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Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. In this paper we establish some results on a phase-type Lévy risk model with two-sided jumps
and a barrier dividend strategy. Following [4] we describe the connection between the ruin problem of the
risk model with barrier dividend strategy and the first passage problem of the risk model reflected at its
running supremum. Then we give some results for the joint Laplace transform of the upward entrance time
and the overshoot for the phase-type jump diffusion reflected at its running supremum. Finally we find
some expressions for the Laplace transform of the time of ruin and the expected discounted dividends up
to ruin. All our results on the ruin problem are expressed in terms of the solutions to the Cramér-Lundberg
equation corresponding to the underlying phase-type jump diffusion.

1. Introduction

De Finetti first considered the problem of finding the optimal dividend-payment strategy in [7]. Since
then it has been studied extensively. De Finetti found that, if we want to maximize the expected discounted
dividends, we must use a barrier strategy. The optimal dividend problem for general spectrally negative
Lévy processes has been studied by Loeffen and Renaud in [9]. They proved that the barrier strategy for
spectrally one-sided models is optimal if the tail of the Lévy measure is log-convex.

Recently, many researchers are attracted by risk models with two-sided jumps. In this kind of models,
the downward jumps can be interpreted as random losses (from claim or investment indemnity) of an
insurance company, while the upward jumps are interpreted as random returns (obtained by investing the
initial asset and the insurance premium) of the company. In [6] the threshold dividend strategy for a Lévy
process with two sided jumps is studied. The paper by Bo, Song, Tang, Wang and Yang (see [4]) aims at
studying risk models with two-sided jumps and a constant barrier dividend strategy. It is worthwhile to
note that the techniques used in [6] for studying the threshold dividend strategy are not usable for the barrier
dividend strategy because when the surplus process can jump upward, the threshold dividend strategy
generates a continuous dividend process, while the barrier dividend strategy creates a discontinuous one.

The purpose of this paper is to present some results on a phase-type Lévy risk model with two-sided
jumps and a barrier dividend strategy. Following [4] we relate the ruin problem of the risk model with
barrier dividend strategy to the first passage problem of the risk model reflected at its running supremum.
For a general Lévy risk model, it is shown that the expected discounted dividends can be expressed in
terms of the Laplace transform of the upward entrance time of the unconstrained Lévy process and the
joint Laplace transform of the upward entrance time and the overshoot of the Lévy process reflected at its
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running supremum. Then we consider the first passage time problem for the phase-type jump diffusion
reflected at its running supremum. In order to solve this problem we give the joint moment generating
function of the crossing time and the overshoot in section 3.2. The main difference between our results and
those given in [3] is that we are considering the case of negative argument for the joint moment generating
function. This is very important because it enables us to connect the results from [4] and and our results
from 3.2 to find some expressions for the Laplace transform of the time of ruin and the expected discounted
dividends up to ruin in section 3.3. All our results on the ruin problem are expressed in terms of the
solutions to the Cramér-Lundberg equation corresponding to the underlying phase-type jump diffusion.

2. Lévy Risk Model with Two Sided Jumps and Constant Barrier Dividend Strategy

We consider a Lévy process X = {Xt, t ≥ 0} on a filtered probability space
(Ω,F , {Ft}t≥0,P), where {Ft}t≥0 satisfies the usual conditions of right-continuity and completness. Let
Px, x ∈ R, be the distribution of X+x underP andEx the expectation operator corresponding toPx. Denote
by Ta the entrance time of the Lévy process X into (a,+∞):

Ta = inf{t ≥ 0 : Xt > a}

where inf ∅ = ∞. The running supremum of the process X is defined as

St = sups≤t(Xs ∨ 0)

and the Lévy process X reflected at its running supremum S as Y = S − X. Note that the reflected Lévy
process Y is a Markov process. Further, let τa be the entrance time of the reflected Lévy process Y into (a,∞):

τa = inf{t ≥ 0 : Yt > a}.

Now we consider a risk problem with constant barrier dividend strategy. An insurance company will
pay dividends according to a barrier strategy with parameter b > 0. Denote by X the risk process of the
company before dividends are deduced. The aggregate dividends paid by time t are

Lb
t = sups≤t(Xs − b) ∨ 0.

Let Ub be the risk process regulated by the dividend payment Lb, that is

Ub
t = Xt − Lb

t , t ≥ 0.

We can interpret the dividend process {Lb
t }t≥0 as the magnitude of the displacement which is the minimal

amount required to keep {Ub
t }t≥0 always less than or equal to b.

Denote by τ̃b the ruin time of the insurance company with surplus process Ub

τ̃b = inf{t ≥ 0 : Ub
t < 0}.

