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Abstract. The objective of the present paper is to prove the non-existence of real hypersurface with
pseudo-parallel normal Jacobi operator in complex two-plane Grassmannians. As a corollary, we show
that there does not exist any real hypersurface with semi-parallel or recurrent normal Jacobi operator in
complex two-plane Grassmannians. This answers a question considered in [Monatsh Math, 172 (2013),
167-178] in negative.

1. Introduction

The complex two-plane Grassmannian G2(Cm+2) is the set of all complex two-dimensional linear sub-
spaces of Cm+2. It is the unique compact, irreducible Riemannian symmetric space with positive scalar
curvature, equipped with both a Kaehler structure J and a quaternionic Kaehler structure J not containing
J [3].

Typical examples of real hypersurfaces M in G2(Cm+2) are tubes around G2(Cm+1) and tubes aroundHPn

in G2(C2n+2) . These two classes of real hypersurfaces possess a number of interesting geometric properties.
Characterizing them or subclasses of them under certain nice geometric conditions has been one of the main
focus of researchers in the theory of real hypersurfaces in G2(Cm+2). One of the foremost results along this
line was obtained by Berndt and Suh [4], they characterized these two classes of real hypersurfaces under
the invariance of vector bundles JT⊥M and JT⊥M over the real hypersurfaces M under the shape operator
A of M, where T⊥M is the normal bundle of M.

On the other hand, these structures J and J of G2(Cm+2) significantly impose restrictions on the geometry
of its real hypersurfaces. For instance, there does not exist any parallel real hypersurface [18]. Determining
the existence (or non-existence) of real hypersurfaces in G2(Cm+2) satisfying certain geometric properties
has also became another main research topic in this theory. The main objective of this paper is to prove the
non-existence of real hypersurfaces in G2(Cm+2) with pseudo-parallel normal Jacobi operator.

Recall that the normal Jacobi operator R̂N, for a hypersurface M in a Riemannian manifold, is defined as
R̂N(X) = R̂(X,N)N, for any vector X tangent to M, where R̂ is the curvature tensor of the ambient space and
N is a unit vector normal to M [2].
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Let M be an orientable real hypersurface isometrically immersed in G2(Cm+2). Denote by (φ, ξ, η) the
almost contact structure on M induced by J, (φa, ξa, ηa), a ∈ {1, 2, 3}, the local almost contact 3-structure
on M induced by J and D⊥ = JT⊥M. The real hypersurface M is said to be Hopf if AJT⊥M ⊂ JT⊥M, or
equivalently, the Reeb vector field ξ is principal with principal curvature α.

Pérez et al. [17] studied the real hypersurfaces in G2(Cm+2), in which the normal Jacobi operator
commutes with both the shape operator and the structure tensor φ. In [7] Jeong et al. proved the following:

Theorem 1.1 ([7]). There does not exist any connected Hopf hypersurface in complex two-plane Grassmannians
G2(Cm+2),m ≥ 3, with parallel normal Jacobi operator.

Machado et al. [14] proved the non-existence of Hopf hypersurfaces in G2(Cm+2) with Codazzi type R̂N
under certain conditions on theD- andD⊥-component of ξ . Later, the non-existence of Hopf hypersurfaces
in G2(Cm+2) whose normal Jacobi operator is (Rξ ∪ D⊥)-parallel was proved [11]. In [10], Suh and Jeong
investigated real hypersurfaces in G2(Cm+2) with LξR̂N = 0, and proved the non-existence of such real
hypersurfaces under the condition either ξ ∈ D or ξ ∈ D⊥. They also proved the non-existence of Hopf
hypersurfaces with Lie parallel normal Jacobi operator, that is, LXR̂N = 0 in G2(Cm+2) [8].

A real hypersurface M is said to have recurrent normal Jacobi operator if (∇̂XR̂N)Y = ω(X)R̂NY, for some
1-form ω. In [9], Jeong et al. generalized Theorem 1.1 and proved the following:

Theorem 1.2 ([9]). There does not exist any connected Hopf hypersurface in complex two-plane Grassmannians
G2(Cm+2), m ≥ 3, with recurrent normal Jacobi operator.

Deprez [6] first studied a submanifold M in a Riemannian manifold whose second fundamental form
h satisfies R̄ · h = 0, where R̄ is the curvature tensor corresponding to the van der Waerden-Bortolotti
connection. Such submanifolds are said to be semi-parallel. In [15], Ortega proved that there does not exist
any semi-parallel real hypersurface in a non-flat complex space form.

