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Abstract. In this paper, we first prove existence of fixed points of generalized nonexpansive mappings
in CAT(0) spaces. These are the mappings which satisfy the so-called condition (E). We then approximate
them by the 4-convergence and strong convergence using Picard-Mann hybrid iterative process. Our
results generalize the corresponding results of many authors.
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1. Introduction

Let T be a self-mapping of C, a nonempty convex subset of a normed space X. The Picard or successive
iterative process [12] is defined by the sequence {xn} :{

x1 = x ∈ C,
xn+1 = Txn, n ∈N. (1)

The Mann iterative process [11] is defined by the sequence {xn} :{
x1 = x ∈ C,
xn+1 = (1 − αn) xn + αnTxn, n ∈N (2)

where {αn} is in (0, 1).
The sequence {xn} defined by

x1 = x ∈ C,
xn+1 = (1 − αn) xn + αnTyn,

yn =
(
1 − βn

)
xn + βnTxn, n ∈N

(3)
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where {αn} and {βn} are in (0, 1), is known as the Ishikawa iterative process [6]. This process can be seen as
a ”Double Mann iterative process” or ”a hybrid of Mann process with itself”.

In 2013, Khan [7] introduced an iterative process and named it as Picard-Mann hybrid iterative process
as: 

x1 = x ∈ C,
xn+1 = Tyn,

yn = (1 − αn) xn + αnTxn, n ∈N
(4)

where {αn} is in (0, 1). This process is independent of all Picard, Mann and Ishikawa iterative processes since
{αn} and {βn} are in (0, 1). Even if it is allowed to take αn = 1 to make it a special case of Ishikawa iterative
process, our process is faster than Ishikawa and ”faster is better” rule should prevail. He also proved the
strong convergence and weak convergence theorems for the class of nonexpansive mappings in the Banach
spaces.

In 2008, Suzuki [17] defined the condition (C) which is as follows: Let C be a nonempty subset of a
CAT(0) space X and T : C→ Xbe a mapping. T is said to satisfy condition (C) if 1

2 d(x,Tx) ≤ d(x, y) implies
d(Tx,Ty) ≤ d(x, y) for all x, y ∈ C.

Lemma 1.1. [17] Every nonexpansive mapping satisfies the condition (C). But the converse is not true.

Example 1.2. [17] Define a mapping T on [0, 3] by

T(x) =
0 i f x , 3,
1 i f x = 3

Then T is single-valued mapping satisfying the condition (C) but T is not nonexpansive.

In 2011, Falset et al. [5] introduced the following definition of generalized nonexpansive mappings,
that is, the mappings which satisfy the so-called condition (E).

Let C be a nonempty subset of a Banach space X and T : C→ X be a single-valued mapping. Then T is
said to satisfy condition (Eµ) on C, if there exists µ ≥ 1 such that

‖x − Ty‖ ≤ µ‖Tx − x‖ + ‖x − y‖

holds for all x, y ∈ C. T is said to satisfy condition (E) on C whenever T satisfies the condition (Eµ) for some
µ ≥ 1.

Proposition 1.3. Every nonexpansive mapping satisfies the condition (E), but the converse is not true.

Proposition 1.4. [17] Let C be a bounded closed convex subset of a complete CAT(0) space X and T : C→ X satisfies
the condition (C). Then

d(x,Ty) ≤ 3d(Tx, x) + d(x, y)

holds for all x, y ∈ C.

From the above Proposition, it follows that condition (C) is the special case for µ = 3 in condition
(E). So the Example 1.2 also shows that there are mappings which satisfy condition (E) but they are not
nonexpansive.

And here is an example which shows that there are mappings which satisfy condition (E) but not
condition (C). Thus the mappings satisfying the condition (E) are more generalized than the mappings
satisfying condition (C).
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Example 1.5. [2]In the space X = C[0, 1] under the supremum norm, consider a nonempty subset K of X defined as
follows

K = { f ∈ C[0, 1] : 0 = f (0) ≤ f (x) ≤ f (1) = 1}.

To any 1 ∈ K, associate a function F1 : K → K defined by F1(h(t)) = (1oh)(t) = 1(h(t)). It is easy to verify that F1
satisfies condition (E1) but does not satisfy condition (C).

