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Abstract. In this work, our intention is to introduce the notion of rational (α-β-FG)-contraction mapping
in b-metric-like spaces, and produce relevant fixed point and periodic point results for weakly α-admissible
mappings. Ulam-Hyers stability of this problem is also investigated. To illustrate our results, we give
throughout the paper some examples, in particular in order to justify the use of rational terms. As an
application, we obtain sufficient conditions for the existence of solutions for Cantilever Beam Problem.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

The Banach Contraction Principle (BCP) is the most famous, simplest and one of the most versatile
elementary result in fixed point theory in metric space structure. A huge amount of literature witnesses
applications, generalizations and extensions of this principle carried out by several authors in different
directions, e.g., by weakening the hypothesis, using different setups, considering different mappings and
generalized form of metric spaces. In this context, the work of Ljubomir Ćirić plays one of the central roles,
see, e.g., the papers [3, 4].

The study of new classes of spaces and their basic properties are always favorite topics of interest among
the mathematical research community. Recently, some authors have introduced some generalizations of
metric spaces in several ways and have studied fixed point problems in these classes, as well as their
applications. In this context, Matthews [15] introduced the notion of a partial metric space as a part of
the study of denotational semantics of data-flow networks. He showed that BCP can be generalized to
the partial metric context for applications in program verifications. Note that in partial metric spaces,
self-distance of an arbitrary point need not be equal to zero.

Hitzler and Seda [10], resp. Amini-Harandi [2] made a further generalization under the name of dislo-
cated, resp. metric-like space, also having the property of “non-zero self-distance”. Amini-Harandi defined
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σ-completeness of these spaces. Further, Shukla et al. introduced in [22] the notion of 0-σ-complete metric-
like space and proved some fixed point theorems in such spaces, as improvements of Amini-Harandi’s
results. This concept was further extended by Alghamdi et al. [1] under the name of b-metric-like space.
They established some existence and uniqueness results in b-metric-like spaces and in partially ordered
b-metric-like spaces.

It is also important to study stability problems for functional equations, known as Ulam-Hyers stability
(see [13, 26]). This concept has influenced a number of mathematicians studying the stability problems
not only for functional equations but also for fixed point problems. In particular, there exist a number
of results which extend Ulam-Hyers stability for fixed point problems in the papers by Felhi et al., [7],
Phiangsungnoen et al. [19], Sintunavarat [23, 24] (see also the reference cited therein).

With the above discussion in mind, we introduce in this paper the notion of rational (α-β-FG)-contractive
mapping in a b-metric-like space and derive some fixed point and periodic point results. Further, we
give some examples in order to justify the use of rational terms and counterexamples to illustrate the
applicability and effectiveness of the results compared with existing results in metric and b-metric spaces.
The considered (α-β-FG)-contraction condition not only generalizes the known ones but also includes the
contraction conditions considered in [9, 17, 18, 27] and many other papers.

Further, Ulam-Hyers stability of the investigated fixed point problem is discussed. In the final section,
we apply the given results to obtain sufficient conditions for the existence of solutions of a fourth-order
two-point boundary value problem for a nonlinear ordinary differential equation, known as Cantilever
Beam Problem, as well as the Ulam-Hyers stability of this problem.

2. Preliminaries

First, we recall some definitions and facts which will be used throughout the paper.

Definition 2.1. [1] Let X be a nonempty set and a real number s ≥ 1 be given. A function σb : X2
→ [0,+∞) is

b-metric-like if for all u, v, z ∈ X, the following assertions hold:

(σb1) σb(u, v) = 0 implies u = v,
(σb2) σb(u, v) = σb(v,u),
(σb3) σb(u, v) ≤ s[σb(u, z) + σb(z, v)].

The pair (X, σb) is called a b-metric-like space, and s is its coefficient.

In a b-metric-like space (X, σb), if u, v ∈ X and σb(u, v) = 0, then u = v, but the converse may not be true
and σb(u,u) may be positive for u ∈ X. Clearly, every b-metric (Czerwik [5]) and every partial b-metric are
b-metric-like with the same coefficient s. However, the converses of these facts need not hold [22].

Every b-metric-like σb on X generates a topology τσb on X whose base is the family of all open σb-balls
{Bσb (u, δ) : u ∈ X, δ > 0}, where Bσb (u, δ) = {v ∈ X : |σb(u, v) − σb(u,u)| < δ}, for u ∈ X and δ > 0.

Proposition 2.2. [11] Let (X, σ) be a metric-like space and σb(x, y) = [σ(x, y)]p, where p > 1 is a real number. Then
σb is a b-metric-like with coefficient s = 2p−1.

Example 2.3. LetX = [0,∞) and p > 1 be a constant. Define a function σb : X2
→ [0,∞) by σb(x, y) = (x + y)p

or σb(x, y) = (max{x, y})p. Then (X, σb) is a b-metric-like space with constant s = 2p−1. Clearly, (X, σb) is
neither a b-metric, nor metric-like, nor partial b-metric space.

Example 2.4. [11] Let X = [0, 1] and a mapping σb : X ×X → [0,∞) be defined by σb = (x + y − xy)p, where
p > 1 is a real number. Then σb is a b-metric-like on Xwith coefficient s = 2p−1.

Now, we define the concepts of Cauchy sequence and convergent sequence in a b-metric-like space.

Definition 2.5. [1, 11] Let (X, σb) be a b-metric-like space with coefficient s ≥ 1, let {un} be any sequence in X and
u ∈ X. Then
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(i) The sequence {un} is called convergent to u w.r.t. τσb , if limn→∞ σb(un,u) = σb(u,u);
(ii) The sequence {un} is called a Cauchy sequence in (X, σb) if limn,m→∞ σb(un,um) exists (and is finite).

(iii) The space (X, σb) is called complete if for every Cauchy sequence {un} in X there exists u ∈ X such that

lim
n,m→∞

σb(un,um) = lim
n→∞

σb(un,u) = σb(u,u). (1)

(iv) A function J : X → X is said to be continuous if

lim
n→∞

σb(xn, x) = σb(x, x) implies lim
n→∞

σb(Jxn,Jx) = σb(Jx,Jx).

It is clear that the limit of a sequence is usually not unique in a b-metric-like space (already partial metric
spaces have this property).

Lemma 2.6. [11] Let (X, σb) be a b-metric-like space with coefficient s > 1 and assume that {un} and {vn} are sequences
in X such that un → u and vn → v. Then we have

1
s2 σb(u, v)−

1
s
σb(u,u)− σb(v, v) ≤ lim inf

n→∞
σb(un, vn) ≤ lim sup

n→∞
σb(un, vn) ≤ sσb(u,u) + s2σb(v, v) + s2σb(u, v).

Contraction-type mappings have been also generalized in several directions. In a series of generaliza-
tions, starting with Samet et al. [21], the concept of α-admissible mappings and α-ψ-contractive mappings
were introduced, thus generalizing BCP. Recently, Sintunavarat [24] introduced the notion of weakly α-
admissible mapping and discussed respective fixed point results in metric spaces.