A (1, p)-tensor T, in a Riemannian manifold M with Riemannian curvature tensor R is said to be pseudo-
parallel, if it satisfies R(X,Y)T = f {(X ∧ Y)T}, for some function f , where

(X ∧ Y)Z := 〈Y,Z〉X − 〈X,Z〉Y,

and

{(X ∧ Y)T}(X1, · · · ,Xp) := (X ∧ Y)T(X1, · · · ,Xp) −
p∑

j=1

T(X1, · · · (X ∧ Y)X j, · · · ,Xp),

for any X,Y,Z,X1, · · · ,Xp ∈ TM.
The notion of pseudo-parallel submanifolds, that is, submanifolds with pseudo-parallel second fun-

damental forms, can be considered as a generalization of semi-parallel submanifolds. Asperti et al. [1]
classified all pseudo-parallel hypersurfaces in space forms as quasi-umbilic hypersurfaces or cyclids of du-
plin. The classification of pseudo-parallel real hypersurfaces in a non-flat complex space form was obtained
in [12].

Recently, Panagiotidou and Tripathi [16] studied Hopf hypersurfaces with semi-parallel normal Jacobi
operator in G2(Cm+2) and proved the following:

Theorem 1.3 ([16]). There does not exist any connected Hopf hypersurface M in G2(Cm+2),m ≥ 3, equipped with
semi-parallel normal Jacobi operator, if α , 0 and D- or D⊥-component of the Reeb vector field ξ is invariant by the
shape operator A.

One of the challenges in the theory of real hypersurfaces M in G2(Cm+2) is handling lengthy and complicated
expressions resulting from the complexity of the geometric structures on M, induced by the Kaehler and
the quaternionic Kaehler structure of G2(Cm+2). For technical reasons, certain additional restrictions such as
M being Hopf, having non-vanishing geodesic Reeb flow, etc have often been imposed while dealing with
real hypersurfaces in G2(Cm+2). It would be interesting to see whether any nice results on real hypersurfaces
of G2(Cm+2) can be obtained without these restrictions.

Motivated by Theorem 1.1, Theorem 1.2 and Theorem 1.3, a question arises naturally:
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Problem 1.4. Does there exist real hypersurface in G2(Cm+2) with parallel, recurrent, semi-parallel or pseudo-parallel
normal Jacobi operator?

We first prove the following:

Theorem 1.5. There does not exist any real hypersurface with pseudo-parallel normal Jacobi operator in G2(Cm+2),
m ≥ 3.

Remark 1.6. It is worthwhile to note that no additional condition has been imposed in the above theorem.

Since a semi-parallel tensor is always pseudo-parallel with the associated function f = 0, we state that

Corollary 1.7. There does not exist any real hypersurface in G2(Cm+2), m ≥ 3, equipped with semi-parallel normal
Jacobi operator.

In the last section we prove the non-existence of real hypersurfaces with recurrent or parallel normal Jacobi
operator in G2(Cm+2), m ≥ 3 (see Corollary 4.2). Thus Problem 1.4 has been solved completely.

2. Real Hypersurfaces in G2(Cm+2)

In this section we state some structural equations as well as some known results in the theory of real
hypersurfaces in G2(Cm+2). A thorough study on the Riemannian geometry on G2(Cm+2) can be found in
[3]. Denote by 〈, 〉 the Riemannian metric, J the Kaehler structure and J the quaternionic Kaehler structure
on G2(Cm+2). For each x ∈ G2(Cm+2), we denote by {J1, J2, J3} a canonical local basis of J on a neighborhood
U of x in G2(Cm+2), that is, each Ja is a local almost Hermitian structure such that

Ja Ja+1 = Ja+2 = −Ja+1 Ja, a ∈ {1, 2, 3}. (1)

Here, the index is taken modulo three. Denote by ∇̂ the Levi-Civita connection of G2(Cm+2). There exist
local 1-forms q1, q2 and q3 such that

∇̂X Ja = qa+2(X)Ja+1 − qa+1(X)Ja+2

for any X ∈ TxG2(Cm+2), that is, J is parallel with respect to ∇̂. The Kaehler structure J and quaternionic
Kaehler structure J is related by

JJa = Ja J; Trace(JJa) = 0, a ∈ {1, 2, 3}. (2)

The Riemannian curvature tensor R̂ of G2(Cm+2) is locally given by

R̂(X,Y)Z =〈Y,Z〉X − 〈X,Z〉Y + 〈JY,Z〉JX − 〈JX,Z〉JY − 2〈JX,Y〉JZ

+

3∑
a=1

{〈JaY,Z〉JaX − 〈JaX,Z〉JaY − 2〈JaX,Y〉JaZ + 〈JJaY,Z〉JJaX − 〈JJaX,Z〉JJaY}. (3)

for all X, Y and Z ∈ TxG2(Cm+2).
For a nonzero vector X ∈ TxG2(Cm+2), we denote byCX = Span{X, JX},JX = {J′X|J′ ∈ Jx},HX = RX⊕JX,

andHCX the subspace spanned byHX andHJX. If JX ∈ JX, we denote byC⊥X the orthogonal complement
of CX inHX.

