding to it a vertex v of degree r (1 ≤ r ≤ p) which belongs to a (colour) class of cardinality q and has r
neighbours in another class of cardinality p. Then W2k(U; H) = r(qp)k−1(qr) since we can start in U in one of
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r vertices and terminate in U also in one of r vertices. Using (10) we immediately obtain that the spectral
radius of G is

ρ =

√
pq +

r2

p
.

Clearly, if r = p then G is a complete bipartite graph and then we obtain the well-known result from the
literature. Otherwise, if p = q and 1 ≤ r ≤ p then, according to [4], the corresponding graph G features as a
graph with maximal spectral radius among bipartite graphs with prescribed number of edges. Needless to
add the same result can be obtained by the divisor technique (see, for example, [6]), but with more efforts.

Finally, it is worth noting that the following implication holds for two connected graphs G and H with
respect to their vertices v and w:

ifW(UH; Hv) ≤W(UG; Gw) component-wise, then ρ(H) ≤ ρ(G).

The most simple example arises if we take that H is any subgraph of G.

(iv) A comment on one of Schwenk formulas: Recall, one of the most exploited Schwenk formula reads:

Φ(x; G) = xΦ(x; G − v) −
∑
w∼v

Φ(x; G − v − w) − 2
∑

C∈C(v)

Φ(x; G − V(C)), (19)

where C(v) is the set of all cycles of G passing through vertex v. Using the above observations (see item (i))
we can put it in the following form

Φ(x; G) = xΦ(x; G − v)[1 − 1(x; U)], (20)

where x is enough small. Needless to add we also have that

xΦ(x; G − v)1(x; U) =
∑
w∼v

Φ(x; G − v − w) + 2
∑

C∈C(v)

Φ(x; G − V(C)). (21)

4. Some Experimental Results

In order to get some impression of how our formula (9) “sounds” in practice we provide some experimental
results obtained by a simple program written in Wolfram Mathematica.

Example 4.1. Let G be a (pseudo)-random graph of order n = 8 and size m = 16. For each of its one-vertex
deleted subgraphs we have calculated the partial sums (up to 65-th term) in order to see how far are they from
ρ = 4.2141907412, the numeric value of the spectral radius of G with 10 significant digits after decimal point. These
results are summarized in Table 1.
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Figure 1: The graph G of Example 4.1.
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Figure 2: The diagram for Example 4.1.

Table 1: Table for Example 4.1.
vertex deleted partial sums of the relative errors

subgraph RHS of (17) in %
G1 4.17549 0.918336
G2 4.21354 0.015522
G3 4.21419 0.000038
G4 4.21354 0.015522
G5 4.21397 0.005233
G6 4.21418 0.000147
G7 3.87786 7.980980
G8 4.21418 0.000147

We first observe that vertices 2 and 4, and also 6 and 8, as expected (due to symmetry), have the same features.
This can be seen from the data provided in the table, and also in Fig. 4.1. We can next see that the convergence (of
ρ) is the fastest with vertex 3, and the slowest with vertex 7. Vertices 2, 4 and 5 (and also 3, 6 and 8) have the same
degrees 5 (resp. 4) but very close rates of convergence (of ρ). In Fig. 2 the dynamics in changing of partial sums for ρ
is pointed in more details.

In our forthcoming papers we will examine the phenomena about our formulas with more details.
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5. Conclusion

The main results from Section 2, in view of Section 3, seems to be not so much applicable for solving some
challenging problems in the spectral graph theory. For example, except some well-known results on the
spectral radius we haven’t found so far an attractive result that can be obtained by making use of a final
note from item (iii) in Section 3. Needless to add it is still a big challenge to find some more interesting and
also more non-trivial applications of our new formulas from Section 2.
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