We give the following results concerning the Laplace transform of the ruin time, the expected discounted
dividends and the deficit at ruin which correspond to results from Proposition 2.1 in [4]:

Proposition 1. Suppose b > 0 and x ∈ [0, b]. Then we have the following:

(a) The Laplace transform of the ruin time is given by

Ex[e−rτ̃b ] = Ex−b[e−rτb ].
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(b) The total expected discounted dividends before ruin satisfies

Ex

[ ∫ τ̃b

0
e−rtdLb

t

]
= Ex−b

[ ∫ τb

0
e−rtdSt

]
.

(c) The deficit at ruin satisfies, for each y ≥ 0

Ex

[
e−rτ̃b1

{−Ub
τ̃b
>y}

]
= Ex−b

[
e−rτb1{Yτb−b>y}

]
.

Proof. Using the spatial homogeneity of the surplus process X, it is not hard to find that {Ub,Lb, τ̃b; U0 = x}
has the same distribution as {b − Y,S, τb; Y0 = b − x}. Obviously, Y0 = b − x if X0 = x − b and the conclusion
now easily follows.

First recall that ”0 is regular for (0,∞) for the Lévy process X” means that a Lévy process started at
the origin gets to (0,∞) at arbitrarily small times (see [1]). Now we give a useful expression for the total
expected discounted dividends which corresponds to Theorem 2.1 from [4]:

Theorem 1. Suppose 0 is regular for (0,∞) for the Lévy process X and let b > 0. The total expected discounted
dividends are given by

Ex

[ ∫ τ̃b

0
e−rtdLb

t

]
= h(x − b) − Ex−b

[
e−rτb h(−Yτb )

]
,

for x ∈ [0, b]. Here

h(−x) = E[e−rTx (XTx − x)] + E[e−rTx ]
∫
∞

0
E[e−rTz ]dz

for x ≥ 0.

For the reader’s convenience we give the proof following [4].

Proof. From Proposition 1(b) (Proposition 2.1(II) from [4]), we have

Ex

[ ∫ τ̃b

0
e−rtdLb

t

]
= Ex−b

[ ∫ τb

0
e−rtdSt

]
= Ex−b

[ ∫ ∞

0
e−rtdSt

]
− Ex−b

[
e−rτbE−Yτb

( ∫ ∞

0
e−rtdSt

)]
= h(x − b) − Ex−b

[
e−rτb h(−Yτb )

]
,

where, for x ≥ 0,

h(−x) = E−x

[ ∫ ∞

0
e−rtdSt

]
= E−x[e−rT0 XT0 ] + E−x[e−rT0 ]E

[ ∫ ∞

0
e−rtdSt

]
= E[e−rTx (XTx − x)] + E[e−rTx ]

∫
∞

0
E[St]re−rtdt
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= E[e−rTx (XTx − x)] + E[e−rTx ]
∫
∞

0
re−rtdt

∫
∞

0
P(St ≥ z)dz

= E[e−rTx (XTx − x)] + E[e−rTx ]
∫
∞

0
re−rtdt

∫
∞

0
P(Tz ≤ t)dz

= E[e−rTx (XTx − x)] + E[e−rTx ]
∫
∞

0
E[e−rTz ]dz.

The second equality holds since YT0 = 0 and the penultimate one follows from the regularity of 0 for (0,∞).
The proof is now complete.

Theorem 1 (Theorem 2.1 from [4]) shows that if we want to compute the expected discounted dividends
when the underlying risk model is a general Lévy process X with two sided jumps, we have to know the
Laplace transform of the one-sided first (upward) passage time of X as well as the joint distribution of the
(upward) entrance time and the overshoot of the reflected Lévy process Y = S − X.

3. Phase-Type Double Jump-Diffusion Model

3.1. Lévy phase-type model

Denote by J = {Jt}t≥0 a finite state continuous time Markov process with one state ∆ absorbing and the
remaining ones 1, . . . ,m transient. The distribution F on (0,∞) of the absorption time ζ in J = {Jt}t≥0 is
called a phase-type distribution. This means that F(t) = P(ζ ≤ t) where ζ = inf {s > 0 : Js = ∆}. Let T be the
restriction of the full intensity matrix to the m transient states and let α = (α1 . . . αm) be the initial probability
row vector where αi = P(J0 = i). For any i = 1, . . . ,m denote by ti the intensity of a transition i → ∆ and
write t = (t1 . . . tm)T for the column vector of such intensities. We know that t = −T1, where 1 stands for a
column vector of ones. The cumulative phase-type distribution F is given by

F(x) = 1 − αeTx1, (1)

the density is f (x) = αeTxt and the Laplace transform is given by

F̂[s] =

∫
∞

0
e−sxF(dx) = α(sI − T)−1t.

The Laplace transform F̂[s] can be extended to the complex plane except at a finite number of poles (the
eigenvalues of T). If there exists no number l < m, l-vector v and l × l-matrix G such that F(x) = 1 − veGx1 a
representation of form (1) to the distribution function F is called minimal.