Definition 2.7. For a nonempty set X, let α : X × X → [0,∞) and f : X → X be two mappings. Then f is said to
be:

(i) [21] α-admissible if: x, y ∈ X with α(x, y) ≥ 1⇒ α( f x, f y) ≥ 1.
(ii) [24] weakly α-admissible if: x ∈ X with α(x, f x) ≥ 1⇒ α( f x, f f x) ≥ 1.

In what follows, we use the following terminology from the paper [25]. For a nonempty set X and a
mapping α : X × X → [0,∞), we use A(X, α) and WA(X, α) to denote the collection of all α-admissible
mappings on X and the collection of all weakly α-admissible mappings on X, respectively. Obviously,

A(X, α) ⊂WA(X, α)

and, by [24, Example 2.1], the inclusion can be strict.
In the paper [27], Wardowski introduced a new type of contractions which he called F-contractions. He

used the family F of functions F : R+
→ R with the following properties:

(F1) F is strictly increasing;
(F2) for each sequence {tn} of positive numbers,

lim
n→∞

tn = 0 if and only if lim
n→∞

F(tn) = −∞.

(F3) There exists k ∈ (0, 1) such that limt→0+ tkF(t) = 0.

Definition 2.8. [27] Let (X, d) be a metric space. A self-mapping f on X is called an F-contraction if there exist
F ∈ F and τ ∈ R+ such that

τ + F(d( f x, f y)) ≤ F(d(x, y)),

for all x, y ∈ X with d( f x, f y) > 0.
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It was proved in [27] that each F-contraction in a complete metric space has a unique fixed point and so
a genuine generalization of BCP was obtained.

Following this direction of research, Gopal et al. [9] introduced the concept of α-type F-contractive map-
pings and gave relevance to fixed point and periodic point theorems. Hussain and Salimi [12] introduced
an α-GF-contraction with respect to a general family of functions G and established Wardowski type fixed
point results in metric and ordered metric spaces. Parvaneh et al. [18] used slightly modified family of
functions, denoted by ∆G,β. Then they introduced an α-β-FG-contraction and generalized the Wardowski
fixed point results in b-metric and ordered b-metric spaces.

In Parvaneh et al.’s approach, the following set of functions is used:

Definition 2.9. Denote by ∆F the family of all functions F : R+
→ R with the following properties:

(∆1) F is continuous and strictly increasing;

(∆2) for each sequence {tn} ⊆ R+, limn→∞ tn = 0 if and only if limn→∞ F(tn) = −∞.

∆G,β denotes the set of pairs (G, β), where G : R+
→ R and β : [0,∞)→ [0, 1), such that

(∆3) for each sequence {tn} ⊆ R+, lim supn→∞ G(tn) ≥ 0 if and only if lim supn→∞ tn ≥ 1.

(∆4) for each sequence {tn} ⊆ [0,∞), lim supn→∞ β(tn) = 1 implies limn→∞ tn = 0;

(∆3) for each sequence {tn} ⊆ R+,
∑
∞

n=1 G(β(tn)) = −∞.

Example 2.10. (i) If F(t) = G(t) = ln t and β(t) = k ∈ (0, 1) then F ∈ ∆F and (G, β) ∈ ∆G,β. (ii) Let F(t) = −1/
√

t,
G(t) = ln t and β(t) = 1

s e−t for t > 0 and β(0) = 0. Then F ∈ ∆F and (G, β) ∈ ∆G,β.

3. Fixed Point Results for Rational (α-β-FG)-Contraction Mappings

We introduce now the notion of rational (α-β-FG)-contraction in a b-metric-like space as follows.

Definition 3.1. Let (X, σb) be a b-metric-like space with coefficient s ≥ 1 and α : X × X → [0,∞). A self-mapping
J on X is called a rational (α-β-FG)-contraction, if there exist F ∈ ∆F and (G, β) ∈ ∆G,β such that

u, v ∈ X with α(u, v) ≥ 1 and σb(Ju,Jv) > 0 implies (2)
F(sσb(Ju,Jv)) ≤ F(ΘJ (u, v)) + G(β(ΘJ (u, v))),

where

ΘJ (u, v) = max


σb(u, v), σb(u,Ju), σb(v,Jv),

σb(u,Jv) + σb(v,Ju)
4s

,

σb(u,Ju)σb(v,Jv)
1 + σb(u, v)

,
σb(u,Ju)σb(v,Jv)

1 + σb(Ju,Jv)

 . (3)

We denote by Υ(X, α,FG) the collection of all rational (α-β-FG)-contraction mappings on (X, σb).

If we take F(t) = G(t) = ln t and β(t) = k ∈ (0, 1), we see that every rational α-contraction is also a rational
(α-β-FG)-contraction in a b-metric-like space. However, for other functions F ∈ ∆F and (G, β) ∈ ∆G,β, new
conditions can be obtained (see further Remark 3.5).

We are equipped now to state our first main result.

Theorem 3.2. Let (X, σb) be a complete b-metric-like space with coefficient s ≥ 1 and let α : X × X → [0,∞) and
J : X → X be given mappings. Suppose that the following conditions hold:

(FG1) J ∈ Υ(X, α,FG) ∩WA(X, α);
(FG2) there exists u0 ∈ X such that α(u0,Ju0) ≥ 1;
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(FG3) α has a transitive property, that is, for u, v,w ∈ X,

α(u, v) ≥ 1 and α(v,w) ≥ 1⇒ α(u,w) ≥ 1;

(FG4) J is σb-continuous.

Then J has a fixed point u∗ ∈ X such that σb(u∗,u∗) = 0 provided α(u∗,u∗) ≥ 1.

Proof. Starting from the given u0 ∈ X satisfying α(u0,Ju0) ≥ 1, define a sequence {un} in X by un+1 = Jun
for n ∈ N∗ = N ∪ {0}. If there exists n0 ∈ N∗ such that un0 = un0+1, then un0 ∈ Fix(J) and hence the proof
is completed. Therefore, we will assume that un , un+1 for all n ∈ N∗ and let %n = σb(un,un+1) for n ∈ N∗.
Then %n > 0 for all n ∈N∗. We will prove that limn→∞ %n = 0.

Using that J ∈WA(X, α) and α(u0,Ju0) ≥ 1, we have

α(u1,u2) = α(Ju0,JJu0) ≥ 1.

Repeating this process, we obtain

α(un+1,un+2) ≥ 1, ∀n ∈N∗.

It follows from J ∈ Υ(X, α,FG) that

F(%n) = F(σb(xn+1, xn)) ≤ F(sσb(Jxn,Jxn−1)) ≤ F(ΘJ (xn, xn−1)) + G(β(ΘJ (xn, xn−1))), (4)

where

ΘJ (xn, xn−1) = max

 σb(xn, xn−1), σb(xn, f xn), σb(xn−1, f xn−1), σb(xn, f xn−1)+σb(xn−1, f xn)
4s ,

σb(xn, f xn)σb(xn−1, f xn−1)
1+σb(xn,xn−1) ,

σb(xn, f xn)σb(xn−1, f xn−1)
1+σb( f xn, f xn−1)


= max

 σb(xn, xn−1), σb(xn, xn+1), σb(xn−1, xn), σb(xn,xn)+σb(xn−1,xn+1)
4s ,

σb(xn,xn+1)σb(xn−1,xn)
1+σb(xn,xn−1) , σb(xn,xn+1)σb(xn−1,xn)

1+σb(xn+1,xn)


≤ max

{
σb(xn, xn−1), σb(xn, xn+1), 3sσb(xn,xn+1)+sσb(xn−1,xn)

4s

}
≤ max {σb(xn, xn−1), σb(xn, xn+1)}
= max

{
%n−1, %n

}
.

