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Abstract. The purpose of this paper is to prove some strict common fixed point theorems for weakly
compatible hybrid pairs of nonlinear mappings defined on semi-metric spaces employing implicit relations
which unify, extend and generalize several results from the literature. As an application, we prove a
general common fixed point theorem for integral type contractive conditions. Finally, we give an example
to demonstrate the main result of the paper.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction and Preliminaries

In 1922, the Polish mathematician, S. Banach proved a classical theorem which ensures, under appropri-
ate conditions, the existence and uniqueness of a fixed point. This theorem provides a technique for solving
a variety of applied problems in mathematical science and engineering. Many authors have extended,
generalized and improved Banach’s fixed point theorem in different ways, and by now there exists an ex-
tensive literature on and around this classical theorem. Fixed point theorems for hybrid pair of set-valued
and single-valued mappings is a relatively new development and have numerous applications in science,
engineering, economics and game theory (e.g. [15]).

A semi-metric d in respect of a non-empty set X is a function d : X × X → [0,∞) which satisfies
d(x, y) = d(y, x) and d(x, y) = 0⇔ x = y (for all x, y ∈ X). If d is a semi-metric on a set X, then for x ∈ X and
ε > 0, we write B(x, ε) = {y ∈ X : d(x, y) < ε}. A topology τ(d) on X is given by the sets U (along with empty
set) in which for each x ∈ U, one can find some ε > 0 such that B(x, ε) ⊂ U. A set S ⊂ X is a neighbourhood
of x ∈ X if and only if there is a U containing x such that x ∈ U ⊂ S. Thus a semi-metric space (X, d) is a
topological space whose topology τ(d) on X is induced by a semi-metric d. A semi-metric d is said to be a
potent semi-metric (cf. [9]) if for each x ∈ X and for each ε > 0, B(x, ε) is a neighbourhood of x in the topology
τ(d). Notice that lim

n→∞
d(xn, x) = 0 if and only if xn → x in the topology τ(d). The distinction between a semi-

metric and a potent semi-metric is apparent as one can easily construct a semi-metric d such that B(x, ε) need
not be a neighbourhood of x in τ(d). As semi-metric spaces are not essentially Hausdorff, therefore in order
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to prove fixed point theorems, some additional axioms are required. The following axioms are relevant to
our present presentation which are available in Aliouche [10], Cho et al. [20], Galvin and Shore [28], Hicks
and Rhoades [29] and Wilson [66]. From now on semi-metric as well as potent semi-metric spaces will be
denoted by (X, d) whereas a nonempty arbitrary set will be denoted by Y.

(W3) :[66] Given {xn}, x and y in X with d(xn, x)→ 0 and d(xn, y)→ 0 imply x = y.
(W4) :[66] Given {xn}, {yn} and an x in X with d(xn, x)→ 0 and d(xn, yn)→ 0 imply d(yn, x)→ 0.
(HE) :[10] Given {xn}, {yn} and an x in X with d(xn, x)→ 0 and d(yn, x)→ 0 imply d(xn, yn)→ 0.
(1C) :[20] A semi-metric d is said to be 1-continuous if lim

n→∞
d(xn, x) = 0 implies lim

n→∞
d(xn, y) = d(x, y).

(CC) :[28] A semi-metric d is said to be continuous if lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(yn, y) = 0 imply lim
n→∞

d(xn, yn) =

d(x, y) where {xn}, {yn} are sequences in X and x, y ∈ X.

Clearly, the continuity (i.e. (CC)) of a semi-metric is a stronger property than (1C) (or 1-continuity) i.e.
(CC) implies (1C) but not conversely. Also (W4) implies (W3) and (1C) implies (W3) but converse implications
are not true. All other possible implications amongst (W3), (1C) and (HE) are not true in general whose nice
illustrations via demonstrative examples are available in Cho et al. [20]. But (CC) implies all the remaining
four conditions namely: (W3), (W4), (HE) and (1C). For more details on these axioms, one can see [9] while
for details on Cauchy sequences and the completeness in semi-metric spaces, one can be referred to [18, 28].

We define CB(X) = {C|C is a nonempty closed and bounded subset of X}, B(X) = {C|C is a nonempty bo-
unded subset of X} and the functions δ(A,B) and D(A,B) by δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B} and
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B} for all A,B ∈ B(X). If A consists of a single point a, we write
δ(A,B) = δ(a,B). If B also consists of a single point b, we write δ(A,B) = d(a, b). It follows immediately from
the definition of δ that

δ(A,B) = δ(B,A) ≥ 0,
δ(A,B) = 0 iff A = B = {a},
δ(A,B) ≤ δ(A,C) + δ(C,B),
δ(A,A) = diam(A) for all A,B,C ∈ B(X).

Lemma 1.1 [26]. Let {An} and {Bn} be two sequences in B(X) both converging in B(X) to the sets A and B
respectively. Then

lim
n→∞

δ(An,Bn) = δ(A,B).

Definition 1.1. Let A : X→ X and S : X→ B(X), then a point x ∈ X is said to be a

(i) coincidence point (strict coincidence point) of A and S if Ax ∈ Sx (Sx = {Ax}),
(ii) fixed point of S if x ∈ Sx,

(iii) stationary point or strict fixed point of S if Sx = {x}.

In the sequel, C(A,S) and SC(A,S) denote the set of coincidence points and strict coincidence points of
mappings A and S respectively.

Definition 1.2. Let A : X → X and S : X → B(X) wherein (X, d) is a semi-metric space. Then following
[36, 61], we say that the pair (A,S) is

(i) weakly commuting on X if for any x ∈ X

δ(SAx,ASx) ≤ max{δ(Ax,Sx), diamASx},

(ii) quasi-commuting on X if for any x ∈ X
ASx ⊂ SAx,

(iii) slightly commuting on X if for any x ∈ X

δ(SAx,ASx) ≤ max{δ(Ax,Sx), diamSx},
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(iv) R-weakly commuting (cf. [50]) if there exists some R > 0 such that δ(ASx,SAx) ≤ R.δ(Ax,Sx) for all
x ∈ X.

Pant [51] also defined the pair (A,S) to be pointwise R-weakly commuting if for given x ∈ X, there exists
an R > 0 such that (iv) holds.

Clearly two commuting mappings satisfy (i)-(iii) but reverse implications are not true in general. In
[36], it is demonstrated by suitable examples that the foregoing three concepts are mutually independent
and none of them implies the other two.

Definition 1.3.[42] A pair (A,S) of hybrid mappings with A : X → X and S : X → B(X) is said to be
δ-compatible if lim

n→∞
δ(SAxn,ASxn) = 0, whenever {xn} is a sequence in X such that ASxn ∈ B(X), Axn → t

and Sxn → {t} as n→∞ for some t ∈ X.

Definition 1.4.[41] A pair (A,S) of hybrid mappings with A : X→ X and S : X→ B(X) of a nonempty set X
is said to be weakly compatible if ASx = SAx for all x ∈ C(A,S) (or x ∈ SC(A,S)).

