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Distance in the Absolute Plane and Cauchy Functional Equations
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Abstract. Let A denotes the absolute plane and da the distance function on it. Using a constructive
approach which leads to the functional equations, we study which conditions on a “measure” of segments
on a given half-line l in the absolute plane are essential to be the restriction of da on l.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

We consider two well-known models of the absolute plane which we call E-model and H-model. The
E-model is actually the standard model of the Euclidean plane and the H-model is the Poincaré disk
model of the hyperbolic plane. Proposition 1 states that there is a distance da (which is in accordance with
the relations between and congruence) on the absolute plane and that it is unique up to a multiplicative
constant. Let de and dh be the interpretations of da in the E-model and in the H-model, respectively.

We consider a fixed half-line l (l = [0, 1) in the H-model and l = [0,+∞) in the E-model) and a function
f : l → [0,+∞) with some additivity properties. Next, denote by fe and fh restrictions of the functions
de(0, ·) and dh(0, ·) on l.

In the H-model (E-model) we use inversions of the unit disk (translations of the Euclidean plane) which
maps l into itself (a constructive approach which leads to the functional equations) and we consider some
conditions which are at the first glance less restrictive than the standard properties of the Euclidean or
hyperbolic distance function. More precisely, for example, we get Theorem 2 which shows the reduced
additivity property on l related to the divisions of segments of the form [0, x], where x ∈ l, only on two and
three congruent parts is equivalent to full additivity property.

Roughly speaking, we show that the reduced additivity property on l, related to the divisions of segments
only on two congruent parts, leads to consider the functional equation

F (2t) = 2F(t), (1)

where F : [0,+∞)→ [0,+∞) is some unknown function, which satisfies:
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(I1) F is strictly increasing and continuous function.

Thus, our consideration is related to the next problem (which is stated as Problem 2 in Section 3).

Problem 1. Find a solution of equation (1) which satisfies (I1).

One could check immediately that for arbitrary constant c > 0 the function F : [0,+∞)→ [0,+∞), that is
given with

F(t) = ct, (2)

is a solution of the Problem 1.
In the Section 4 we will show that the function given by (2) is not the unique solution of the Problem 1

in general.
In particular we derive the formulae for distances in Euclidean and hyperbolic plane with some novelty

(see Theorem 1, Section 3). For an approach using Schwartz lemma see [9] and [8].
In addition, in Section 5 we prove Theorem 3 which states: Let an, n > 0, be a decreasing sequence in

(0, 1) such that an+1 is the H-midpoint of the segment with endpoints 0 and an, and let A = {an : n > 0}. If
f : [0, 1)→ [0,+∞) is a strictly increasing continuous function satisfies reduced additivity iteration property

(AD1) f (Tk
a(0)) = k f (a), for all k ∈N and a ∈ A.

Then, there is a constant c > 0 such that f = c fh on [0, 1).

2. The E-Model and the H-Model of Absolute Plane Geometry

For the sake of completeness in this section we give a brief description of the E-model and the H-
model of the absolute plane geometry. It is known that a model of absolute plane geometry is obtained
if we interpret the primitive terms (points and straight lines) and the basic relations (incidence relation,
between and congruence) with the request that the axioms of incidence, the axioms of order, the axioms
of congruence and the axioms of continuity from Hilbert’s axiom system of absolute plane geometry to be
satisfied.

In the E-model we assume that the points are elements from the set C, the straight lines are the sets of
points in C defined by the equations of the form az + az + c = 0, where a ∈ C \ {0} and c ∈ R. Similarly, in the
H-model as a point we consider any element of the disk D = {z ∈ C : |z| < 1} and the straight lines consist
of all arcs of Euclidean circles contained within the diskD, that are orthogonal to the boundary of the disk
D, and all diameters of the diskD.

Before we give an interpretation of the relations incidences, between and congruence we give the
definition of isometries in the E-model and in the H-model. We define the family of isometries in the
E-model (shortly E-isometries) as the family of all mappings of C onto itself of the forms

z 7→ eiθz + a or z 7→ eiθz + a,

where a ∈ C and θ ∈ [0, 2π). An isometry in the H-model (shortly H-isometry) is any self mapping of the
diskD that is of the form

z 7→ eiθ z + a
1 + az

or z 7→ eiθ z + a
1 + az

,

where a ∈ D and θ ∈ [ 0, 2π). In particular, set Ta(z) =
z + a

1 + az
.