If %n−1 ≤ %n for some n ∈N, then from (4) we have

F(%n) ≤ F(%n) + G(β(%n)).

Therefore G(β(%n)) ≥ 0, which yields that β(%n) ≥ 1, which is a contradiction. Thus %n−1 > %n for all n ∈ N
and so from (4) we have

F(%n) ≤ F(%n−1) + G(β(%n−1)).

Therefore we derive

F(%n) ≤ F(%n−1) + G(β(%n−1))
≤ F(%n−2) + G(β(%n−1)) + G(β(%n−2))
...

≤ F(%0) +

n∑
i=1

G(β(%n−1)),
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that is,

F(%n) ≤ F(%0) +

n∑
i=1

G(β(%n−1)) for all n ∈N. (5)

Owing to the properties of (G, β) ∈ ∆G,β and from (5), we get F(%n)→ −∞ as n→∞. Thus, from the property
(∆2), we have

lim
n→∞

%n = 0. (6)

Next, we have to show that {un} is a σb-Cauchy sequence in (X, σb). Suppose the contrary; then, there
exist ε > 0 and two subsequences

{
um(r)

}
and

{
un(r)

}
of {un} such that m(r) > n(r) > r and

σb(um(r),un(r)) ≥ ε. (7)

We may also assume

σb(un(r),um(r)−1) < ε, (8)

choosing m(r) to be the smallest index exceeding n(r) for which (7) holds. Then we get

ε ≤ σb(um(r),un(r)) ≤ sσb(un(r),um(r)−1) + sσb(um(r)−1,um(r))
< sε + sσb(um(r)−1,um(r)). (9)

Passing to the upper limit in (8) as r→∞, obtain

ε
s
≤ lim inf

r→∞
σb(un(r),um(r)−1) ≤ lim sup

r→∞
σb(un(r),um(r)−1) ≤ ε. (10)

Also, from (9), (10), we obtain

ε ≤ lim sup
r→∞

σb(un(r),um(r)−1) ≤ sε.

Due to (σb3), we get

σb(un(r)+1,um(r)) ≤ sσb(un(r)+1,un(r)) + sσb(un(r),um(r))

≤ sσb(un(r)+1,un(r)) + s2σb(un(r),um(r)−1) + s2σb(um(r)−1,um(r))

≤ sσb(un(r)+1,un(r)) + s2ε + s2σb(um(r)−1,um(r)), (11)

and passing to the upper limit in (11) as r→∞, we obtain

lim sup
r→∞

σb(un(r)+1,um(r)) ≤ s2ε.

Finally,

σb(un(r)+1,um(r)−1) ≤ sσb(un(r)+1,un(r)) + sσb(un(r),um(r)−1)
≤ sσb(un(r)+1,un(r)) + sε. (12)

Also, passing to the upper limit as r→∞ in (12), we get

lim sup
r→∞

σb(un(r)+1,um(r)−1) ≤ sε.
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Hence,

ε
s
≤ lim inf

r→∞
σb(un(r),um(r)−1) ≤ lim sup

r→∞
σb(un(r),um(r)−1) ≤ ε. (13)

Similarly,

lim sup
r→∞

σb(un(r),um(r)) ≤ sε, (14)

ε
s
≤ lim sup

r→∞
σb(un(r)+1,um(r)), (15)

lim sup
r→∞

σb(un(r)+1,um(r)−1) ≤ sε. (16)

On using (2) we get

F(sσb(un(r)+1,um(r))) = F(sσb(Jun(r),Jum(r)−1))
≤ F(ΘJ (un(r),um(r)−1)) + G(β(ΘJ (un(r),um(r)−1))), (17)

where

ΘJ (un(r),um(r)−1)

= max

σb(un(r),um(r)−1), σb(un(r),Jun(r)), σb(um(r)−1,Jum(r)−1), σb(un(r),Jum(r)−1)+σb(um(r)−1,Jun(r))
4s ,

σb(un(r),Jun(r))σb(um(r)−1,Jum(r)−1)
1+σ(un(r),um(r)−1) ,

σb(un(r),Jun(r))σb(um(r)−1,Jum(r)−1)
1+σ(Jun(r),Jum(r)−1)


= max

σb(un(r),um(r)−1), σb(un(r),un(r)+1), σb(um(r)−1,um(r)),
σb(un(r),um(r))+σb(um(r)−1,un(r)+1)

4s ,
σb(un(r),un(r)+1)σb(um(r)−1,um(r))

1+σ(un(r),um(r)−1) ,
σb(un(r),un(r)+1)σb(um(r)−1,um(r))

1+σ(un(r)+1,um(r))

 . (18)

Passing to the upper limit in (18) as r→∞, and using (6), (13), (14) and (16) we obtain

lim sup
r→∞

ΘJ (un(r),um(r)−1)

= max



lim sup
r→∞

σb(un(r),um(r)−1), lim sup
r→∞

σb(un(r),un(r)+1), lim sup
r→∞

σb(um(r)−1,um(r)),

lim sup
r→∞

σb(un(r),um(r)) + lim sup
r→∞

σb(um(r)−1,un(r)+1)

4s
,

lim sup
r→∞

σb(un(r),un(r)+1) lim sup
r→∞

σb(um(r)−1,um(r))

1 + lim sup
r→∞

σ(un(r),um(r)−1)
,

lim sup
r→∞

σb(un(r),un(r)+1) lim sup
r→∞

σb(um(r)−1,um(r))

1 + lim sup
r→∞

σ(un(r)+1,um(r))


= max


lim sup

r→∞
σb(un(r),um(r)−1), 0, 0,

lim sup
r→∞

σb(un(r),um(r)) + lim sup
r→∞

σb(um(r)−1,un(r)+1)

4s
, 0, 0


≤ max

{
ε,
ε
2

}
= ε. (19)
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Next, passing to the upper limit in (17) as r→∞, and using (15), (19) we get

F(s
ε
s

) ≤ F(lim sup
r→∞

sσb(un(r)+1,um(r)))

≤ F(lim sup
r→∞

ΘJ (un(r),um(r)−1)) + lim sup
r→∞

G(β(ΘJ (un(r),um(r)−1)))

≤ F(ε) + lim sup
r→∞

G(β(ΘJ (un(r),um(r)−1))),

implying that

lim sup
r→∞

G(β(ΘJ (un(r),um(r)−1))) ≥ 0,

which implies that lim sup
r→∞

β(ΘJ (un(r),um(r)−1)) ≥ 1 and since β(t) < 1 for all t ≥ 0, we have

lim sup
r→∞

β(ΘJ (un(r),um(r)−1)) = 1.