Thus, the maps A and S are pointwise R-weakly commuting iff they are weakly compatible. Moreover,
if the pair (A,S) is δ-compatible, then it is weakly compatible, but the converse is not true in general (see
[43]).

Definition 1.5.[12] A pair (A,S) with A : X→ X and S : X→ B(X) of hybrid mappings of a nonempty set X
is said to be occasionally weakly compatible (OWC) if SAx = ASx for some x ∈ C(A,S) (or x ∈ SC(A,S)).

Remark 1.1.[12] If A and S are weakly compatible, then they are occasionally weakly compatible, but the
converse implication is not true in general as exhibited by the following example.

Example 1.1. Let X = [1,∞) and define A,S : X → X by: Ax = 3x − 2 and Sx = x2. We have Ax = Sx iff
x = 1 and x = 2 and AS(1) = SA(1) = 1, but AS(2) , SA(2). Therefore, A and S are occasionally weakly
compatible, but not weakly compatible.

Remark 1.2. Every mapping A : X → X and the identity mapping of X (i.e. idX) are weakly compatible,
while A : X→ X and idX are OWC iff A has a fixed point.

Lemma 1.2.[44] Let X be a set, A,S are OWC single-valued self-mappings of X. If A and S have a unique
point of coincidence w = Ax = Sx, then w is the unique common fixed point of A and S.

In the recent years, several authors proved common fixed point theorems for OWC mappings (cf.
[3, 11, 44]). In [33], Imdad et al. pointed out that OWC is not a proper generalization of weak compatibility
(WC) when C(A,S) is empty set as definition of weak compatibility is vacuously satisfied while for OWC,
C(A,S) should be nonempty. Pant and Pant [52] redefined OWC and term it as conditionally commuting
pair under the additional hypothesis that C(A,S) is nonempty. Recently Dorić et al. [24] showed that a pair
of OWC single-valued mappings reduces to weakly compatible mappings in the presence of unique point
of coincidence (or unique common fixed point) which amounts to say that no such generalization can be
obtained for single-valued mappings (also see Proposition 2 and Corollary 3 from [45]). But for pairs of
hybrid mappings, situation is different wherein OWC is a strictly weaker condition than weak compatibility.
So, one can obtain more general results by using OWC in the case of pair of hybrid mappings.

We give following result (without proof) which establishes relationship between OWC and WC for
hybrid pair of single-valued and set-valued mappings.

Lemma 1.3. Let A : X→ X and S : X→ B(X) be a pair of hybrid mappings which has a unique strict point
of coincidence (or a unique strict common fixed point). Then the pair (A,S) is OWC iff it is WC.

On the lines of Aamri and Moutawakil [1], we can have the following:

Definition 1.6. A hybrid pair of mappings with A : X→ X and S : X→ B(X) is said to satisfy the property
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(E.A) if there exists a sequence {xn} in X such that

lim
n→∞

Axn = t, and lim
n→∞

Sxn = {t}, for some t ∈ X.

Clearly, a pair of δ-compatible mappings as well as δ-non-compatible mappings satisfy the property (E.A).

On the lines of Pant [51], we give the following for a pair of hybrid mappings:

Definition 1.7. A hybrid pair (A,S) of mappings with A : X → X and S : X → B(X) is said to be re-
ciprocally continuous iff lim

n→∞
ASxn = {At} and lim

n→∞
SAxn = St, for every sequence {xn} in X satisfying

lim
n→∞

Axn = t and lim
n→∞

Sxn = {t}, for some t ∈ X.

Clearly any pair of continuous mappings is reciprocally continuous but converse need not be true in
general.

Motivated from Bouhadjera and Godet-Thobie [16], we define the following definitions:

Definition 1.8. A hybrid pair (A,S) of mappings with A : X → X and S : X → B(X) is said to be
δ-subcompatible iff there exists a sequence {xn} ∈ X such that lim

n→∞
δ(ASxn,SAxn) = 0 with lim

n→∞
Axn =

t and lim
n→∞

Sxn = {t}, for some t ∈ X.

Definition 1.9. A hybrid pair of mappings (A,S) with A : X→ X and S : X→ B(X) is said to be subsequential
continuous iff there exists a sequence {xn} ∈ X such that

lim
n→∞

ASxn = {At} and lim
n→∞

SAxn = St

with lim
n→∞

Axn = t and lim
n→∞

Sxn = {t}, for some t ∈ X.
If A and S are both continuous or reciprocally continuous, then they are obviously subsequentially

continuous. But, there do exist pairs of subsequentially continuous mappings which are neither continuous
nor reciprocally continuous.

Definition 1.10. An altering distance function is a mapping ϕ : [0,∞)→ [0,∞) which satisfies the following
conditions:

(ϕ1) : ϕ is increasing and continuous, and
(ϕ2) : ϕ(t) = 0 if and only if t = 0.

For fixed point theorems involving altering distances in metric spaces, one can be referred to [46, 56, 59]
besides some other ones.

Definition 1.11.[34] Two families of self mappings {Ai} and {Bk} are said to be pairwise commuting if

(i) AiA j = A jAi; i, j ∈ {1, 2, ...m},

(ii) BkBl = BlBk; k, l ∈ {1, 2, ...n},

(iii) AiBk = BkAi; i ∈ {1, 2...m}, k ∈ {1, 2, ...n}.

2. Implicit Functions

Popa [54] initiated the idea of implicit functions in metric fixed point theory. Thereafter, several authors
(e.g. [8, 13, 38, 49]) utilized this technique as it remains an effective tool to prove unified fixed point theorems
besides being general enough to yield unknown contraction conditions at the same time. In order to define
our implicit function, let Ψ be the family of lower semi-continuous functions F : <6

+ → < satisfying the
following conditions.

(F1) : F is decreasing in variables t2 to t6,



J. Ali et al. / Filomat 31:11 (2017), 3233–3248 3237

(F2) : F(t, 0, t, 0, 0, t) > 0, for all t > 0,

(F3) : F(t, 0, 0, t, t, 0) > 0, for all t > 0,

(F4) : F(t, t, 0, 0, t, t) > 0, for all t > 0.

Example 2.1. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) = t1 − ψ(max{t2, t3, t4, t5, t6})

where ψ :<+ →< is an upper semi-continuous function such that ψ(0) = 0 and ψ(t) < t for all t > 0.

Example 2.2. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) = t1 − ψ(t2, t3, t4, t5, t6)

where ψ :<5
+ →< is an upper semi-continuous function such that max{ψ(0, t, 0, 0, t), ψ(0, 0, t, t, 0),

ψ(t, 0, 0, t, t)} < t for each t > 0.

Example 2.3. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) = t2
1 − ψ(t2

2, t3t4, t5t6, t3t6, t4t5)

where ψ :<5
+ →< is an upper semi-continuous function such that max{ψ(0, 0, 0, t, 0), ψ(0, 0, 0, 0, t),

ψ(t, 0, t, 0, 0)} < t for each t > 0.