Let M be an oriented real hypersurface isometrically immersed in G2(Cm+2), m ≥ 3, N a unit normal
vector field on M. The Riemannian metric on M is denoted by the same 〈, 〉. A canonical local basis {J1, J2, J3}

of J on G2(Cm+2) induces a local almost contact metric 3-structure (φa, ξa, ηa, 〈, 〉) on M by

JaX = φaX + ηa(X)N, JaN = −ξa, ηa(X) = 〈ξa,X〉
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for any X ∈ TM. It follows from (1) that

φaφa+1 − ξa ⊗ ηa+1 = φa+2 = −φa+1φa + ξa+1 ⊗ ηa

φaξa+1 = ξa+2 = −φa+1ξa.

Denote by (φ, ξ, η, 〈, 〉) the almost contact metric structure on M induced by J, that is,

JX = φX + η(X)N, JN = −ξ, η(X) = 〈ξ,X〉.

The vector field ξ is known as the Reeb vector field.
It follows from (2) that the two structures (φ, ξ, η, 〈, 〉) and (φa, ξa, ηa, 〈, 〉) can be related as follows

φaφ − ξa ⊗ η = φφa − ξ ⊗ ηa; φξa = φaξ.

Denote by ∇ the Levi-Civita connection and A the shape operator on M. Then

(∇Xφ)Y = η(Y)AX − 〈AX,Y〉ξ, ∇Xξ = φAX
(∇Xφa)Y = ηa(Y)AX − 〈AX,Y〉ξa + qa+2(X)φa+1Y − qa+1(X)φa+2Y
∇Xξa = φaAX + qa+2(X)ξa+1 − qa+1(X)ξa+2

for any X,Y ∈ TM.
Corresponding to each canonical local basis {J1, J2, J3} of J, we define a local endomorphism θa on TM

by

θaX := tan(Ja JX) = φaφX − η(X)ξa.

Some properties of θa are given in the following:

Lemma 2.1 ([13]).

(a) θa is symmetric,
(b) Traceθa = η(ξa),
(c) θ2

aX = X + ηa(φX)φξa, for all X ∈ TM,
(d) θaξ = −ξa; θaξa = −ξ; θaφξa = η(ξa)φξa,
(e) θaξa+1 = φξa+2 = −θa+1ξa,
(f) θaφξa+1 = −ξa+2 + η(ξa+1)φξa,
(g) θa+1φξa = ξa+2 + η(ξa)φξa+1.

For each x ∈M, we define a subspaceH⊥ of TxM by

H
⊥ := Span{ξ, ξ1, ξ2, ξ3, φξ1, φξ2, φξ3}.

LetH be the orthogonal complement ofHCξ in TxG2(Cm+2). Then TxM = H ⊕H⊥.

Lemma 2.2 ([13]). LetHa(ε) be the eigenspace corresponding to eigenvalue ε of θa. Then

(a) θa |H has two eigenvalues ε = ±1,
(b) φHa(ε) = φaHa(ε) = Ha(ε),
(c) θbHa(ε) = Ha(−ε), for a , b.
(d) φbHa(ε) = Ha(−ε), for a , b.
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Let R be the curvature tensor of M. It follows from (3) that the equation of Gauss is given by

R(X,Y)Z = 〈Y,Z〉X − 〈X,Z〉Y + 〈φY,Z〉φX − 〈φX,Z〉φY − 2〈φX,Y〉φZ

+

3∑
a=1

{〈φaY,Z〉φaX − 〈φaX,Z〉φaY − 2〈φaX,Y〉φaZ

+ 〈θaY,Z〉θaX − 〈θaX,Z〉θaY} + 〈AY,Z〉AX − 〈AX,Z〉AY, (4)

for any X,Y,Z ∈ TM.
The normal Jacobi operator R̂N is given by

R̂NX = X + 3η(X)ξ +

3∑
a=1

{3ηa(X)ξa − η(ξa)θa + ηa(φX)φξa}. (5)

for any X ∈ TM.
Finally, we state two known results which we use in the next section:

Lemma 2.3 ([13]). Let M be a real hypersurface in G2(Cm+2). If ξ is tangent to D then Aφξa = 0, for a ∈ {1, 2, 3}.