Therefore by using (17) we obtain

lim sup
r→∞

σb(un(r),um(r)−1) = 0,

which is a contradiction with (13). Thus, {un} is a σb-Cauchy sequence in the b-metric-like space (X, σb).
Since (X, σb) is σb-complete, there exists u∗ ∈ X such that

lim
n→∞

σb(un,u∗) = lim
n,m→∞

σb(un,um) = σb(u∗,u∗) = 0.

By (σb3), we obtain

σb(u∗,Ju∗) ≤ sσb(u∗,Jun) + sσb(Jun,Ju∗). (20)

So using the continuity of J and passing to the limit in (20) as n→∞, we get

σb(u∗,Ju∗) ≤ s lim
n→∞

σb(u∗,un+1) + s lim
n→∞

σb(Jun,Ju∗) = sσb(Ju∗,Ju∗).

Since α(u∗,u∗) ≥ 1 and using (2) we get

F(σb(u∗,Ju∗)) ≤ F(sσb(Ju∗,Ju∗)) ≤ F(ΘJ (u∗,u∗)) + G(β(ΘJ (u∗,u∗))),

where

ΘJ (u∗,u∗) = max

 σb(u∗,u∗), σb(u∗,Ju∗), σb(u∗,Ju∗), σb(u∗,Ju∗)+σb(u∗,Ju∗)
4s ,

σb(u∗,Ju∗)σb(u∗,Ju∗)
1+σb(u∗,u∗) , σb(u∗,Ju∗)σb(u∗,Ju∗)

1+σb(Ju∗,Ju∗)


< σb(z,Ju∗).

Therefore

F(σb(Ju∗,Ju∗)) ≤ F(σb(u∗,Ju∗)) + G(β(σb(u∗,Ju∗))),

which implies that G(β(σb(u∗,Ju∗))) ≥ 0 and so β(σb(u∗,Ju∗)) ≥ 1, which is not true, so σb(u∗,Ju∗) = 0 and
Ju∗ = u∗. This proves that u∗ is a fixed point of J such that σb(u∗,u∗) = 0.

We note that the previous result can still be valid for J not necessarily σb-continuous. We have the
following result.
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Theorem 3.3. Let (X, σb) be a complete b-metric-like space with coefficient s ≥ 1 and let α : X2
→ [0,∞), and

J : X → X be given mappings. Suppose that the assumptions (FG1)–(FG3) of Theorem 3.2 hold, as well as:

(FG4′) X is α-regular, i.e., if {un} is a sequence in X with α(un,un+1) ≥ 1 for n ∈ N and un → u∗ as n → ∞, then
α(un,u∗) ≥ 1 for n ∈N.

Then J has a fixed point u∗ ∈ X such that σb(u∗,u∗) = 0.

Proof. Following the lines of proof of Theorem 3.2, the sequence {un} defined by un+1 = Jun,∀ n ∈ N is
a σb-Cauchy sequence in the σb-complete b-metric-like space (X, σb). From the completeness of (X, σb), it
follows that there exists u∗ ∈ X such that that

lim
n→∞

σb(un,u∗) = lim
n,m→∞

σb(un,um) = σb(u∗,u∗) = 0.

Now, by using (2) and α(un,u∗) ≥ 1, ∀ n ∈N, we have

F(sσb(un+1,Ju∗)) ≤ F(ΘJ (un,u∗)) + G(β(ΘJ (un,u∗))), (21)

where

ΘJ (un,u∗) = max

 σb(un,u∗), σb(un,Jun), σb(u∗,Ju∗), σb(un,Ju∗)+σb(Jun,u∗)
4s ,

σb(un,Jun)σb(u∗,Ju∗)
1+σb(un,u∗)

, σb(un,Jun)σb(u∗,Ju∗)
1+σb(Jun,Ju∗)


≤ max

 σb(un,u∗), σb(un,un+1), σb(u∗,Ju∗), σb(un,Ju∗)+σb(un+1,u∗)
4s ,

σb(un,un+1)σb(u∗,u∗)
1+σb(un,u∗)

, σb(un,un+1)σb(u∗,u∗)
1+σb(un+1,u∗)

 . (22)

Passing to the limit as n→∞ in (22) and using Lemma 2.6, we get

σb(u∗,Ju∗)
4s2 = min

σb(u∗,Ju∗),
σb(u∗,Ju∗)

s

4s


≤ lim inf

n→∞
ΘJ (un,u∗) ≤ lim sup

n→∞
ΘJ (un,u∗)

≤ max
{
σb(u∗,Jz),

sσb(u∗,Ju∗)
4s

}
= σb(u∗,Ju∗).

Again, by using (21) and taking the upper limit as n→∞ and using Lemma 2.6, we get

F(σb(u∗,Ju∗)) = F(s
1
s
σb(un+1,Ju∗))

≤ F(s lim sup
n→∞

σb(un+1,Ju∗))

≤ F(lim sup
n→∞

ΘJ (un,u∗)) + lim sup
n→∞

G(β(ΘJ (un,u∗)))

≤ F(σb(u∗,Ju∗)) + lim sup
n→∞

G(β(ΘJ (un,u∗))).

This implies that

lim sup
n→∞

G(β(ΘJ (un,u∗))) ≥ 0.

Hence lim sup
n→∞

β(ΘJ (un, z)) ≥ 1. By the property (∆4), we have lim sup
n→∞

ΘJ (un, z) = σb(u∗,Ju∗)) = 0, a

contradiction. Therefore u∗ = Ju∗. Hence u∗ is a fixed point of J .

To ensure the uniqueness of the fixed point, we will consider the following hypothesis.

(H0) : for all x, y ∈ Fix(J), α(x, y) ≥ 1.
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Theorem 3.4. Adding condition (H0) to the hypotheses of Theorem 3.2 (respectively, Theorem 3.3) then Ju∗ = u∗,
Jv∗ = v∗ and σb(u∗,u∗) = σb(v∗, v∗) = 0 imply that u∗ = v∗.

Proof. Suppose that Ju∗ = u∗, Jv∗ = v∗, σb(u∗,u∗) = σb(v∗, v∗) = 0, and, to the contrary, u∗ , v∗, hence
σb(u∗, v∗) > 0. By the assumption, we can replace u by u∗ and v by v∗ in the condition (2), and we get

F(σb(u∗, v∗)) = F(σb(Ju∗,Jv∗)) ≤ F(ΘJ (u∗, v∗)) + G(β(ΘJ (u∗, v∗))),

where

ΘJ (u∗, v∗) = max

 σb(u∗, v∗), σb(u∗,Ju∗), σb(v∗,Jv∗), σb(u∗,Jv∗)+σb(v∗,Ju∗)
4s ,

σb(u∗,Ju∗)σb(v∗,Jv∗)
1+σb(u∗,v∗) , σb(u∗,Ju∗)σb(v∗,Jv∗)

1+σb(Ju∗,Jv∗)


≤ max

{
σb(u∗, v∗), σb(u∗,v∗)

2s

}
= σb(u∗, v∗).

Therefore, we have

F(σb(u∗, v∗)) ≤ F(σb(u∗, v∗)) + G(β(σb(u∗, v∗)))

which implies G(β(σb(u∗, v∗))) ≥ 0, that is, β(σb(u∗, v∗)) ≥ 1, a contradiction and eventually u∗ = v∗.