The purpose of this paper is two-fold: we first prove existence of fixed points of generalized
nonexpansive mappings in CAT(0) spaces, and then approximate them by the 4-convergence and strong
convergence using Picard-Mann hybrid iterative process. Our results generalize the corresponding results
of many authors. Our results generalize many results existing in the literature such as those of Laokul and
Panyanak [9], Laowang and Panyanak [10], Razani and Salahifard [13], Razani and Shabani [14], Shabani
and Ghoncheh [16], Suzuki [17], Takahashi and Kim [18].

Now we convert the Picard -Mann hybrid iterative process to the CAT(0) space setting as: Let C be
a nonempty closed convex subset of a complete CAT(0) space X and T : C → C be a mapping. Then we
define the sequence {xn}in C iteratively as:

x1 = x ∈ C,
xn+1 = Tyn,

yn = (1 − αn) xn ⊕ αnTxn, n ∈N
(5)

where {αn} is in (0, 1).

2. Preliminaries

Now we collect some elementary facts and results to make our presentation self-contained. Let (X, d) be
a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x to y) is a map c
from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In
particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x
and y.When it is unique this geodesic segment is denoted by [x, y]. The space (X, d) is said to be a geodesic
space if every two points of X are joined by a geodesic and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y includes
every geodesic segment joining any two of its points. A geodesic triangle 4(x1, x2,x3) in a geodesic metric
space (X, d) consists of three points x1, x2,x3 in X (the vertices of 4) and a geodesic segment between each
pair of vertices (the edges of 4). A comparison triangle for the geodesic triangle 4(x1, x2,x3) in (X, d) is a
triangle 4(x1, x2,x3) = 4(x1, x2, x3)in the Euclidean plane E2 such that dE2 (xi, x j) = d(xi, x j) for i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the following comparison
axiom: Let 4 be a geodesic triangle in X and let 4 be a comparison triangle for 4. Then 4 is said to satisfy
the CAT(0) inequality if for all x, y ∈ 4 and all comparison points x, y ∈ 4,

d(x, y) ≤ dE2 (x, y).

If x, y1, y2 are points in a CAT(0) space and if y0 is the midpoint of the segment [y1, y2], then the CAT(0)
inequality implies

d(x, y0)2
≤

1
2

d(x, y1)2 + (1/2)d(x, y2)2
− (1/4)d(y1, y2)2 (CN)

This is the (CN) inequality of Bruhat and Tits [1]. In fact, a geodesic space is a CAT(0) space if and only if it
satisfy (CN) inequality.

Definition 2.1. [2]: Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, we set r(x, {xn}) = lim supn→∞
d(x, xn). The asymptotic radius r({xn}) of {xn} is given by r({xn}) = in f {r(x, {xn}) : x ∈ X} and the asymptotic center
A({xn}) of {xn} is the set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
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Remark 2.2. In a CAT(0) space, A({xn}) consists of exactly one point as far as {xn} is a bounded sequence (see, e.g.,
[3], Proposition 7).

Definition 2.3. [2] A sequence {xn} in a CAT(0) space X is said to 4-converge to x ∈ X if x is the unique asymptotic
center of {un} for every subsequence {un} of {xn}. In this case we write 4-lim xn = x and call x the 4-limit of {xn}.
Note that given {xn} ⊂ X such that {xn} 4-converges to x and given y ∈ X with y , x, by uniqueness of the asymptotic
center, we have

lim sup
n→∞

d(xn, x) = lim sup
n→∞

d(xn, y).

Thus every CAT(0) space satisfies the Opial property.

Lemma 2.4. [4] Let X be a CAT(0) space. Then

d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z) (6)

for all x, y, z ∈ X and t ∈ [0, 1].

Lemma 2.5. [4] Let (X, d) be a CAT(0) space. Then

d((1 − t)x ⊕ ty, z)2
≤ (1 − t)d(x, z)2 + td(y, z)2

− t(1 − t)d(x, y)2 (7)

for all t ∈ [0, 1] and x, y, z ∈ X.

Lemma 2.6. [8] Every bounded sequence in a complete CAT(0) space always has a 4-convergent subsequence.

Lemma 2.7. [2] If C is a closed convex subset of a complete CAT(0) space and if {xn} is a bounded sequence in C then
the asymptotic center of {xn} is in C.

The following Lemma is a consequence of Lemma 2.9 of [10] which will be used to prove our main
results.