Lemma 2.4 ([13]). Let M be a real hypersurface in G2(Cm+2). If ξ is tangent to D then ξ, ξ1, ξ2, ξ3, φξ1, φξ2, φξ3
are orthonormal.

3. Proof of Theorem 1.5

Let the normal Jacobi operator R̂N for a real hypersurface M in G2(Cm+2), be pseudo-parallel. Then we
have

〈(R(X,Y)R̂N)Z,W〉 = f 〈[(X ∧ Y)R̂N]Z,W〉, (6)

for any X,Y,Z,W ∈ TM, where f is a real-valued function on M, This implies that

〈R(X,Y)R̂NZ,W〉 − 〈R̂NR(X,Y)Z,W〉 = f {〈Y, R̂NZ〉〈X,W〉 − 〈X, R̂NZ〉〈Y,W〉
−〈Y,Z〉〈R̂NX,W〉 + 〈X,Z〉〈R̂NY,W〉}. (7)

We consider two cases: ξ < D at a point x ∈M; and ξ ∈ D on M.
Case 1: ξ < D at a point x ∈M.
Without loss of generality, we assume 0 < η(ξ1) ≤ 1, η(ξ2) = η(ξ3) = 0. Let β, µ ∈ R and U ∈ H1(1),

V ∈ H1(−1) be unit vectors such that the H1(1)-component (Aξ)+ and H1(−1)-component (Aξ)− of Aξ are
given by

(Aξ)+ = βU, (Aξ)− = µV.

Since, η(ξ2) = 0 = η(ξ3), for Z ∈ H1(1) and W ∈ H1(−1), from (5) we have

R̂NZ = (1 − η(ξ1))Z, R̂NW = (1 + η(ξ1))W.

Since η(ξ1) , 0, by putting Z ∈ H1(1) and W ∈ H1(−1) in (7), we obtain

〈R(X,Y)Z,W〉 = f {〈Y,Z〉〈X,W〉 − 〈X,Z〉〈Y,W〉}, (8)

for any X, Y ∈ TxM, Z ∈ H1(1) and W ∈ H1(−1). In particular, for X = ξ and Y ⊥ ξ, using the Gauss
equation (4), the above equation becomes

−2
∑3

a=1〈φξa,Y〉〈φaZ,W〉 +
∑3

a=1{〈θaY,Z〉〈θaξ,W〉 − 〈θaY,W〉〈θaξ,Z〉}
+〈Aξ,W〉〈AY,Z〉 − 〈Aξ,Z〉〈AY,W〉 = 0,
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for any Y ⊥ ξ, Z ∈ H1(1) and W ∈ H1(−1). Using Lemma 2.1(d) and Lemma 2.2(b), we obtain

µ〈V,W〉〈AY,Z〉 − β〈U,Z〉〈AY,W〉 − 2
3∑

a=2

〈φξa,Y〉〈φaZ,W〉 = 0, (9)

for any Y ⊥ ξ, Z ∈ H1(1) and W ∈ H1(−1). If Z ⊥ U and W ⊥ V, then
∑3

a=2〈φξa,Y〉〈φaZ,W〉 = 0, for any
Y ⊥ ξ. Since φξ2 and φξ3 are linearly independent,

〈φaZ,W〉 = 0, a ∈ {2, 3}, (10)

for any Z ∈ H1(1) (⊥ U) and W ∈ H1(−1) (⊥ V).
If dimH1(1) ≥ 4 the above equation implies that φa is not a monomorphism onH1(1), which contradicts

Lemma 2.2(d). Hence, we conclude that dimH1(1) = dimH1(−1) = 2, andH1(1) = CU andH1(−1) = CV.
The equation (10) directly implies 〈φaφU, φV〉 = 0, for a ∈ {2, 3}. Hence, by Lemma 2.2(d), φaφU = ±V,

for a ∈ {2, 3}. We can express

φaφU = εaV, εa ∈ {1,−1}. (11)

Next, by putting Z = φU and W = V in (9), and using (11) we obtain

µAφU = 2
3∑

a=2

εaφξa,

which implies that AφU ⊥ H .
Putting Y = φU,Z = U,W = V in (8) and using Lemma 2.2(b), we get 〈R(X, φU)U,V)〉 = 0. Since X is

arbitrary, we have

R(V,U)φU = 0.