Remark 3.5. Considering a range of concrete functions F ∈ ∆F and (G, β) ∈ ∆G,β in the condition (2) of Theorems
3.2–3.4, we can get various classes of rational (α-β-FG)-contractive conditions in a b-metric-like space. We state just
a few examples (recall that ΘJ (u, v) is defined in (3)).

(I) Taking G(t) = ln t (t > 0), β(t) = λ ∈ (0, 1) and τ = − lnλ > 0, we have Wardowski-type [27] condition

u, v ∈ X with α(u, v) ≥ 1 and σb(Ju,Jv) > 0 implies
τ + F(sσb(Ju,Jv)) ≤ F(ΘJ (u, v)).

(II) Taking F(t) = G(t) = ln t (t > 0), β(t) = λ ∈ (0, 1), we have Banach-type contraction condition

u, v ∈ X with α(u, v) ≥ 1 and σb(Ju,Jv) > 0 implies
sσb(Ju,Jv) ≤ λΘJ (u, v).

(III) Taking F(t) = G(t) = ln t (t > 0), we have Geraghty-type [6, 8] condition

u, v ∈ X with α(u, v) ≥ 1 and σb(Ju,Jv) > 0 implies (23)
sσb(Ju,Jv) ≤ β(ΘJ (u, v))ΘJ (u, v).

(IV) Taking F(t) = − 1
√

t
, G(t) = ln t (t > 0), the condition is

u, v ∈ X with α(u, v) ≥ 1 and σb(Ju,Jv) > 0 implies

sσb(Ju,Jv) ≤
ΘJ (u, v)

[1 −
√

ΘJ (u, v) ln(β(ΘJ (u, v)))]2
.

(V) Taking F(t) = − 1
√

t
, G(t) = ln t (t > 0) and β(t) = λ ∈ (0, 1), τ = − lnλ > 0, we have the condition

u, v ∈ X with α(u, v) ≥ 1 and σb(Ju,Jv) > 0 implies

sσb(Ju,Jv) ≤
ΘJ (u, v)(

1 + τ
√

ΘJ (u, v)
)2 .
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4. Illustration of Results

The first example demonstrates a possible usage of Theorem 3.4 with the involvement of rational terms
in contractive condition (2).

Example 4.1. Consider X = {0, 1, 2} and let σb : X ×X → [0,∞) be defined by

σb(0, 0) = 0 σb(1, 1) =
1
2

σb(2, 2) =
15
4
,

σb(0, 1) = σb(1, 0) =
3
4
, σb(0, 2) = σb(2, 0) =

3
2
, σb(1, 2) = σb(2, 1) = 3.

It is clear that (X, σb) is a complete b-metric like space with constant s = 4
3 ((X, σb) is neither a b-metric, nor

a metric-like space). Define mappings J : X → X and α : X ×X → [0,∞) by

J :
(
0 1 2
0 2 0

)
, α(u, v) = 1 for all u, v ∈ X.

Moreover, take F(t) = G(t) = ln t and β(t) = 5
6 for t > 0 (Remark 3.5, Case (II)). Then it is easy to see that all

the conditions of Theorem 3.4 are fulfilled—just the condition J ∈ Υ(X, α,FG) needs to be checked. In this
case it reduces to

4
3
σb(Ju,Jv) ≤

5
6

ΘJ (u, v), (24)

for all u, v ∈ Xwith σb(Ju,Jv) > 0, where ΘJ (u, v) is defined by (3).
Now σb(J0,J0) = σb(J0,J2) = σb(J2,J2) = σb(J2,J0) = 0, so only the following three cases have

to be considered:
Case I: For u = 0 and v = 1 (similarly, for u = 1 and v = 0),

σb(Ju,Jv) = σb(J0,J1) = σb(0, 2) =
3
2

and

ΘJ (0, 1) = max
{
σb(0, 1), σb(0,J0), σb(1,J1), σb(0,J1)+σb(1,J0)

4· 43
, σb(0,J0)σb(1,J1)

1+σb(0,1) , σb(0,J0)σb(1,J1)
1+σb(J0,J1)

}
= max

{3
4
, 0, 3,

27
64
, 0, 0

}
= 3.

Hence, (24) reduces to 4
3 ·

3
2 ≤

5
6 · 3.

Case II: For u = v = 1,

σb(Ju,Jv) = σb(J1,J1) = σb(2, 2) =
15
4

and

ΘJ (1, 1) = max
{
σb(1, 1), σb(1,J1), σb(1,J1), σb(1,J1)+σb(1,J1)

4· 43
, σb(1,J1)σb(1,J1)

1+σb(1,1) , σb(1,J1)σb(1,J1)
1+σb(J1,J1)

}
= max

{1
2
, 3, 3,

9
4
, 6,

24
19

}
= 6.

Hence, (24) reduces to 4
3 ·

15
4 ≤

5
6 · 6.

Note that this result could not be obtained without rational terms in contractive condition (whatever
functions F,G and β are chosen).

Case III: For u = 2 and v = 1 (or u = 1 and v = 2) the result follows similarly as in Case I.
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This implies that (24) holds in all the cases, thus J ∈ Υ(X, α,FG). Therefore, all the conditions of
Theorem 3.4 are satisfied. Thus we can conclude that J has a unique fixed point (which is u∗ = 0).

Note also that the conclusion in this example could not be obtained using the standard metric d(u, v) =
|u − v| nor the usual b-metric db(u, v) = (u − v)2. For example, if the standard metric were used, for u = 0,
v = 1, we would get d(Ju,Jv) = 2 > 1 = ΘJ (u, v) and no λ ∈ (0, 1) could be chosen in order that (24) holds.

The next example demonstrates the use of functions α and β, and again the importance of rational terms.

Example 4.2. Consider the set X = {a, b, c, d, e} and choose real numbers p, q > 0 such that p + 50q < log 10
9 ,

i.e., e−(p+50q) > 9
10 . Define a mapping σb : X ×X → [0,+∞) by

σb(d, d) = 0,
σb(b, d) = σb(b, a) = σb(c, c) = σb(c, d) = σb(d, a) = σb(e, e) = q,
σb(c, e) = σb(c, a) = σ(e, a) = 4q,
σb(b, c) = 9q,
σb(b, b) = σb(b, e) = σb(d, e) = σb(a, a) = 10q,

and σb(u, v) = σb(v,u) for all u, v ∈ X. It is clear that (X, σb) is a complete b-metric-like space with parameter
s = 9

2 . Define mappings J : X → X and α : X ×X → [0,+∞) by

J :
(
a b c d e
c d a d b

)
, α(u, v) =

1, u, v ∈ {b, d, e}
0, otherwise.

It is easy to see that just the condition J ∈ Υ(X, α,FG) needs to be checked—we will show that it holds in
the Geraghty-form (23) with β defined as β(t) = e−(p+t) for t > 0 and β(0) < 1.