Example 2.4. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) = t2
1 − αmax{t2

2, t
2
3, t

2
4} − βmax{t3t5, t4t6} − γt5t6

where α, β, γ ≥ 0 and α + γ < 1.

Example 2.5. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) = t1 − αt2 − βmax{t3, t4} − γmax{t3 + t4, t5 + t6}

where α, β, γ ≥ 0 and α + β + 2γ < 1.

Example 2.6. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) =

 t1 − αt2 − β
t2
3 + t2

4

t3 + t4
− γ(t5 + t6), if t3 + t4 , 0

t1 − t2, if t3 + t4 = 0

where α, β, γ ≥ 0 and β + γ < 1.

Example 2.7. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) =

 tp
1 − ktp

2 −
t3tp

4 + t5tp
6

t3 + t4
, if t3 + t4 , 0

t1 − t2, if t3 + t4 = 0

where p ≥ 1 and 0 ≤ k < ∞.

Example 2.8. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) = t1 −min{max{t3, t4}, t5, t6} − ψ(max{t2, t3, t4, t5, t6}),

wherein ψ :<+ →<+ is an upper semi-continuous function such that ψ(t) < t for all t > 0.
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Consider the set of functions, Φ = {φ :<+ →<+ is a Lebesgue integrable mapping which is summable
and satisfies

∫ ε
0 φ(t)dt > 0 for all ε > 0}. Now, we give examples which satisfy inequalities of integral type.

Example 2.9. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) =

∫ t1

0
φ(t)dt − ψ

(∫ max{t2,t3,t4,t5,t6}

0
φ(t)dt

)
where ψ :<+ →<+ is an upper semi-continuous function such that ψ(t) < t for all t > 0 and φ ∈ Φ.

Example 2.10. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) =

∫ t1

0
φ(t)dt − ψ

(
max

{∫ t2

0
φ(t)dt,

∫ t3

0
φ(t)dt,

∫ t4

0
φ(t)dt,

∫ t5

0
φ(t)dt,

∫ t6

0
φ(t)dt

})
where ψ :<+ →<+ is an upper semi-continuous function such that ψ(t) < t for all t > 0 and φ ∈ Φ.

Example 2.11. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) =
( ∫ t1

0
φ(t)dt

)p
− ψ

(
a
( ∫ t2

0
φ(t)dt

)p
− (1 − a) max

{
α
( ∫ t3

0
φ(t)dt

)p
,

β
( ∫ t4

0
φ(t)dt

)p
,
( ∫ t3

0
φ(t)dt

) p
2
.
( ∫ t6

0
φ(t)dt

) p
2
,
( ∫ t5

0
φ(t)dt

) p
2
.
( ∫ t6

0
φ(t)dt

) p
2
})

where ψ : <+ → <+ is an upper semi-continuous function such that ψ(t) < t for all t > 0, 0 ≤ a, α, β ≤ 1,
p ≥ 1 and φ ∈ Φ.

Example 2.12. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) =

∫ t1

0
φ(t)dt − αmax

{∫ t2

0
φ(t)dt,

∫ t3

0
φ(t)dt,

∫ t4

0
φ(t)dt

}

−(1 − α)
(
a
∫ t5

0
φ(t)dt + b

∫ t6

0
φ(t)dt

)
where 0 ≤ α < 1, a, b ≥ 0, a + b ≤ 1 and φ ∈ Φ.

Example 2.13. Define F(t1, t2, · · · , t6) :<6
+ →< as

F(t1, t2, · · · , t6) =

∫ t1

0
φ(t)dt − ψ

(
max

{∫ t2

0
φ(t)dt,

∫ t3

0
φ(t)dt,

∫ t4

0
φ(t)dt

})
−

1
2

(∫ t5

0
φ(t)dt +

∫ t6

0
φ(t)dt

)
where ψ :<+ →<+ is an upper semi-continuous function such that ψ(t) < t for all t > 0 and φ ∈ Φ.

Verification of requirements (F1), (F2), (F3) and (F4) in respect of Examples 2.1-2.13 are straight forward,
hence details are not included.

3. Main Results

We begin with the following two results without completeness and weak compatibility requirements.

Theorem 3.1. Let A,B : X → X and S,T : X → B(X) wherein X be a nonempty set equipped with a semi-
metric d which enjoys (CC). If the pairs (A,S) and (B,T) are subcompatible and reciprocally continuous,
then the pairs (A,S) and (B,T) have strict coincidence point. Further, if the pairs (A,S) and (B,T) satisfy the
condition:

F(δ(Sx,Ty), d(Ax,By), δ(Ax,Sx), δ(By,Ty), δ(Sx,By), δ(Ty,Ax)) < 0, (3.1.1)
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for all x, y ∈ X, F ∈ Ψ, wherein F satisfies F1 and F4, then A,B,S and T have a unique strict common fixed
point.

Proof. Since the pair (A,S) is subcompatible, there exists a sequence {xn} ∈ X such that

lim
n→∞

δ(ASxn,SAxn) = 0

with
lim
n→∞

Axn = t, lim
n→∞

Sxn = {t}.

As the pair (A,S) is reciprocally continuous

lim
n→∞

ASxn = {At}, lim
n→∞

SAxn = St

so that {At} = St which shows that t is a strict coincidence point.
As the pair (B,T) is subcompatible, there exists a sequence {yn} ∈ X such that

lim
n→∞

δ(BTyn,TByn) = 0

with
lim
n→∞

Byn = t′, lim
n→∞

Tyn = {t′}.

As the pair (B,T) is reciprocally continuous,

lim
n→∞

BTyn = {Bt′}, lim
n→∞

TByn = Tt′

so that {Bt′} = Tt′ which shows that t′ is a strict coincidence point.
Now, we prove that t = t′. For this, setting x = xn and y = yn in this (3.1.1), we get

F(δ(Sxn,Tyn), d(Axn,Byn), δ(Axn,Sxn), δ(Byn,Tyn), δ(Sxn,Byn), δ(Tyn,Axn)) < 0

which on making n→∞ (due to F1 and (CC)) gives rise

F(δ(t, t′), δ(t, t′), 0, 0, δ(t, t′), δ(t, t′)) ≤ 0,

a contradiction to (F4). Hence t = t′.
Now we assert that t is a strict common fixed point of the pair (B,T). Suppose that Bt , t, then using (3.1.1),
we have

F(δ(Sxn,Tt), d(Axn,Bt), δ(Axn,Sxn), δ(Bt,Tt), δ(Sxn,Bt), δ(Tt,Axn)) < 0.