Using Lemma 2.2(b), Lemma 2.2(d) and the Gauss equation (4), we deduce from the above equation that

φV − φ1V +

3∑
a=2

〈V, φaφU〉φaU = 0. (12)

Since V ∈ H1(−1), we have θ1V = −V, which implies φV = φ1V. Hence, from (12) we conclude that∑3
a=2〈V, φaφU〉φaU = 0. This contradicts (11) and the orthogonolity of φ2U and φ3U. Accordingly, this case

cannot occur.
Case 2: ξ ∈ D on M.
In this case, we have each η(ξa) = 0 for all a, everywhere. It follows from (5) that the normal Jacobi

operator has three constant eigenvalues 0, 4 and 1 at each point of M with eigenspaces

T0 = Span{φξa : a = 1, 2, 3}, T4 = Span{ξ, ξa : a = 1, 2, 3}, T1 = H

respectively.
If we put X, Y ⊥ ξ and Z = ξ in (7) then R̂NR(X,Y)ξ = 4R(X,Y)ξ and so R(X,Y)ξ ∈ T4 	 Rξ =

Span{ξa : a = 1, 2, 3}, for any X,Y ⊥ ξ. Hence, it follows from Lemma 2.4 that 〈R(X,Y)ξ, φξa〉 = 0, for any
X,Y ⊥ ξ. Furthermore, using Lemma 2.1(d) and the Gauss equation (4), we obtain

η(AY)〈AX, φξa〉 − η(AX)〈AY, φξa〉 − 2〈φaX,Y〉 = 0,

for any X,Y ∈ H and a ∈ {1, 2, 3}. This equation, together with Lemma 2.3, yields 〈φaX,Y〉 = 0, for any
X,Y ∈ H . This is a contradiction and the proof is completed.
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4. Real Hypersurfaces with Recurrent R̂N in G2(Cm+2)

In this section, we show that there does not exist any real hypersurface with recurrent normal Jacobi
operator in G2(Cm+2). We first discuss the ideas of recurrence and semi-parallelism in a general setting.

Let M be a Riemannian manifold and E j a Riemannian vector bundle over M with linear connection
∇

j, j ∈ {1, 2}. It is known that E∗1 ⊗ E2 is isomorphic to the vector bundle Hom(E1,E2), consisting of
homomorphisms from E1 into E2. We denote by the same 〈, 〉 the fiber metrics on E1 and E2 as well as that
induced on Hom(E1,E2). The connections ∇1 and ∇2 induce on Hom(E1,E2) a connection ∇̄, given by

(∇̄XF)V = (∇̄F)(V; X) = ∇2
XFV − F∇1

XV

for any vector field X tangent to M, cross sections V in E1 and F in Hom(E1,E2).
A section F in Hom(E1,E2) is said to be recurrent if there exists 1-form τ such that ∇̄F = F ⊗ τ. We may

regard parallelism as a special case of recurrence, that is, the case τ = 0. Let R̄, R1 and R2 be the curvature
tensor corresponding to ∇̄, ∇1 and ∇2 respectively. Then we have

(R̄ · F)(V; X,Y) = (R̄(X,Y)F)V = R2(X,Y)FV − FR1(X,Y)V

for any X,Y ∈ TM, V ∈ E1 and F ∈ Hom(E1,E2).
We have the following result from [5]:

Lemma 4.1. [5] Let M be a Riemannian manifold, E j a Riemannian vector bundle over M, j ∈ {1, 2} and F a section
in Hom(E1,E2). If F is recurrent then F is semi-parallel.

From Lemma 4.1 and Corollary 1.7 we obtain the following:

Corollary 4.2. There does not exist any real hypersurface with recurrent normal Jacobi operator in G2(Cm+2), m ≥ 3.

As a corollary we have the following:

Corollary 4.3. There does not exist any real hypersurface with parallel normal Jacobi operator in G2(Cm+2), m ≥ 3.
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[9] I. Jeong, J. D. Pérez, Y. J. Suh, Recurrent Jacobi operator of real hypersurfaces in complex two-plane Grassmannians, Bull. Korean

Math. Soc. 50 (2013), 525–536.
[10] I. Jeong, Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with Lie ξ-parallel normal Jacobi operator, J. Korean

Math. Soc. 45 (2008), 1113–1133.
[11] I. Jeong, Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with F-parallel normal Jacobi operator, Kyungpook

Math. J. 51 (2011), 395–410.
[12] G. A. Lobos, M. Ortega, Pseudo-parallel real hypersurfaces in complex space forms, Bull. Korean Math. Soc. 41 (2004), 609–618.
[13] T. H. Loo, Semi-parallel real hypersurfaces in complex two-plane Grassmannians, Differ. Geom. Appl. 34 (2014), 87-102.
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