In the both models we say that a point z is incident with a straight line p if z ∈ p. Further, we will say
that a point z is between the points z1 and z2 if in the corresponding model there is an isometry ϕ such that
ϕ(z), ϕ(z1) and ϕ(z2) are real numbers and 0 = ϕ(z1) < ϕ(z) < ϕ(z2). Finally, for a pair of points (z1, z2) we
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say that it is congruent to a pair of points (w1,w2) if in the corresponding model there exists an isometry ϕ
with the properties ϕ(z1) = w1 and ϕ(z2) = w2.

It is clear that the E-model and the H-model are both the models of absolute plane geometry, but in the
E-model holds the Playfair’s parallel axiom, while in the H-model the Bolyai-Lobachevsky parallel axiom
is satisfied. Thus, these models as the models of the absolute plane geometry are not isomorphic.

Using the stereographic projection from Poincaré disk model of absolute plane geometry one can get
Beltrami-Klein model of absolute plane geometry. The Gans model [5] is obtained by use an orthographic
projection of the hyperboloid model onto the plane.

This model utilizes the entire Euclidean plane and it is not as widely used as other models but never-
theless is quite useful in the understanding of hyperbolic geometry.

3. The Distance in the Absolute Plane Geometry

For the details related to the hyperbolic geometry see for example [2, 3, 6, 9].
Our starting point is the following statement of absolute geometry which is slightly modification of the

Theorem 4.3.B in [6].

Proposition 1. Let A be the set of all points in absolute plane. Then on A there is a distance function (a metric)
da : A ×A→ [0,+∞) with the following properties:

(A1) if a, b, c, d ∈ A such that the pair of points (a, b) is congruent with the pair of points (c, d), then da(a, b) = da(c, d);

(A2) if a, b, c ∈ A such that the point b is between the points a and c, then da(a, c) = da(a, b) + da(b, c).

Furthermore, if there is another distance function d′a : A×A→ [0,+∞) which satisfies the properties (A1) and (A2),
then there is λ > 0 such that d′a = λda.

Let de and dh be the interpretations of da in the E-model and in the H-model, respectively. We define
Euc(z) = de(0, z), z ∈ C, and Hyp(z) = dh(0, z), z ∈ D, respectively. Then, as a corollary of the property (A2),
the restriction fh of Hyp on [0, 1) (the restriction fe of Euc on [0,∞)) has k−hyp (k−euc) additivity property:
if for all points c0 = 0 < a = c1 < c2 < . . . < ck = b < 1 (c0 = 0 < a = c1 < c2 < . . . < ck = b < +∞), such that the
segments c0c1, c1c2, . . ., ck−1ck are H-congruent (E-congruent), then fh(b) = k fh(a) ( fe(b) = k fe(a)) holds. We
say that a strictly increasing and continuous function f : [0, 1) → [0,+∞) ( f : [0,+∞) → [0,+∞)) satisfies
the reduced additivity property in the H-model (E-model) if it has 2−hyp and 3−hyp (2−euc and 3−euc)
additivity properties. In opposite direction, we show that if a function f satisfies the reduced additivity
property in the H-model (E-model), then f equals fh on [0, 1) ( f equals fe on [0,+∞)) up to a multiplicative
constant. Note that this is not true in general if f only satisfies 2−hyp additivity property (see Example 1
below).

Now, combining Proposition 1 with a constructive approach, among other things, we derive a new
proof of the formulae for de and dh (see Theorem 1 below). In particular, we reduce the problem on finding
a solution of the corresponding functional equation.

For our approach it is convenient to consider the E-model and the H-model simultaneously. Let
z1 and z2 be two arbitrary points in the corresponding model. Then, there exists an isometry ϕ from
the family of isometries of that model such that ϕ(z1) = 0 and ϕ(z2) = r, where 0 6 r < +∞ (in the
case of the E-model), and 0 6 r < 1 (in the case of the H-model). Further, from (A1) we will have
de(z1, z2) = de(ϕ(z1), ϕ(z2)) = de(0, r) = fe(r) and dh(z1, z2) = dh(ϕ(z1), ϕ(z2)) = dh(0, r) = fh(r). Hence, the
distance functions de and dh are determined by fe and fh, respectively. Therefore, we find the explicit
formulae for the functions fe and fh.