Making use of (F1),(CC) and letting n→∞, we get

F(δ(t,Bt), δ(t,Bt), 0, 0, δ(t,Bt), δ(Bt, t)) ≤ 0

which is a contradiction to (F4). Therefore, Bt = t which shows that t is a strict common fixed point of the
pair (B,T).
Again, suppose that At , t, then using (3.1.1), we have

F(δ(St,Tt), d(At,Bt), δ(At,St), δ(Bt,Tt), δ(St,Bt), δ(Tt,At)) < 0,

which on using (F1) gives rise

F(δ(At, t), δ(At, t), 0, 0, δ(At, t), δ(At, t)) < 0,

a contradiction to (F4). Therefore, At = {t} which shows that t is a strict common fixed point of the pair
(A,S). Thus, {t} is a strict common fixed point of both the pairs (A,S) and (B,T). Uniqueness of common
fixed point is an easy consequence of inequality (3.1.1) in view of condition (F4). This completes the proof.
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Theorem 3.2. Let A,B : X → X and S,T : X → B(X) wherein X be a nonempty set equipped with a semi-
metric d which enjoys (CC). If the pairs (A,S) and (B,T) are subsequentially continuous and compatible,
then the pairs (A,S) and (B,T) have strict coincidence point. Further, suppose that the pairs (A,S) and (B,T)
satisfy condition (3.1.1), then A,B,S and T have a unique strict common fixed point.

Proof. Since the pair (A,S) is subsequentially continuous, there exists a sequence {xn} in X with lim
n→∞

Axn =

t, lim
n→∞

Sxn = {t} such that

lim
n→∞

ASxn = {At} and lim
n→∞

SAxn = St.

In view of the compatibility of the pair (A,S), we have, St = {At} which shows that t is a strict coincidence
point of A and S.

Since the pair (B,T) is also subsequentially continuous, there exists a sequence {yn} in X with lim
n→∞

Byn =

t′, lim
n→∞

Tyn = {t′} such that

lim
n→∞

BTyn = {Bt′} and lim
n→∞

TByn = Tt′.

In view of the compatibility of the pair (B,T), we have, Tt′ = {Bt′}which shows that t′ is a strict coincidence
point of B and T. The rest of the proof can be completed on the lines of Theorem 3.1.

Remark 3.1. Notice that Theorems 3.1 and 3.2 never require conditions on closedness, completeness and
containment among ranges of the involves mappings. These results generalize some relevant results of the
existing literature (e.g. [11, 30, 36, 61]). Also, notice that we never require any contraction condition up to
coincidence points.

Our remaining results employ altering distances. Our first result of this kind runs as follows:

Theorem 3.3. Let A,B : X → X and S,T : X → B(X) wherein X be a nonempty set equipped with a
semi-metric d enjoying (W3) and (HE). Suppose that

(a) the pair (A,S) (or (B,T)) has the property (E.A),

(b) S(X) ⊂ B(X) (or T(X) ⊂ A(X)),

(c) A(X) (or B(X)) is a closed subset of X and

(d) for all x, y ∈ X, F ∈ Ψ and ϕ(t) is an altering distance such that

F
(
ϕ(δ(Sx,Ty)), ϕ(d(Ax,By)), ϕ(δ(Ax,Sx)), ϕ(δ(By,Ty)), ϕ(δ(Sx,By)), ϕ(δ(Ty,Ax))

)
< 0. (3.3.1)

Then the pairs (A,S) and (B,T) have strict coincidence point. If the pairs (A,S) and (B,T) are weakly
compatible, then A,B,S and T have a unique strict common fixed point.

Proof. If the pair (A,S) enjoys the property (E.A), then there exists a sequence {xn} in X such that

lim
n→∞

Axn = t, lim
n→∞

Sxn = {t}, for some t ∈ X.

Since S(X) ⊂ B(X), hence for each {xn} there exists {yn} in X such that Byn = Sxn. Therefore, lim
n→∞

Byn = t ∈
{t} = lim

n→∞
Sxn. Thus, in all we have Axn → t,Sxn → {t} and Byn → t. Now, we assert that Tyn → {t}. If not,

then using (3.3.1), we have

F
(
ϕ(δ(Sxn,Tyn)), ϕ(d(Axn,Byn)), ϕ(δ(Axn,Sxn)), ϕ(δ(Byn,Tyn)), ϕ(δ(Sxn,Byn)), ϕ(δ(Tyn,Axn))

)
< 0

which on letting n→∞ and making use of (W3) and (HE) gives rise

F
(
ϕ(δ(t, lim

n→∞
Tyn)), 0, 0, ϕ(δ( lim

n→∞
Tyn, t)), ϕ(δ(t, lim

n→∞
Tyn)), 0

)
≤ 0,
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a contradiction to (F2). Hence lim
n→∞

Tyn → {t} so that

lim
n→∞

Axn = lim
n→∞

Byn = t, lim
n→∞

Sxn = {t} = lim
n→∞

Tyn, for some t ∈ X.

If A(X) is a closed subset of X, then lim
n→∞

Axn = t ∈ A(X). Therefore, there exists a point u ∈ X such that
Au = t. Now we assert that {Au} = Su. If not, then using (3.3.1), we have

F
(
ϕ(δ(Tyn,Su)), ϕ(d(Byn,Au)), ϕ(δ(Au,Su)), ϕ(δ(Byn,Tyn)), ϕ(δ(Tyn,Au)), ϕ(δ(Su,Byn))

)
< 0

which on letting n→∞ and making use of (W3) and (HE) gives rise

F
(
ϕ(δ(Au,Su)), ϕ(d(Au, t)), ϕ(δ(Au,Su)), ϕ(δ(t, t)), ϕ(δ(Au, t)), ϕ(δ(t,Au))

)
≤ 0

or
F
(
ϕ(δ(Au,Su)), 0, ϕ(δ(Au,Su)), 0, 0, ϕ(δ(Au,Su))

)
≤ 0,

a contradiction to (F3). Hence {Au} = Su = {t}. Thus, u is a strict coincidence point of the pair (A,S).
Since S(X) ⊂ B(X) and Su ∈ S(X), there exists w ∈ X such that {Bw} = Su = {t}. Now we assert that

{Bw} = Tw. If not, then again using (3.3.1), we have

F
(
ϕ(δ(Su,Tw)), ϕ(d(Au,Bw)), ϕ(δ(Au,Su)), ϕ(δ(Bw,Tw)), ϕ(δ(Su,Bw)), ϕ(δ(Tw,Au))

)
< 0

or
F
(
ϕ(δ(t,Tw)), ϕ(d(t,Bw)), ϕ(δ(t, t)), ϕ(δ(Bw,Tw)), ϕ(δ(t,Bw)), ϕ(δ(Tw, t))

)
< 0

or
F
(
ϕ(δ(Bw,Tw)), 0, 0, ϕ(δ(Bw,Tw)), ϕ(δ(Bw,Tw)), 0

)
< 0

a contradiction to (F2). Hence {Bw} = Tw = {t}, which shows that w is a strict coincidence point of the pair
(B,T).