Lemma 2.8. [10] Let X be a complete CAT(0) space and x ∈ X. Suppose {tn} is a sequence in [b, c] for some
b, c ∈ (0, 1) and {xn}, {yn} are sequences in X such that lim supn→∞ d(xn, x) ≤ r, lim supn→∞ d(yn, x) ≤ r and
limn→∞ d(tnyn ⊕ (1 − tn)xn, x) = r hold for some r ≥ 0. Then limn→∞ d(xn, yn) = 0.

3. Main Results

We prove some lemmas needed for the development of our main theorems in this section.

Lemma 3.1. Let C be a nonempty closed convex subset of a complete CAT(0) space X and T : C→ X be a mapping
satisfying condition (E) and has a fixed point p. Then T is a quasi-nonexpansive.

Proof. Since T satisfies the condition (E) and has a fixed point p, therefore

d(p,Tx) ≤ µd(Tp, p) + d(p, x) = d(p, x)

for all x ∈ C, p ∈ F(T) and for some µ ≥ 1. Thus T is quasi-nonexpansive.

Following result guarantees the existence of fixed point of the mappings satisfying condition (E) in
CAT(0) spaces.

Lemma 3.2. Let C be a nonempty closed convex subset of a complete CAT(0) space X and T : C→ C be a mapping
satisfying condition (E). If {xn} is a sequence defined by (5) . If {xn} is bounded and limn→∞ d(xn,Txn) = 0, then F(T)
is nonempty.
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Proof. A({xn}) is singleton by Remark 2.2, because {xn} is bounded. Suppose that A({xn}) = {p}. By Lemma
2.7, {p} ⊂ C. Since T satisfies condition (E),

d(xn,Tp) ≤ µd(xn,Txn) + d(xn, p).

This implies that

lim sup
n→∞

d(xn,Tp) ≤ lim sup
n→∞

µd(xn,Txn) + lim sup
n→∞

d(xn, p)

and hence r(Tp, {xn}) ≤ r(p, {xn}). Since asymptotic center is unique, therefore Tp = p and hence F(T) is
nonempty.

Lemma 3.3. Let C be a nonempty closed convex subset of a complete CAT(0) space X and T : C→ C be a mapping
satisfying condition (E). If {xn} is a sequence defined by (5) . Then limn→∞ d(xn, p) exists for all p ∈ F(T).

Proof. Let p ∈ F(T). Consider

d(xn+1, p) = d(Tyn, p)
≤ µd(Tp, p) + d(yn, p)
= d(yn, p)
= d((1 − αn) xn ⊕ αnTxn, p)
≤ (1 − αn) d(xn, p) + αnd(Txn, p)
≤ (1 − αn) d(xn, p) + αnd(xn, p)
= d(xn, p)

which shows that the sequence {d(xn, p)} is decreasing and bounded below so that limn→∞ d(xn, p) exists.

Lemma 3.4. Let C be a nonempty closed convex subset of a complete CAT(0) space X and T : C→ C be a mapping
satisfying condition (E). If {xn} is a sequence defined by (5) . Then F(T) is nonempty if and only if {xn} is bounded and
limn→∞ d(xn,Txn) = 0.

Proof. Let p ∈ F(T) and by Lemma 3.3, limn→∞ d(xn, p) exists for all p ∈ F(T). Assume that limn→∞ d(xn, p) =
c. We first prove that limn→∞ d(yn, p) = c. Since d(xn+1, p) ≤ d(yn, p), therefore

lim inf
n→∞

d(xn+1, p) ≤ lim inf
n→∞

d(yn, p)

and so c ≤ lim infn→∞ d(yn, p).
On the other hand, d(yn, p) ≤ d(xn, p) implies that lim supn→∞ d(yn, p) ≤ c.Therefore, we get limn→∞ d(yn, p) =

c.Now, d(Txn, p) ≤ d(xn, p) implies that limn→∞ d(Txn, p) ≤ c. By using Lemma 2.8, we get limn→∞ d(xn,Txn) =
0.

Theorem 3.5. Let C be a nonempty closed convex subset of a complete CAT(0) space X and T : C→ C be a mapping
satisfying condition (E) with F(T) , ∅.Then the sequence {xn} defined by (5) 4-converges to a fixed point of T.