The only two cases when α(u, v) ≥ 1 and σb(Ju,Jv) > 0 are the following:
Case I: u = b, v = e (or u = e, v = b). We have

sσb(Ju,Jv) = sσb(d, b) =
9
2

q,

and

ΘJ (u, v) = max
{
σb(b, e), σb(b, d), σb(e, b), σb(b,b)+σb(d,e)

4· 92
, σb(b,d)σb(e,b)

1+σb(b,e) , σb(b,d)σb(e,b)
1+σb(d,b)

}
= max

{
10q, q, 10q,

20
18

q,
10q2

1 + 10q
,

10q2

1 + v

}
= 10q.

The inequality (23) reduces to

9
2

q ≤ e−(p+10q)
· 10q

and holds true by the way p, q have been chosen.
Case II: u = v = e. We have

sσb(Ju,Jv) = sσb(b, b) = 45 q,

and

ΘJ (u, v) = max
{
σb(e, e), σb(e, b), σb(e, b), σb(e,b)+σb(e,b)

4· 92
, σb(e,b)σb(e,b)

1+σb(e,e) , σb(e,b)σb(e,b)
1+σb(b,b)

}
= max

{
q, 10q, 10q,

20
18

q,
100q2

1 + q
,

100q2

1 + 10q

}
> 50 q (since q < 1).
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The inequality (23) reduces to

45 q ≤ e−(p+50q)
· 50 q

and again holds true by the way p, q have been chosen.
Thus, all the conditions of Theorem 3.4 are fulffilled and the mappingJ has a unique fixed point (which

is d).
Note that the condition would not be satisfied without the rational terms in ΘJ (in the last case we

would get ΘJ (u, v) = 10q and no appropriate function β could be found). Also, the condition is not satisfied
on the whole space (that is, the use of function α is crucial).

5. Periodic Point Results

It is an obvious fact that, if J is a self-map which has a fixed point u, then u is also a fixed point of Jn

for arbitrary n ∈N. However, the converse is obviously false, i.e., a self-map can have a “periodic” point (a
point u satisfyingJnu = u for some n ∈N) which is not its fixed point. In this section, we prove a periodic
point result for self-mappings on a complete b-metric-like space, thus modifying a result from [17].

Definition 5.1. [14] A mapping J : X → X is said to have the property (P) if it has no periodic points, i.e., if
Fix(Jn) = Fix(J) for every n ∈N, where Fix(J) := {u ∈ X : Ju = u}.

Theorem 5.2. Let (X, σb) be a complete b-metric-like space with coefficient s ≥ 1 and let α : X2
→ [0,∞), and

J : X → X be given mappings satisfying the following conditions:

(̂FG1) there exist F ∈ ∆F and (G, β) ∈ ∆G,β such that

u ∈ X with α(u,Ju) ≥ 1 and σb(Ju,J2u) > 0 implies (25)

F(σb(Ju,J2u)) ≤ F(ΘJ (u,Ju)) + G(β(ΘJ (u,Ju)))

where

ΘJ (u,Ju) = max


σb(u,Ju), σb(Ju,J2u),

σb(u,J2u) + σb(Ju,Ju)
4s

,

σb(u,Ju)σb(Ju,J2u)
1 + σb(u,Ju)

,
σb(u,Ju)σb(Ju,J2u)

1 + σb(Ju,J2u)


(̂FG2) there exists u0 ∈ X such that α(u0,Ju0) ≥ 1;
(̂FG3) J ∈WA(X, α);
(̂FG4) if {un} is a sequence in X such that α(un,un+1) ≥ 1 for all n ∈ N and un → u as n→ ∞, then Jun → Ju as

n→∞;
(̂FG5) if w ∈ Fix(Jn) and w < Fix(J), then α(Jn−1w,Jnw) ≥ 1.

Then J has the property (P).

Proof. Starting from the given u0 ∈ X satisfying α(u0,Ju0) ≥ 1, define the sequence {un} by the rule
un = Jnu0 = Jun−1, n ∈N. Using (̂FG3), we get by induction

α(un,un+1) ≥ 1 for all n ∈N.

If there exists n0 ∈ N such that un0 = un0+1 = Jun0 , then un0 is a fixed point of J . Hence, we assume
un , un+1, i.e., σb(Jun−1,J2un−1) > 0 for all n ∈N.

From (̂FG1), we have

F(σb(un,un+1)) = F(σb(Jun−1,J
2un−1))

≤ F(ΘJ (un−1,Jun−1)) + G(β(ΘJ (un−1,Jun−1))), (26)
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where

ΘJ (un−1,Jun−1) = max

 σ(un−1,Jun−1), σ(Jun−1,J2un−1), σ(un−1,J2un−1)+σ(Jun−1,Jun−1)
4s ,

σ(un−1,Jun−1)σ(Jun−1,J2un−1)
1+σ(un−1,Jun−1) , σ(un−1,Jun−1)σ(Jun−1,J2un−1)

1+σ(Jun−1,J2un−1)


≤ max

{
σb(un−1,Jun−1), σb(Jun−1,J2un−1), 3sσb(un−1,Jun−1)+sσb(Jun−1,J2un−1)

4s

}
= max

{
σb(un−1,Jun−1), σb(Jun−1,J2un−1)

}
.

If there exists n ∈N such that

max{σb(un−1,Jun−1), σb(Jun−1,J
2un−1)} = σb(Jun−1,J

2un−1),

then (26) becomes

F(σb(un,un+1)) ≤ F(σb(un,un+1)) + G(β(σb(un,un+1))),

which implies that G(β(σb(un,un+1))) ≥ 0 and so β(σb(un,un+1)) ≥ 1, a contradiction. Thus, we conclude that

F(σb(un,un+1)) ≤ F(σb(un−1,un)) + G(β(σb(un−1,un))).

By using a similar interpretation as in the proof of Theorem 3.2, we get that the sequence {un} is a σb-Cauchy
sequence and hence the σb-completeness of (X, σb) ensures that there exists u∗ ∈ X such that un → u∗ as
n→∞.

From (̂FG4), we get un+1 = Jun → Ju∗ as n → ∞, that is u∗ = Ju∗. Thus, J has a fixed point and
Fix(Jn) = Fix(J) is true for n = 1. Let n > 1 and assume, contrary to what has to be proved, that w ∈ Fix(Jn)
and w < Fix(J); then σb(w,Jw) > 0. Now applying (̂FG5) and (̂FG1), we get

F(σb(w,Jw)) = F(σb(J(Jn−1w),J2(Jn−1w))

≤ F(ΘJ (Jn−1w,Jn−1w)) + G(β(ΘJ (Jn−1w,Jn−1w)))

where

ΘJ (Jn−1w,Jn−1w)

= max

 σb(Jn−1w,Jnw), σb(J(Jn−1w),J2(Jn−1w)), σb(Jn−1w,J2(Jn−1w))+σb(J(Jn−1w),J(Jn−1w))
4s ,

σb(Jn−1w,J(Jn−1w))σb(J(Jn−1w),J2(Jn−1w))
1+σb(Jn−1w,J(Jn−1w)) , σb(Jn−1w,J(Jn−1w))σb(J(Jn−1w),J2(Jn−1w))

1+σb(J(Jn−1w),J2(Jn−1w))


= max

 σb(Jn−1w,w), σb(w,Jw), σb(Jn−1w,Jw)+σb(w,w)
4s ,

σb(Jn−1w,w)σb(w,Jw)
1+σb(Jn−1w,w) , σb(Jn−1w,w)σb(w,Jw)

1+σb(w,Jw)


≤ max

{
σb(Jn−1w,w), σb(w,Jw), sσb(Jn−1w,w)+3sσb(w,Jw)

4

}
≤ max{ σb(Jn−1w,w), σb(w,Jw) }

= σb(Jn−1w,w).