Since the pair (A,S) is weakly compatible, there exists a point u at which the pair (A,S) commutes i.e.
At = ASu = SAu = St. Now we assert that t is a strict common fixed point of the pair (A,S). Suppose that
At , t, then using (3.3.1), we have

F
(
ϕ(δ(St,Tu)), ϕ(d(At,Bu)), ϕ(δ(At,St)), ϕ(δ(Bu,Tu)), ϕ(δ(St,Bu)), ϕ(δ(Tu,At))

)
< 0

which (in view of (F1)) gives rise

F
(
ϕ(δ(At, t)), ϕ(δ(At, t)), 0, 0, ϕ(δ(At, t)), ϕ(δ(t,At))

)
< 0

a contradiction to (F4). Therefore, At = t which shows that t is a strict common fixed point of the pair (A,S).
Since the pair (B,T) is also weakly compatible, then there exists a point w at which the pair (B,T)

commutes i.e. Bt = BTw = TBw = Tt. Suppose that Bt , t, then using (3.3.1), we get

F
(
ϕ(δ(Sw,Tt)), ϕ(d(Aw,Bt)), ϕ(δ(Aw,Sw)), ϕ(δ(Bt,Tt)), ϕ(δ(Sw,Bt)), ϕ(δ(Tt,Aw))

)
< 0

which (in view of (F1)) gives rise

F
(
ϕ(δ(Bt, t)), ϕ(δ(Bt, t)), 0, 0, ϕ(δ(Bt, t)), ϕ(δ(t,Bt))

)
< 0

a contradiction to (F4). Therefore, Bt = t which shows that {t} is a strict common fixed point of the pair
(B,T). Thus {t} is a strict common fixed point of both the pairs (A,S) and (B,T).
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Uniqueness of common fixed point is an easy consequence of inequality (3.3.1) in view of condition (F4).
This completes the proof.

Remark 3.2. Theorem 3.3 generalizes the corresponding relevant theorems of [11, 30, 36, 61].

By restricting A,B,S and T suitably, one can derive corollaries involving two as well as three mappings.
Here, it may be pointed out that any result for two mappings is itself a new result. For the sake of brevity,
we opt to mention just one such corollary by restricting Theorem 3.3 to a pair of mappings A and S.

Corollary 3.1. Let A : X→ X and S : X→ B(X) wherein X be a nonempty set equipped with a semi-metric
d which enjoys (W3) and (HE). Suppose that

(a) the pair (A,S) share the property (E.A),

(b) A(X) is a closed subset of X and

(c) for all x, y ∈ X, F ∈ Ψ and ϕ(t) is an altering distance

F
(
ϕ(δ(Sx,Sy)), ϕ(d(Ax,Ay)), ϕ(δ(Ax,Sx)), ϕ(δ(Ay,Sy)), ϕ(δ(Sx,Ay)), ϕ(δ(Sy,Ax))

)
< 0.

Then the pair (A,S) has strict coincidence point. If the pair (A,S) is weakly compatible, then A and S
have a unique strict common fixed point.

Theorem 3.4. The conclusions of Theorem 3.3 remain true if the condition (b) of Theorem 3.3 is replaced by
following.

(b′) S(X) ⊂ B(X) or T(X) ⊂ A(X).

Theorem 3.5. The conclusions of Theorem 3.3 remain true if condition (3.3.1) is replaced by the following.

F
(
ϕ(δ(Sx,Ty)), ϕ(d(Ax,By)), ϕ(δ(Ax,Sx)), ϕ(δ(By,Ty)), ϕ(D(Sx,By)), ϕ(D(Ty,Ax))

)
< 0. (3.5.1)

Proof. In view of (F1), condition (3.5.1) implies condition (3.3.1).

Theorem 3.6. The conclusions of Theorem 3.3 remain true if condition (3.3.1) is replaced by the following.

F
(
ϕ(δ(Sx,Ty)), ϕ(d(Ax,By)), ϕ(D(Ax,Sx)), ϕ(D(By,Ty)), ϕ(D(Sx,By)), ϕ(D(Ty,Ax))

)
< 0. (3.6.1)

Proof. In view of (F1), condition (3.6.1) implies condition (3.3.1).

Remark 3.3. Theorem 3.6 generalizes a multitude of the corresponding theorems contained in [2, 5, 6, 13,
16, 22, 25–27, 42, 54, 57, 58, 60, 63, 64].

Theorem 3.7. The conclusions of Theorem 3.3 remain true if condition (3.3.1) is replaced by the following.

F
(
ϕ(δ(Sx,Ty)), ϕ(d(Ax,By)), ϕ(D(Ax,Sx)), ϕ(D(By,Ty)), ϕ(δ(Sx,By)), ϕ(δ(Ty,Ax))

)
< 0. (3.7.1)

Proof. In view of (F1), condition (3.7.1) implies condition (3.3.1).

Remark 3.4. In Theorem 3.3, as F has the decreasing property in t2, t3 and t4, so above theorem generalizes
the corresponding theorems of [3, 11].

Corollary 3.2. The conclusions of Theorem 3.3 remain true if inequality (3.3.1) is replaced by one of the
following contraction conditions. For all x, y ∈ X, F ∈ Ψ and ϕ(t) is an altering distance

(I) ϕ(δ(Sx,Ty)) < ψ(max{ϕ(d(Ax,By)), ϕ(δ(Ax,Sx)), ϕ(δ(By,Ty)), ϕ(δ(Sx,By)), ϕ(δ(Ty,Ax))})
where ψ :<+ →< is an upper semi-continuous function such that ψ(0) = 0 and ψ(t) < t for all t > 0.

(II) ϕ(δ(Sx,Ty)) < ψ
(
ϕ(d(Ax,By)), ϕ(δ(Ax,Sx)), ϕ(δ(By,Ty)), ϕ(δ(Sx,By)), ϕ(δ(Ty,Ax))

)
where ψ :<5

+ →< is an upper semi-continuous function such that max{ψ(0, t, 0, 0, t), ψ(0, 0, t, t, 0),
ψ(t, 0, 0, t, t)} < t for each t > 0.
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(III) ϕ(δ(Sx,Ty)2) < ψ
(
ϕ(d(Ax,By)2), ϕ(δ(Ax,Sx))ϕ(δ(By,Ty)), ϕ(δ(Sx,By))ϕ(δ(Ty,Ax)),

ϕ(δ(Ax,Sx))ϕ(δ(Ty,Ax)), ϕ(δ(By,Ty))ϕ(δ(Sx,By))
)

where ψ :<5
+ →< is an upper semi-continuous function such that max{ψ(0, 0, 0, t, 0),

ψ(0, 0, 0, 0, t), ψ(t, 0, t, 0, 0)} < t for each t > 0.
(IV) ϕ(δ(Sx,Ty)2) < αmax{ϕ(d(Ax,By)2), ϕ(δ(Ax,Sx)2), ϕ(δ(By,Ty)2)} + βmax{ϕ(δ(Ax,Sx))ϕ(δ(Sx,By)),

ϕ(δ(By,Ty))ϕ(δ(Ty,Ax))} + γ(ϕ(δ(Sx,By))ϕ(δ(Ty,Ax)))

where α, β, γ ≥ 0 and α + γ < 1.
(V) ϕ(δ(Sx,Ty)) < αϕ(d(Ax,By)) + βmax{ϕ(δ(Ax,Sx)), ϕ(δ(By,Ty))} + γmax{ϕ(δ(Ax,Sx)) + ϕ(δ(By,Ty)),

ϕ(δ(Sx,By)) + ϕ(δ(Ty,Ax))}

where α, β, γ ≥ 0 and α + β + 2γ < 1.