Proof. By Lemma 3.4, we observe that the sequence {xn} is bounded and limn→∞ d(xn,Txn) = 0. We now let
ωw(xn) = ∪A({un}), where the union is taken over all subsequences {un} of {xn}.

To show the 4-convergence of {xn} to a fixed point of T, we claim that ωw(xn) ⊂ F(T) and is a singleton
set. Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}. By Lemmas 2.6 and
2.7, there exists a subsequence{vn} of {un} such that 4- limn→∞ vn = v ∈ C.

Since limn→∞ d(vn,Tvn) = 0 and T satisfy the condition (E), there exists a µ ≥ 1 such that

d(vn,Tv) ≤ µd(vn,Tvn) + d(vn, v).
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By taking the lim sup of both sides, we have

lim sup
n→∞

d(vn,Tv) ≤ lim sup
n→∞

µd(vn,Tvn) + d(vn, v))

≤ lim sup
n→∞

d(vn, v).

As 4- limn→∞ vn = v, by the Opial property lim supn→∞ d(vn, v) ≤ lim supn→∞ d(vn,Tv). Hence Tv = v, that
is, v ∈ F(T).

We claim that u = v. Suppose not, by the uniqueness of asymptotic centers,

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn,u)

≤ lim sup
n→∞

d(un,u)

< lim sup
n→∞

d(un, v)

= lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v)

which is a contradiction and hence u = v ∈ F(T).To show that {xn} 4-converges to a fixed point of T, it suffices
to show that ωw(xn) consists of exactly one point. Let {un} be a subsequence of {xn}. By Lemmas 2.6 and 2.7,
there exists a subsequence {vn} of {un} such that 4- limn→∞ vn = v ∈ C. Let A({un}) = {u} andA({xn}) = {x}. We
have seen that u = v and v ∈ F(T). We can complete the proof by showing that x = v. If x , v, then in view
of Lemma 3.3, {d(vn, v)} is convergent, then by the uniqueness of asymptotic centers,

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, x)

≤ lim sup
n→∞

d(xn, x)

≤ lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v)

which is a contradiction and hence the conclusion follows.

We have the following corollaries of the preceding theorem.

Corollary 3.6. Let C be a nonempty bounded, closed and convex subset of a complete CAT(0) space X and T : C→ C
be a mapping satisfying condition (C) with F(T) , ∅. Then the sequence {xn} defined by (5) 4-converges to a fixed
point of T.

Corollary 3.7. Let C be a nonempty bounded, closed and convex subset of a complete CAT(0) space X and T : C→ C
be a nonexpansive mapping with F(T) , ∅. Then the sequence {xn} defined by (5) 4-converges to a fixed point of T.

We now turn our attention towards strong convergence theorems.

Theorem 3.8. Let X,C,T and {xn} be as in Theorem 3.5. Then {xn} converges strongly to a fixed point of T if and
only if lim infn→∞ d(xn,F(T)) = 0 where d(x,F(T)) = inf{d(x, p) : p ∈ F(T)}.

Proof. Necessityis obvious. Conversely, suppose that lim infn→∞ d(xn,F(T)) = 0.As proved in Lemma 3.3, we
have d(xn+1, p) ≤ d(xn, p) for all p ∈ F(T). This implies that d(xn+1,F(T)) ≤ d(xn,F(T)) so that limn→∞ d(xn,F(T))
exists. Thus by hypothesis limn→∞ d(xn,F(T)) = 0.
Next we show that {xn} is a Cauchy sequence in C. Let ε > 0 be arbitrarily chosen. Since limn→∞ d(xn,F(T)) =
0, there exists a positive integer n0 such that d(xn,F(T)) < ε

4 for all n ≥ n0. In particular, inf{d(xn0 , p) : p ∈
F(T)} < ε

4 . Thus there must exist p∗ ∈ F(T) such that d(xn0 , p∗) <
ε
2 .
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Now for all m,n ≥ n0, we have

d(xn+m, xn) < d(xn+m, p∗) + d(xn, p∗)
≤ 2d(xn0 , p

∗)

≤ 2
ε
2

= ε.

Hence {xn} is a Cauchy sequence in a closed subset C of a complete CAT(0) space and so it must converge
to a point q in C and limn→∞ d(xn,F(T)) = 0 gives that d(q,F(T)) = 0 and closedness of F(T) forces q to be in
F(T).