First we need some definitions and two preparatory lemmas.
Recall that the point c is the midpoint of a segment with endpoints a and b if c is element of the straight

line determined by a and b and if the pair of points (a, c) is congruent to the pair of points (c, b).
If k is a Euclidean circle, recall that by Jk we denote the inversion with respect to k.
By [a, b] we denote segment which endpoints are a and b.
The following lemma is well-known from the basic geometry courses.
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Lemma 1. If an Euclidean circle k is orthogonal on ∂D and if Jk(0) = a, then common point of the circle k and the
H-segment [0, a] is the H-midpoint of the H-segment [0, a].

Let r1 be a point such that the point r ∈ [0, 1) is midpoint (in the sense of the corresponding model) of
the segment with the endpoints 0 and r1. Then, regard to the notation above, the following lemma holds.

Lemma 2. In the E-model holds r1 = 2r, whereas in the H-model we have r1 = Tr(r) =
2r

1 + r2 .

A proof in the case of the E-model we leave to the interested reader and from didactically reasons we
give two proofs in the case of the H-model.

Proof. The first proof. By the definition of midpoint it is sufficient to determine an H-isometry ϕ such that

1◦ ϕ(0) = r;

2◦ ϕ(r) > r.

Really, then r is the H-midpoint of the H-segment [0, r1], where r1 = ϕ(r). It is clear that the H-isometry
Tr satisfies 1◦ and 2◦. It yields the proof.

The second proof. By the Lemma 1 it suffices to determine an Euclidean circle k with the following
properties

1◦ k is orthogonal on ∂D;

2◦ r ∈ k;

3◦ Jk(0) = r1.

An Euclidean circle k, with the center c and of the radius R, satisfies 1◦ − 3◦ if and only if c − R = r,
12 + R2 = c2 and (c − 0) · (c − r1) = R2 (see Figure 1).

Figure 1: H-midpoint

Hence we have c =
r2 + 1

2r
, R =

1 − r2

2r
and r1 =

2r
1 + r2 .

Now, we return to the problem of determining the explicit formulae for the functions fe and fh.
Since fe has 2−euc property and since fh has 2−hyp property, taking into account that in the correspond-

ing model the segment [0, r] is congruent with the segment [r, r1], we have fe(r1) = 2 fe(r) and fh(r1) = 2 fh(r).
Then, by using Lemma 2, for all r ∈ [0,+∞) we obtain

fe(2r) = 2 fe(r) (3)



M. Mateljević et al. / Filomat 31:11 (2017), 3585–3592 3589

and for all r ∈ [0, 1) we obtain

fh
( 2r

1 + r2

)
= 2 fh(r). (4)

Note that from (A2), for j ∈ {e,h}, the function

(B2) f j is strictly increasing and continuous function on its domain.

As we know that for all t ∈ [0,+∞) holds tanh 2t =
2 tanh t

1 + tanh2 t
and if we introduce the substitution

r = tanh t, t ∈ [0,+∞), in the equality (4), we can get that for all t ∈ [0,+∞) holds

fh (tanh 2t) = 2 fh(tanh t). (5)

Thus, if f̃h = fh ◦ tanh, we get

f̃h (2t) = 2 f̃h(t), (6)

for all t ∈ [0,+∞). Note that, taking into account the equations (3) and (6), we can conclude that the
functions fe and f̃h satisfy the same equation.

Hence, we are motivated to consider the functional equation

F (2t) = 2F(t), (7)

where F : [0,+∞)→ [0,+∞) is some unknown function. Taking into account the property (B2) we will seek
a solution F of the equation (7) which satisfies

(C2) F is strictly increasing and continuous function.

Thus, our consideration is related to the next problem.

Problem 2. Find all solutions of equation (7) which satisfy (C2).

One could check immediately that for arbitrary constant c > 0 the function F : [0,+∞)→ [0,+∞), that is
given with

F(t) = ct, (8)

is a solution of the Problem 2.
In the next section we will show that the function given by (8) is not the unique solution of the Problem

2 in general. However, if F is fe or f̃h, then F satisfies additional conditions which are corollaries of the
Proposition 1. Namely, F satisfies the reduced additivity property and by Theorem 2 we get that all solutions
of the Problem 2 are given by F(t) = ct, t > 0.