(VI) ϕ(δ(Sx,Ty)) < αϕ(d(Ax,By)) + β
ϕ(δ(Ax,Sx)2) + ϕ(δ(By,Ty)2)
ϕ(δ(Ax,Sx)) + ϕ(δ(By,Ty)

) + γ(ϕ(δ(Sx,By)) + ϕ(δ(Ty,Ax))),

if ϕ(δ(Ax,Sx)) + ϕ(δ(By,Ty)) , 0,
ϕ(δ(Sx,Ty)) < αϕ(d(Ax,By)), if ϕ(δ(Ax,Sx)) + ϕ(δ(By,Ty)) = 0
where α, β, γ ≥ 0 and β + γ < 1.

(VII) ϕ(δ(Sx,Ty)p) < kϕ(d(Ax,By)p) +
ϕ(ϕ(δ(Ax,Sx))ϕ(δ(By,Ty)p) + ϕ(δ(Sx,By))ϕ(δ(Ty,Ax)p)

ϕ(δ(Ax,Sx)) + ϕ(δ(By,Ty))
if ϕ(δ(Ax,Sx)) + ϕ(δ(By,Ty)) , 0,
ϕ(δ(Sx,Ty)p) < kϕ(d(Ax,By)p), if ϕ(δ(Ax,Sx)) + ϕ(δ(By,Ty)) = 0
where p ≥ 1 and 0 ≤ k < ∞.

(VIII) ϕ(δ(Sx,Ty)) < min{max{ϕ(δ(Ax,Sx)), ϕ(δ(By,Ty))}, ϕ(δ(Sx,By)), ϕ(δ(Ty,Ax))}

+ψ{max{ϕ(d(Ax,By)), ϕ(δ(Ax,Sx)), ϕ(δ(By,Ty)), ϕ(δ(Sx,By)), ϕ(δ(Ty,Ax))},

wherein ψ :<+ →<+ satisfying ψ(t) < t for all t > 0 and ψ is upper semi-continuous.

Proof. The proof follows from Theorem 3.3 in view of Examples 2.1–2.8.

Remark 3.5. Corollaries corresponding to contraction conditions (I–VII) are new results as such corollaries
extend and generalize corresponding relevant results contained in [2, 5, 6, 13, 16, 22, 25–27, 42, 54, 57, 58,
60, 63, 64].

Remark 3.6. We can also outline corollaries corresponding to Corollary 3.2 in respect of Theorems 3.5-3.7
so as to get further new results.

As an application of Theorem 3.3, we have the following result for four finite families of self mappings.

Theorem 3.8. Let {A1,A2, . . . ,Am}, {B1,B2, . . . ,Bp} : X→ X and {S1,S2, . . . ,Sn} and {T1, T2, . . . ,Tq} : X→ B(X)
be four finite families of mappings of a semi-metric space (X, d) wherein d enjoys (W3) and (HE) with
A = A1A2 . . .Am, B = B1B2 . . .Bp, S = S1S2, . . .Sn and T = T1T2 . . .Tq satisfying condition (3.3.1) and the pair
(A,S) or (B,T) enjoys the property (E.A). If S(X) ⊂ B(X) (or T(X) ⊂ A(X)) and A(X) (or B(X)) is a closed
subset of X, then

(a) the pair (A,S) has a strict coincidence point,

(b) the pair (B,T) has a strict coincidence point.

Moreover, if families ({Ai}, {Sr}) and ({Bk}, {Tt}) are pairwise commuting, then (for all i, r, k and t) Ai,Bk,Sr
and Tt have a strict common fixed point.

Proof. Proof can be completed on the lines of Imdad et al. ([38], Theorem 2.2).
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Remark 3.7. By restricting four families as {A1,A2}, {B1,B2}, {S1} and {T1} in Theorem 3.8, we deduce a
substantial but partial generalization of the main results of Imdad and Khan [37] as such a result will deduce
stronger commutativity condition besides relaxing continuity requirements and weakening completeness
requirement of the space to the closedness of suitable subspaces.

By setting A1 = A2 = . . . = Am = G, B1 = B2 = . . . = Bp = H, S1 = S2 = . . . = Sn = I and
T1 = T2 = . . . = Tq = J in Theorem 3.8, we deduce the following:

Corollary 3.3. Let G,H : X → X and I, J : X → B(X) wherein semi-metric d enjoys (W3) and (HE), pair
(Gm, In) (or (Hp, Jq)) enjoys the property (E.A), In(X) ⊂ Hp(X) (or Jq(X) ⊂ Gm(X)) and satisfying the condition

F(ϕ(δ(Inx, Jqy)), ϕ(d(Gmx,Hpy)), ϕ(δ(Gmx, Inx)), ϕ(δ(Hpy, Jqy)), ϕ(δ(Inx,Hpy)), ϕ(δ(Jqy,Gmx))) < 0

for all x, y ∈ X, F ∈ Ψ and ϕ(t) is an altering distance where m,n, p and q are fixed positive integers. If Gm(X)
(or Hp(X)) is a closed subset of X, then G,H, I and J have a strict common fixed point provided GI = IG and
HJ = JH.

Remark 3.8. Corollary 3.3 is a slight but partial generalization of Theorem 3.3 as the commutativity
requirements (i.e. GI = IG and HJ = JH) in this corollary are relatively stronger as compared to weak
compatibility in Theorem 3.3.

4. An Application

In [17], Branciari established the following result as a generalization of Banach fixed point theorem for
integral type contractions.

Theorem 4.1. Let (X, d) be a complete metric space and f : X→ X be a mapping such that for all x, y ∈ Xand
k ∈ (0, 1)

d( f x, f y)∫
0

φ(t)dt ≤ k

d(x,y)∫
0

φ(t)dt, (4.1.1)

where φ : [0,∞) → [0,∞) is a Lebesgue measurable mapping (i.e. with finite integral) on each compact

subset of [0,∞) such that for ε > 0,
ε∫

0
φ(t)dt > 0. Then f has a unique fixed point z ∈ X and for all x ∈ X,

lim
n→∞

f nx = z.

Several common fixed point theorems in metric and semi-metric spaces for compatible, weakly compati-
ble and OWC mappings satisfying contractive conditions of integral type are proved (e.g. [11, 23, 47–49, 55]).
Later, Suzuki [62] proved that integral type contractions are Meir-Keeler contractions. He also showed that
Meir-Keeler contractions of integral type are still Meir-Keeler contractions. Jachymski [39] also proved that
most contractive conditions of integral type given recently by many authors coincide with classical ones.
But he gave a new contractive condition of integral type which is independent of classical ones. Most
recently Popa and Mocanu [55, 56] obtained integral type contractions via altering distance function and
proved general common fixed point results for integral type contractive conditions.