In 1974, Senter and Dotson [15] introduced the condition (I).
A mapping T : C → X is said to satisfy the condition (I) if there exists a non-decreasing function

f : [0,∞) → [0,∞) with f (0) = 0, f (r) > 0 for all r ∈ (0,∞) such that d(x,Tx) ≥ f (d(x,F(T))) for all x ∈ C,
where d(x,F(T)) = inf{d(x, p) : p ∈ F(T)}

Theorem 3.9. Let X,C,T and {xn} be as in Theorem 3.5. Let T satisfy the condition (I), then {xn} converges strongly
to a fixed point of T.

Proof. From Lemma 3.4, we have limn→∞ d(xn,Txn) = 0. It follows from the condition (I) that

lim
n→∞

f (d(xn,F(T))) ≤ lim
n→∞

d(xn,Txn) = 0.

That is, limn→∞ f (d(xn,F(T)) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f (0) =
0, f (r) > 0 for all r ∈ (0,∞), therefore we have limn→∞ d(xn,F(T)) = 0. Now all the conditions of Theorem 3.8
are satisfied, therefore, by its conclusion, {xn} converges strongly to a fixed point of F(T).

Remark 3.10. In view of previous discussion, the cases when the mapping satisfies Condition (C) or else is nonex-
pansive are now special cases of Theorem 3.9.

References

[1] F. Bruhat and J.Tits, Groupesreductifssurun corps local. I. Donneesradicielles values, Inst. Hautes Etudes Sci. Publ. Math.,41,
(1972), 5-251.

[2] S. Dhompongsa, W. A. Kirk and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, Journal of
Nonlinear and Convex Analysis, 8, (2007), 35-45.

[3] S. Dhompongsa, W. A. Kirk and B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Analysis: Theory, Methods
and Applications, 65, (2006), 762-772.

[4] S. Dhompongsa and B. Panyanak, On 4-convergence theorems in CAT(0) spaces, Computer and Mathematics with Applications,
56, (2008), 2572-2579.

[5] J. G. Falset, E. L. Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mapping, J. Math. Anal. Appl.,
375, (2011), 185-195.

[6] S. Ishikawa, Fixed points by a new iteration method, Proceedings of American Mathematical Society, 44, (1974), 147-150.
[7] S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory and Applications, 2013, 2013:69, (2013), 1-10,

doi:10.1186/1687-1812-2013-69.
[8] W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Analysis: Theory, Methods and Applications,

68, (2008), 3689-3696.
[9] T. Laokul and B. Panyanak, Approximating fixed points of nonexpansive mappings in CAT(0) spaces, International Journal of

Mathematical Analysis, 3(27), (2009), 1305-1315.
[10] W. Laowang and B. Panyanak, Approximating fixed points of nonexpansive nonself mappings in CAT(0) spaces, Fixed Point

Theory and Applications, 2010, (2010), 1-11, Article ID 367274, doi:10.1155/ 2010/367274.
[11] W. R. Mann, Mean value methods in iteration, Proceedings of American Mathematical Society, 4, (1953), 506-510.
[12] E. Picard, Memoire sur la theorie des equations aux derives partielleset la methode des approximations successive, J. Math. Pures

Appl., 6, (1890), 145-210.
[13] A. Razani and H. Salahifard, Approximating fixed points of generalized nonexpansive mappings, Bulletin of Iranian Mathematical

Society, 37(1), (2011), 235-246.
[14] A. Razani and S. Shabani, Approximating fixed points for nonself mappings in CAT(0) spaces, Fixed Point Theory and Applica-

tions, 2011, (2011), 1-7.
[15] H. F. Senter and W. G. Dotson, Approximating fixed points of non-expansive mappings, Proc. Amer. Math. Soc., 44, (1974),

375-380.



Ritika, S. H. Khan / Filomat 31:11 (2017), 3531–3538 3538

[16] S. Shabani and S. J. H. Ghoncheh, Approximating fixed points of generalized nonexpansivenonself mappings in CAT(0) spaces,
Mathematics Scientific Journal, 7(1), (2011), 89-95.

[17] T. Suzuki, Fixed point theorems and convergence theorems for some generalized non-expansive mapping, J. Math. Anal. Appl.,
340, (2008), 1088-1095.

[18] W. Takahashi and G. E. Kim, Approximating fixed points of nonexpansive mappings in Banach spaces, Math. Japonica, 48, (1998),
1-9.