It is interesting that we can avoid an application of the Theorem 2.
For example, in the H-model if we suppose

(H1) f̃h(t) = ct, t > 0 and c > 0 is some constant,

then using f̃h = fh ◦ tanh, we get fh(r) = ( f̃h ◦ tanh−1)(r) =
1
2

c ln
1 + r
1 − r

, for all r ∈ [0, 1).
If z1, z2 ∈ D, there are H-isometry ϕ and r ∈ [0, 1) such that ϕ(z1) = 0 and ϕ(z2) = r. Hence, we have

dh(z1, z2) = dh(0, r) = fh(r). Now, we introduce a function d : D × D → [0,+∞) on the following way.
For z1, z2 ∈ D there are H-isometry ϕ and r ∈ [0, 1) such that ϕ(z1) = 0 and ϕ(z2) = r and we define
d(z1, z2) = fh(r). It is well-known that d is a distance in the H-model which satisfies (A1) and (A2) (see for
example [1], [8]). Hence, we conclude the hypothesis (H1) is true.

Thus, we get the formula for dh. In a similar way we can determine de(z1, z2), for all z1, z2 ∈ C.
If we summarize the above considerations we obtain the following theorem.
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Theorem 1. The distance function, whose existence and uniqueness (up to a multiplicative constant) is established
by the Proposition 1, is given by:

a) (in the E-model) de(z1, z2) = c|z1 − z2|, i.e. for all z1, z2 ∈ C we have de(z1, z2) = c|z1 − z2|, where c > 0 is some
constant.

b) (in the H-model ) dh(z1, z2) =
1
2

c ln
1 + δ(z1, z2)
1 − δ(z1, z2)

, i.e. for all z1, z2 ∈ Dwe have dh(z1, z2) =
1
2

c ln
1 + δ(z1, z2)
1 − δ(z1, z2)

,

where c > 0 is some constant and δ(z1, z2) =

∣∣∣∣∣ z1 − z2

1 − z2z1

∣∣∣∣∣.
Note that for c = 1 the distance function de is the ordinary Euclidean distance function in C, whereas for

c = 2 the distance function dh is well-known Poincaré’s distance function on the diskD.

3.1. Connection with the hyperbolic density

Here we shortly discuss the derivation of the formula b) from the Theorem 1 using a Riemannian metric
density which is in our case the hyperbolic density. In courses of complex analysis (for more details see
for example [1], [8] and [2]) the usual way to derive the Poincaré distance function on D is to use the
Riemannian metric density function ρ : D→ [0,+∞) which is given by the formula

ρ(z) =
2

1 − |z|2
.

The element of length ds (in conformal form) is then determined by

ds = ρ(z)|dz|.

Thus Poincaré’s length of rectifiable curve γ : [ 0, 1]→ D is given by

l(γ) =

∫
γ
ρ(z)|dz|

and the Poincaré’s distance of the points z1, z2 ∈ D is defined by

dh(z1, z2) = inf
∫
γ
ρ(z)|dz|, (9)

where the infimum is taken over all rectifiable curves with endpoints z1 and z2. Finally from (9) it will holds

dh(z1, z2) = ln
1 + δ(z1, z2)
1 − δ(z1, z2)

, (10)

where δ(z1, z2) =

∣∣∣∣∣ z2 − z1

1 − z1z2

∣∣∣∣∣ is the pseudo-hyperbolic distance. That we leave as an exercise.

Note that we have derived the formula (10) using the construction of the distance function dh “step by
step” and using the interpretation of the Proposition 1 in the H-model.

4. Functional Equations

Now we will consider Problem 2 with more details. As we mentioned in previous section the function
F : [0,+∞) → [0,+∞) that is given by F(t) = ct, where c > 0 is a constant, is not the unique solution of the
Problem 2. The next example shows that there are another solutions of the Problem 2.
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Example 1. Let n ∈ Z. Set an =
1
2n , bn =

an + an+1

2
, In = [an+1, an] and 0 < c1 < c < c2. Then

⋃
n∈Z

In = (0,+∞).

Let F : [0,+∞) → [0,+∞) be a function defined by F(0) = 0, F(an) = can and, for fixed n, the restriction Fn of F on
In is a polygonal line, with the slope c1 on [an+1, bn] and the slope c2 on [bn, an].

One can show that the function F satisfies the equation (7) and (C2).

It is natural to ask the following questions:

(Q1) What additional conditions (except the condition (C2)) should satisfies the solution of the equation
(7) to be unique?

(Q2) Whether those conditions follow from (A1) and (A2), i.e. whether the functions fe and f̃h satisfy those
conditions?

We give the answers to these questions below.

Theorem 2. Suppose that F : [0,+∞)→ [0,+∞) is a function with the following properties:

1◦ F is continuous and strictly increasing;

2◦ F(2t) = 2F(t), for all t ∈ [0,+∞);

3◦ F(3t) = 3F(t), for all t ∈ [0,+∞).