In what follows, we further attempt to obtain common fixed point theorems for integral type contractions
via altering distances, i.e. results involving integral type contractions are not new ones, but can be obtained
via classical altering distances functions.

Lemma 4.1. The function ϕ(t) =
t∫

0
φ(x)dx, where φ(x) is (as in Theorem 4.1) an altering distance function.

Proof. By definitions of ϕ(t) and φ(x), it follows that ϕ(t) is increasing and ϕ(t) = 0 if and only if t = 0. By
Lemma 2.5 (cf. [49]), ϕ(t) is continuous.
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Now, we prove a common fixed point theorem for the pairs of hybrid mappings satisfying integral type
contractive condition.

Theorem 4.2. Let A,B : X→ X and S,T : X→ B(X) wherein X be nonempty set equipped with a semi-metric
d which enjoy (W3) and (HE). Suppose that

(a) the pair (A,S) (or (B,T)) share the property (E.A),

(b) S(X) ⊂ B(X) (or T(X) ⊂ A(X)),

(c) A(X) (or B(X)) is a closed subset of X and

F
( ∫ δ(Sx,Ty)

0
φ(t)dt,

∫ d(Ax,By)

0
φ(t)dt,

∫ δ(Ax,Sx)

0
φ(t)dt,

∫ δ(By,Ty)

0
φ(t)dt,

∫ δ(Sx,By)

0
φ(t)dt,

∫ δ(Ty,Ax)

0
φ(t)dt

)
< 0

(4.2.1)
for all x, y ∈ X, F ∈ Ψ and φ ∈ Φ. If the pairs (A,S) and (B,T) are weakly compatible, then A,B,S and T have
a unique strict common fixed point.

Proof. In view of Lemma 4.1, we have ϕ(δ(Sx,Ty)) =
∫ δ(Sx,Ty)

0 φ(t)dt, ϕ(d(Ax,By)) =
∫ d(Ax,By)

0 φ(t)dt,

ϕ(δ(Ax,Sx)) =
∫ δ(Ax,Sx)

0 φ(t)dt, ϕ(δ(By,Ty)) =
∫ δ(By,Ty)

0 φ(t)dt, ϕ(δ(Sx, By)) =
∫ δ(Sx,By)

0 φ(t)dt and ϕ(δ(Ty,Ax)) =∫ δ(Ty,Ax)

0 φ(t)dt. Then by inequality (4.2.1), we have

F
(
ϕ(δ(Sx,Ty)), ϕ(d(Ax,By)), ϕ(δ(Ax,Sx)), ϕ(δ(By,Ty)), ϕ(δ(Sx,By)), ϕ(δ(Ty,Ax))

)
< 0.

In view of Lemma 4.1, ϕ(t) is an altering distance function. Hence all the conditions of Theorem 3.3 are
satisfied and therefore conclusions of Theorem 4.2 follow from Theorem 3.3. This completes the proof.

Corollary 4.1. The conclusions of Theorem 4.2 remain true if inequality (4.2.1) is replaced by one of the
following contraction conditions: (for all x, y ∈ X, F ∈ Ψ and φ ∈ Φ)

(I)
∫ δ(Sx,Ty)

0 φ(t)dt < ψ
(∫ max{d(Ax,By),δ(Ax,Sx),δ(By,Ty),δ(Sx,By),δ(Ty,Ax)}

0 φ(t)dt
)

where ψ :<+ →<+ is an upper semi-continuous function satisfying ψ(t) < t for all t > 0,

(II)
∫ δ(Sx,Ty)

0 φ(t)dt < ψ
(

max
{ ∫ d(Ax,By)

0 φ(t)dt,
∫ δ(Ax,Sx)

0 φ(t)dt,
∫ δ(By,Ty)

0 φ(t)dt,
∫ δ(Sx,By)

0 φ(t)dt,
∫ δ(Ty,Ax)

0 φ(t)dt
})

where ψ :<+ →<+ is an upper semi-continuous function satisfying ψ(t) < t for all t > 0,

(III)
( ∫ δ(Sx,Ty)

0 φ(t)dt
)p
< ψ

(
a
( ∫ d(Ax,By)

0 φ(t)dt
)p

+ (1 − a) max
{
α
( ∫ δ(Ax,Sx)

0 φ(t)dt
)p
, β

( ∫ δ(By,Ty)

0 φ(t)dt
)p
,

( ∫ δ(Ax,Sx)

0
φ(t)dt

) p
2
.
( ∫ δ(Ty,Ax)

0
φ(t)dt

) p
2
,
( ∫ δ(Sx,By)

0
φ(t)dt

) p
2
.
( ∫ δ(Ty,Ax)

0
φ(t)dt

) p
2
})

whereψ :<+ →<+ is an upper semi-continuous function satisfyingψ(t) < t for all t > 0, 0 ≤ a, α, β ≥ 1
and p ≥ 1,

(IV)
∫ δ(Sx,Ty)

0 φ(t)dt < αmax
{∫ d(Ax,By)

0 φ(t)dt,
∫ δ(Ax,Sx)

0 φ(t)dt,
∫ δ(By,Ty)

0 φ(t)dt
}

+(1 − α)
(
a
∫ δ(Sx,By)

0
φ(t)dt + b

∫ δ(Ty,Ax)

0
φ(t)dt

)
0 ≤ α < 1, a, b ≥ 0 and a + b ≤ 1,



J. Ali et al. / Filomat 31:11 (2017), 3233–3248 3246

(V)
∫ δ(Sx,Ty)

0 φ(t)dt < ψ
(
max

{∫ d(Ax,By)

0 φ(t)dt,
∫ δ(By,Ty)

0 φ(t)dt,
∫ δ(Sx,By)

0 φ(t)dt
})

+
1
2

(∫ δ(Sx,By)

0
φ(t)dt +

∫ δ(Ty,Ax)

0
φ(t)dt

)
where ψ :<+ →<+ is an upper semi-continuous function satisfying ψ(t) < t for all t > 0.

Proof. The proof follows from Theorem 4.2 and Examples 2.9–2.13.

Remark 4.1. Theorem 4.2 and Corollary 4.1 extend and generalize several relevant results especially those
contained in [10, 11, 17, 23, 48, 53, 55, 65].

5. An Illustrative Example

Example 5.1. Let X = [0, 1] equipped with semi-metric d(x, y) = (x − y)2. Define mappings A = B : X → X
and S = T : X→ B(X) by

A(x) =
x
2

and S(x) =
[
0,

x
x + 4

]
∀ x ∈ X.

Then we have that S(X) = [0, 1
5 ] ⊆ [0, 1

2 ] = A(X) and AS(0) = SA(0) = {0}. Thus pair (A,S) is weakly
compatible. Moreover, A(X) = [0, 1

2 ] is closed in X and pair (A,S) satisfies the property (E.A.) (consider
{xn} =

{
1
n

}
) as

lim
n→∞

Axn = lim
n→∞

Sxn = {0}.