Consequently, we write

F(σb(w,Jw))

≤ F(σb(Jn−1w,Jnw)) + G(β(σb(Jn−1w,Jnw)))

≤ F(σb(Jn−2w,Jn−1w)) + G(β(σb(Jn−1w,Jnw))) + G(β(σb(Jn−2w,Jn−1w)))
≤ · · ·

≤ F(σb(w,Jw)) + G(β(σb(Jn−1w,Jnw))) + G(β(σb(Jn−2w,Jn−1w))) + · · · + G(β(σb(w,Jw))),
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that is,

F(σb(w,Jw)) ≤ F(σb(w,Jw)) +

n∑
i=1

G(β(σb(Jn−1w,Jnw))).

By passing to the limit as n → ∞ in the above inequality and using properties of (G, β) ∈ ∆G,β, we
have F(σb(w,Jw)) = −∞, which is a contradiction and hence we deduce that σb(w,Jw) = 0. Therefore,
Fix(Jn) = Fix(J) for all n ∈N.

6. Ulam-Hyers Stability in b-Metric-Like Space

Extending the known definitions in b-metric space (see, e.g., [7, 19]), we introduce the notion of gener-
alized Ulam-Hyers stability of fixed point problems in b-metric-like spaces.

Definition 6.1. Let (X, σb) be a b-metric-like space with coefficient s ≥ 1, and let J : X → X be a given mapping.
The fixed point equation

u = Ju, u ∈ X (27)

is said to be generalized Ulam-Hyers stable in the framework of b-metric-like spaces if there exists an increasing
function ψ : [0,∞)→ [0,∞), continuous at 0, with ψ(0) = 0, such that for each ε > 0 and an ε-solution v ∈ X, that
is,

σb(v,Jv) ≤ ε,

there exists a solution w ∈ X of the fixed point equation (27) such that

σb(v,w) ≤ ψ(sε). (28)

If ψ(t) = ct for all t ∈ [0,∞), where c > 0, then (27) is said to be Ulam-Hyers stable in the framework of b-metric-like
spaces.

Remark 6.2. If s = 1, then Definition 6.1 reduces to the definition of generalized Ulam-Hyers stability in metric-like
spaces. Also, if ψ(t) = ct for all t ∈ [0,∞), where c > 0, then it reduces to the definition of Ulam-Hyers stability
in metric-like spaces. In addition, if the distance function is defined by σb(u, v) = |u − v|, then it is converted to the
classical Ulam-Hyers stability.

Theorem 6.3. Let (X, σb) be a complete b-metric-like space with coefficient s ≥ 1. Suppose that all the hypotheses
of Theorem 3.4 hold (considering contraction condition of the Geraghty-form (23)) and also that the function ϕ :
[0,∞)→ [0,∞) defined by ϕ(t) := t[1−β(t)] is strictly increasing and onto. If α(u, v) ≥ 1 for all ε-solutions u, v ∈ X
of the fixed point equation (27), then this equation is generalized Ulam-Hyers stable.

Proof. Following Theorem 3.4, we have Ju∗ = u∗, that is, u∗ ∈ X is a solution of the fixed point equation
(27) with σb(u∗,u∗) = 0. Let ε > 0 and v∗ ∈ X be an ε-solution of (27), that is,

σb(v∗,Jv∗) ≤ ε.

Since σb(u∗,Ju∗) = σb(u∗,u∗) = 0 ≤ ε, u∗ and v∗ are ε-solutions. By hypothesis, we get α(u∗, v∗) ≥ 1 and so

σb(u∗, v∗) = σb(Ju∗, v∗) ≤ s[σb(Ju∗,Jv∗) + σb(Jv∗, v∗)]
≤ β(ΘJ (u∗, v∗))ΘJ (u∗, v∗) + sε, (29)
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where

ΘJ (u∗, v∗) = max

 σb(u∗, v∗), σb(u∗,Ju∗), σb(v∗,Jv∗), σb(u∗,Jv∗)+σb(v∗,Ju∗)
4s ,

σb(u∗,Ju∗)σb(v∗,Jv∗)
1+σb(u∗,v∗) , σb(u∗,Ju∗)σb(v∗,Jv∗)

1+σb(Ju∗,Jv∗)


≤ max

{
σb(u∗, v∗), 0, ε, 2sσb(u∗,v∗)+sσb(u∗,Ju∗)+sσb(v∗,Jv∗)

4s , 0, 0
}

= max
{
σb(u∗, v∗), 0, ε, 2sσb(u∗,v∗)+sε

4s , 0, 0
}

= max
{
σb(u∗, v∗), ε

}
.

Consider the two possible cases.
1◦ If ΘJ (u∗, v∗) = σb(u∗, v∗), then we get

σb(u∗, v∗) ≤ β(σb(u∗, v∗))σb(u∗, v∗) + sε,

which implies that

σb(u∗, v∗)[1 − β(σb(u∗, v∗))] ≤ sε.

Since ϕ(t) = t[1 − β(t)], we have ϕ(σb(u∗, v∗)) ≤ sε which implies that

σb(u∗, v∗) ≤ ψ(sε),

where ψ := ϕ−1 : [0,∞) → [0,∞) exists, is increasing, continuous at 0 and ϕ−1(0) = 0. Observe also that,
since 0 ≤ β(t) < 1, it is 0 ≤ ϕ(t) ≤ t, and so ψ(t) ≥ t for t ∈ [0,∞).

2◦ If ΘJ (u∗, v∗) = ε, then (29) gives that

σb(u∗, v∗) ≤ ε ≤ sε ≤ ψ(sε).

Thus, the inequality (28) holds in all cases and, therefore, the fixed point equation (27) is generalized
Ulam-Hyers stable.

7. An Application to Cantilever Beam Problem

Consider the following fourth-order two-point boundary value problem which is an example of beam
problem when uniform load is distributed, that is, the so-called Cantilever Beam Problem:u′′′′(t) = K(t,u(t)), 0 < t < 1;

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(30)

with I = [0, 1] and K ∈ C(I ×R,R). This problem is equivalent to the integral equation

u(t) =

∫ 1

0
G(t, r)K(r,u(r)) dr, for t ∈ I, (31)

where G : I × I→ [0,∞) is the Green function given by

G(t, r) =
1
6

r2(3t − r), 0 ≤ r ≤ t ≤ 1
t2(3r − t), 0 ≤ t ≤ r ≤ 1.