Then F(t) = ct, for all t ∈ [0,+∞), where c > 0 is a constant.

Before we give a proof of the Theorem 2 we introduce a lemma (whose proof is left as an exercise) that
we will use in the proof of that theorem.

Lemma 3. The set {3m2n
|m,n ∈ Z} is dense in [ 0,+∞).

Proof. [Proof of the Theorem 2] From the assumptions 2◦ and 3◦ we have F(3m2n) = 3m2nF(1) for all m,n ∈ Z.
Let G : [ 0,+∞)→ Rbe the function defined by G(t) = tF(1) and let A = {3m2n

|m,n ∈ Z}. For all t ∈ A we then
have F(t) = G(t). By the assumption 1◦ and since G is continuous on [ 0,+∞), we get that F(t) = G(t) = tF(1),
for all t ∈ [ 0,+∞), because they are identical on the dense subset A of [ 0,+∞). Hence, since F is strictly
increasing function it follows that c = F(1) > F(0) = 0.

It is easy to check that the functions fe and f̃h satisfy assumption 3◦ from the Theorem 2, i.e. that
assumption 3◦ immediately follows from (A1) and (A2).

Related to the uniqueness of the solution of the equation (7) we get the following proposition.

Proposition 2. Let F : [0,+∞)→ [0,+∞) be a function such that

1◦ F(2t) = 2F(t), for all t ∈ [0,+∞);

2◦ the second derivative F′′ exists on [0,+∞) and is continuous at 0.

Then F(t) = ct, for all t ∈ [0,+∞), where c > 0 is a constant.

Proof. From F(2t) = 2F(t), it follows that 2F′(2t) = 2F′(t) and therefore 2F′′(2t) = F′′(t) for all t ∈ [0,+∞).

Hence, F′′(t) =
1
2n F′′

( t
2n

)
and therefore F′′(t) = 0 for all t ∈ [0,+∞). Thus, F(t) = ct + c0. Since F(0) = 0, we

find that F(t) = ct, where c > 0 is a constant.

For functional equations see for example we refer to [7] and the literature cited there.
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5. Additivity Properties of Hyperbolic Distance

We advise the interested reader to recall the notation of dh and Ta.
Roughly speaking, in previous sections, in connection with the hyperbolic distance function dh, we have

studied the functions which have some additivity property along a particular half line in the H-model.
In this section we study similar problem by using iterations of an H-isometry Ta, where 0 < a < 1,

instead of the k−hyp additivity property.
Let 0 < a < 1. Then Ta is increasing function on [0, 1) and it maps [0, 1) into itself. Since Ta is the

H-isometry and Ta(0) = a then, by the k−hyp additivity property for fh, we have

(AD) fh(Tk
a(0)) = k fh(a), for all k ∈N.

Note that by Tk we denote T ◦ T ◦ . . . ◦ T︸           ︷︷           ︸
k

.

In particular, for k = 2, we have fh
( 2a

1 + a2

)
= 2 fh(a).

Motivated by property (AD) we say that a strictly increasing continuous function f : [0, 1) → [0,+∞)
satisfies the reduced additivity iteration property with respect to Ta if

(AD1) f (Tk
a(0)) = k f (a), for all k ∈N.

Note that the reduced additivity iteration property is a “discrete variant” of the k−hyp additivity
property.

We say that a function f satisfies the reduced additivity iteration property on a set A ⊂ (0, 1) if f satisfies
property (AD1), for all Ta, where a ∈ A.

Note that if A is a finite set and f satisfies the reduced additivity iteration property on A we cannot get
any reasonable conclusion about f .

Now, it is a natural question which conditions on A enables us to determine f on whole set [0, 1). The
next theorem yields an answer to this question.

Theorem 3. Let an, n > 0, be a decreasing sequence in (0, 1) such that an+1 is the H-midpoint of the segment with
endpoints 0 and an, and let A = {an : n > 0}. If f : [0, 1) → [0,+∞) is a strictly increasing continuous function
satisfies reduced additivity iteration property on A. Then there is a constant c > 0 such that f = c fh on [0, 1).

Proof. Let c > 0 is the constant such that f (a0) = c fh(a0). Let An = {Tk
an

(0) : k ∈ N} be the set of iterations
and let A =

⋃
n>0

An. Since Tan is an H-isometry and since f satisfies the reduced additivity iteration property

with respect to Tan , for all n > 0, it follows that f equals c fh on A. However, since f and fh are continuous
and since A is dense in [0, 1), f equals c fh on [0, 1).
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