Now, we begin to verify Condition (3.3.1) of Theorem 3.3. Consider the map F as

F(t1, t2, t3, t4, t5, t6) = t1 − ψ(max{t2, t3, t4, t5, t6})

and define ψ :<+
→< by ψ(t) = t

4 for all t ≥ 0 and ϕ is a suitable altering distance.
If x, y ∈ (0, 1] and x ≥ y (or y ≥ x), then

ϕ(δ(Sx,Sy)) = ϕ(max{
( x
x + 4

)2
,
( y

y + 4

)2
}) < ϕ(max{

(x
4

)2
,
( y

4

)2
})

=
1
4
ϕ(

(x
2

)2
) =

1
4
ϕ(δ(Ax,Sy))

≤
1
4
(
max

{
ϕ(d(Ax,Ay)), ϕ(δ(Ax,Sx)), ϕ(δ(Ay,Sy)), ϕ(δ(Sx,Ay)), ϕ(δ(Sy,Ax))

})
= ψ

(
max

{
ϕ(d(Ax,Ay)), ϕ(δ(Ax,Sx)), ϕ(δ(Ay,Sy)), ϕ(δ(Sx,Ay)), ϕ(δ(Sy,Ax))

})
.

Therefore all the conditions of Theorem 3.3 are satisfied. Here, 0 is a coincidence as well as a unique strict
common fixed point of the pair (A,S).

Acknowledgements. Authors are thankful to learned referee for the valuable suggestions.
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[7] M. A. Alghamdi, S. Radenović, N. Shahzad, On some generalizations of commuting mappings, Abstract and Applied Analysis

Volume 2011, Article ID 952052, 6 pages.
[8] Javid Ali, M. Imdad, An implicit function implies several contraction conditions, Sarajevo Journal of Mathematics 4(17) (2008)

269–285.
[9] Javid Ali, M. Imdad, Common fixed points of nonlinear hybrid mappings under strict contractions in semi-metric spaces,

Nonlinear Analysis (HS) 4 (2010) 830–837.
[10] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive

condition of integral type, Journal of Mathematical Analysis and Applications 322 (2006) 796–802.
[11] A. Aliouche, V. Popa, General common fixed point theorems for occasionally weakly compatible hybrid mappings and applica-

tions, Novi Sad Journal of Mathematics 39(1) (2009) 89–109.
[12] M. A. Al-Thagafi, N. Shahzad, Generalized I-nonexpansive self maps and invariant approximation, Acta Mathematica Sinica

24(5) (2008) 867–876.
[13] I. Altun, D. Turkoglu, Some fixed point theorems for weakly compatible multi-valued mappings satisfying an implicit relation,

Filomat 22(1) (2008) 13–23.
[14] I. Altun, D. Turkoglu, Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwanese

Journal of Mathematics 13 (2009) 1291–1304.
[15] K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1990.
[16] H. Bouhadjera, A. Djoudi, Common fixed point theorems for single and set-valued maps, Analele Universitatii Oradea Fascicola

Matematica XV (2008) 109–127.
[17] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, International Journal

of Mathematics and Mathematical Sciences 29(9) (2002) 531–536.
[18] D. K. Burke, Cauchy sequences in semi-metric spaces, Proceedings of the American Mathematical Society 33 (1972) 161–164.
[19] C. Chifu, G. Petrusel, M.-F. Bota, Fixed points and strict fixed points for multivalued contractions of Reich type on metric spaces

endowed with a graph, Fixed Point Theory and Applications 2013 (2013): 203.
[20] S. H. Cho, G. Y. Lee, J. S. Bae, On coincidence and fixed-point theorems in symmetric spaces, Fixed Point Theory and Applications

2008(2008), 9 pages.
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[24] D. Dorić, Z. Kadelburg, S. Radenović, A note on occasionally weakly compatible mappings and common fixed points, Fixed

Point Theory 13 (2012) 475–479.
[25] M. Elamrani, B. Mehdaoui, Common fixed point theorems for compatible and weakly compatible mappings, Revista Colombiana

de Matematicas 34 (2000) 25–33.
[26] B. Fisher, Common fixed points of mappings and set-valued mappings, Rostocker Mathematisches Kolloquium 18 (1981) 69–77.
[27] B. Fisher, Common fixed points of mappings and set-valued mappings on a metric spaces, Kyungpook Mathematical Journal 25

(1985) 35–42.
[28] F. Galvin, S. D. Shore, Completeness in semi-metric spaces, Pacific Journal of Mathematics 113 (1984) 67–75.
[29] T. L. Hicks, B. E. Rhoades, Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear Analysis

(TMA) 36 (1999) 331–344.
[30] M. Imdad, A. Ahmad, On common fixed point of mappings and set-valued mappings with some weak conditions of commuta-

tivity, Publicationes Mathematicae Debrecen 44(1-2) (1994) 105–114.
[31] M. Imdad, Javid Ali, Common fixed point theorems in symmetric spaces employing a new implicit function and common

property (E.A), Bulletin of Belgian Mathematical Society Simon Stevin 16 (2009) 421–433.
[32] M. Imdad, Javid Ali, Pairwise coincidentally commuting mappings satisfying a rational inequality, Italian Journal of Pure and

Applied Mathematics 20 (2006) 87–96.
[33] M. Imdad, Javid Ali, V. Popa, Impact of occasionally weakly compatible property on common fixed point theorems for expansive

mappings, Filomat 25(2011) 79–89.
[34] M. Imdad, Javid Ali, M. Tanveer, Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces,

Chaos, Solitons and Fractals 42 (2009) 3121–3129.
[35] M. Imdad, Javid Ali, M. Tanveer, Remarks on some recent metrical common fixed point theorems, Applied Mathematics Letters

24 (2011) 1165–1169.
[36] M. Imdad, M. S. Khan, S. Sessa, On some weak conditions of commutativity in common fixed point theorems, International

Journal of Mathematics and Mathematical Sciences 11(2) (1988) 289–296.
[37] M. Imdad, Q. H. Khan, A common fixed point theorem for six mappings satisfying a rational inequality, Indian Journal of

Mathematics 44 (2002) 47–57.
[38] M. Imdad, S. Kumar, M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Radovi matematicki 11

(2002) 135–143.



J. Ali et al. / Filomat 31:11 (2017), 3233–3248 3248

[39] J. Jachymski, Remarks on contractive conditions of integral type, Nonlinear Analysis (TMA) 71 (2009) 1073–1081.
[40] G. Jungck, Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences 9

(1986) 771–779.
[41] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East Journal of Mathematical Sciences

4(2) (1996) 199–215.
[42] G. Jungck, B. E. Rhoades, Some fixed points theorems for compatible mappings, International Journal of Mathematics and

Mathematical Sciences 16 (1993) 417–428.
[43] G. Jungck, B. E. Rhoades, Fixed points for set valued functions without continuity, Indian Journal of Pure and Applied Mathe-

matics 29(3) (1998) 227–238.
[44] G. Jungck, B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory 7(2) (2006)

287–296.
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