Consider the set X = C(I,R) := {x : I→ R | x is continuous on I} and define a b-metric-like σb : X ×X →
[0,∞) by

σb(u, v) = max
t∈I

max{|u(t)|, |v(t)|}p for u, v ∈ X,

where p > 1. Then (X, σb, s = 2p−1) is a σb-complete b-metric like space.
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Theorem 7.1. Let J : X ×X be the operator defined by

Ju(t) =

∫ 1

0
G(t, r)K(r,u(r)) dr for t ∈ I.

Also, let ξ : R ×R→ R be a given function. Suppose the following assertions hold:
(C1) K : I ×R→ R is a continuous function, non-decreasing in the second variable;
(C2) there exists u0 ∈ X such that ξ(u0(t),Ju0(t)) ≥ 0 for all t ∈ I;
(C3) for all u, v,w ∈ X, ξ(u(t), v(t)) ≥ 0 and ξ(v(t),w(t)) ≥ 0 for all t ∈ I implies that ξ(u(t),w(t)) ≥ 0 for all t ∈ I;
(C4) if {un} is a sequence in X such that un → u in X and ξ(un(t),un+1(t)) ≥ 0 for all n ∈ N and t ∈ I, then

ξ(un(t),u(t)) ≥ 0 for all n ∈N and t ∈ I;
(C5) u ∈ X and ξ(u(t),Ju(t)) ≥ 0 for all t ∈ I implies that ξ(Ju(t),JJu(t)) ≥ 0 for all t ∈ I;
(C6) there exists p > 1 such that for u, v ∈ X with ξ(u, v) ≥ 0, and r ∈ I we have

max{ |K(r,u(r))|, |K(r, v(r))| } ≤
[ 1
22p−2 exp(−Θ1(u, v)(r))Θ1(u, v)(r)

] 1
p

, (32)

where

Θ1(u, v)(r) = max


(max{u(r), v(r)})p, (max{u(r),Ju(r)})p, (max{v(r),Jv(r)})p,
(max{u(r),Jv(r)})p+(max{v(r),Ju(r)})p

2p+1 ,
(max{u(r),Ju(r)})p(max{v(r),Jv(r)})p

1+(max{u(r),v(r)})p , (max{u(r),Ju(r)})p(max{v(r),Jv(r)})p

1+(max{Ju(r),Jv(r)})p


1
p

;

(C7) supt∈I

∫ 1

0 G(t, r) dr ≤
1
2
.

Then there exists a solution of the integral equation (31), and hence, there exists a solution of the problem (30).
Moreover, the fixed point problem (31) is generalized Ulam-Hyers stable.

Proof. Define a function α : X ×X → [0,∞) by

α(x, y) =

1, if ξ(x(t), y(t)) ≥ 0, for all t ∈ I
γ, otherwise,

(33)

where γ ∈ (0, 1). It is easy to see that the assumption (C2) readily implies the condition (FG2) of Theorem
3.2. Also, the assumption (C3) implies that α has a transitive property (FG3). Finally, (C4) implies the
regularity condition (FG4’) of Theorem 3.3.

The assumption (C5) easily implies that J ∈WA(X, α).
We are going to check that J ∈ Υ(X, α,FG). For this, let u, v ∈ X be such that α(u, v) ≥ 1, i.e.,

ξ(u(t), v(t)) ≥ 0 for all t ∈ I. For each t ∈ I, by the definition of operator J , we have

σb(Ju,Jv) =

(
max

t∈I

{∣∣∣∣∣∣
∫ 1

0
G(t, r)K(r,u(r))dr

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
∫ 1

0
G(t, r)K(r, v(r))dr

∣∣∣∣∣∣
})p

≤

(
max

t∈I

{∫ 1

0
G(t, r) |K(r,u(r))| dr,

∫ 1

0
G(t, r) |K(r, v(r))| dr

})p

=

(
max

t∈I

∫ 1

0
G(t, r) max

t∈I
(|K(r,u(r))|, |K(r, v(r))|) dr

)p

≤

max
t∈I

∫ 1

0
G(t, r)

[ 1
22p−2 exp(−Θ1(u, v)(r))Θ1(u, v)(r)

] 1
p

dr

p

≤

max
t∈I

∫ 1

0
G(t, r)

[ 1
22p−2 exp(−ΘJ (u, v))ΘJ (u, v)

] 1
p

dr

p

≤
1

22p−2 exp(−ΘJ (u, v))ΘJ (u, v).
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Now, by considering the functions F,G : R+
→ R and β : [0,+∞)→ [0, 1) given by:

F(t) = G(t) = ln t, β(t) =
1

2p−1 exp(−t), for t ≥ 0,

we get

F(2p−1σb(Ju,Jv))) ≤ F(ΘJ (u, v)) + G(β(ΘJ (u, v))).

Thus all the hypotheses of Theorem 3.3 are fulfilled for s = 2p−1. Thus there exists a fixed point of J , that
is, a continuous function u∗ ∈ C(I,R) such that Ju∗ = u∗, that is,

u∗(t) = Ju∗(t) =

∫ 1

0
G(t, r)K(r,u∗(r)) dr.

Consequently, u∗ is a solution of the boundary value problem (30).
Finally, by virtue of β(t) = 1

2p−1 exp(−t), we defineϕ(t) := t[1−β(t)]. Sinceϕ is strictly increasing and onto,
all the hypotheses of Theorem 6.3 hold, so the fixed point of (31) is ϕ−1-generalized Ulam-Hyers stable.
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[6] D. -Dukić, Z. Kadelburg and S. Radenović, Fixed points of Geraghty-type mappings in various generalized metric spaces. Abstract

Appl. Anal. 2011, Art. ID 561245, 13 pages.
[7] A. Felhi, S. Sahmim and H. Aydi, Ulam-Hyers stability and well-posedness of fixed point problems for α-λ-contractions on quasi

b-metric spaces. Fixed Point Theory Appl. 2016:1 (2016), 20 pages.
[8] M. Geraghty, On contractive mappings. Proc. Am. Math. Soc. 40 (1973), 604–608.
[9] D. Gopal, M. Abbas, D. K. Patel and C. Vetro, Fixed points of α-type F-contractive mappings with an application to nonlinear

fractional differential equation. Acta Math. Sci. 36B (2016), no. 3, 1–14.
[10] P. Hitzler and A. Seda, Mathematical Aspects of Logic Programming Semantics. Chapman & Hall/CRC Studies in Informatic

Series, CRC Press, 2011.
[11] N. Hussain, J.R. Roshan, V. Parvaneh and Z. Kadelburg, Fixed points of contractive mappings in b-metric-like spaces. Sci. World

Journal, 2014, Art. ID 471827 (2014), 15 pages.
[12] N. Hussain and P. Salimi, Suzuki-Wardowski type fixed point theorems for α-GF-contractions. Taiwanese J. Math. 18 (2014), no.

6, 1879–1895.
[13] D. H. Hyers, On the stability of the linear functional equation. Proc. National Academy Sci. USA, 27 (1941), no. 4, 222–224,
[14] G. S. Jeong and B. E. Rhoades, Maps for which F(T) = F(Tn). Fixed Point Theory Appl. 6 (2005), 87–131.
[15] S. G. Matthews Partial metric topology. In: Proc. 8th Summer Conference on General Topology and Applications. Ann. New

York Acad. Sci. 728 (1994), 183–197.
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