Phase-type distributions include and generalize exponential distributions. They also form a dense class
in the set of all distributions on (0,∞) and have many applications in applied probability, see for example [2]
for surveys. The applicability of the class comes from the fact that the overshoot distribution is again phase-
type with the same m and T but αi replaced by P(Jx = i|ζ > x). This is similar to the memoryless property
of the exponential distribution (m = 1) and explains the existence of many formulas which generalize the
scalar exponential case.

Let X = {Xt}t≥0 be a Lévy process defined on probability space (Ω,F , {Ft}t≥0,P) which satisfies the usual
conditions. We consider X of the form:

Xt = µt + σWt +

N+(t)∑
k=1

U+
k −

N−(t)∑
l=1

U−l , (2)

where W is standard Brownian motion, N± are Poisson processes with rates of arrival λ± and U± are i.i.d.
random variables with respective jump size distributions F± of phase-type with parameters m±, T±, α±.
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All processes are assumed to be independent. For any s ∈ iR, the Lévy exponent G of X, defined by
G(s) = logE[esX1 ], is

G(s) = sµ + s2 σ
2

2
+ λ+(F̂+[−s] − 1) + λ−(F̂−[s] − 1), (3)

where F̂±[s] = α±(sI − T±)−1t±. As above, G(s) can be extended to the complex plane except a finite number
of poles (the eigenvalues of T±); this extension will also be denoted by G. Any Lévy process may be
approximated arbitrarily closely by processes of form (2) (see [3, Proposition 1]). Many of the computations
involving Lévy processes are based on finding the roots of the ”Cramér-Lundberg equation”

G(s) = r, (4)

for some riskless discount rate r.

3.2. First passage time

We consider the process Y = S − X defined as the process (2) reflected at its running supremum S. To
solve the first passage time problem for Y we have to compute the joint moment generating function

vb(y) = vb(y, r, k) = Ey[e−rτ+k(Yτ−b)] (5)

of the crossing time

τ = τb = inf{t > 0 : Yt > b}

and the overshoot Yτ − b, where r, b ≥ 0 and the number k is such that vb(y) is finite. Under the measure Py
the process Y starts in Y0 = y ∨ 0 − y.

At the crossing time τb the component µt + σWt must either take the process Y to the barrier b, or we
must have a downward jump of X. Denote by M− the set of all phases of the underlaying phase process
J = {Jt}t≥0 for the jump, during which upcrossing may occur (calling the non-jumping time phase 0) and
by m− the number of elements of M−. We write M+ for the set of phases during which upcrossing can not
occur and m+ for the number of elements of M+. Let Hi denote the event that the upcrossing of b occurs in
phase i ∈M− or the event of crossing the supremum in phase i ∈M+. Denote by

πi = Ey[e−rτ
1Hi ]

the (discounted) probability of upcrossing in phase i ∈ M−. We write π = (πi, i ∈ M−) and let f̂−[k] be the
vector of analytic continuations of Laplace transforms at k of the overshoot Yτb − b depending on the initial
starting state. For the running supremum St = sups≤t(Xs ∨ 0) of X, let ∆St = St − St− be the jump of S at time
t and Sc

t the continuous part of S. Introduce the dummy-variables δ0 = Ey[
∫ τb

0 e−rsdSc
s] and

δi = Ey

[ ∑
0<s≤τb

e−rs
1{∆Ss>0,Hi}

]
, i = 1, . . . ,m+.

Denote by δ the row vector δ = (δi, i ∈ M+) and write (g[ρ]i, i ∈ M+) where 1[ρ]0 = ρ and 1[ρ]i =
ρ1i(−ρI − T+)−11. Here 1i denote a row vector of zeros with a 1 on the ith position. Let p denote the
number of roots of the Cramér-Lundberg equation G(ρ) = r. The next result gives an expression for the
moment-generating function vb(y) in terms of the roots of the Cramér-Lundberg equation.

Proposition 2. The joint moment generating function vb(y) defined in (5) for the process (2) is given by

vb(y) = πf̂−[−k]
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where y < b and π = (πi, i ∈M−), δ = (δi, i ∈M+) solve the system

e−ρibπf̂−[ρi] − δg[ρi] = e−ρi(y∨0−y), i = 1, . . . , p. (6)

If the vectors ki := (e−ρibf̂−[ρi]′,g[ρi]′), i = 1, . . . , p are linearly independent and all roots ρi of G(ρ) = r are distinct,
then (π,δ) uniquely solve system (6).

Proof. We split the probability space in H0, . . . ,Hm− and use the fact that, conditionally on the phase in
which the upcrossing occurs, the time of overshoot τb and the overshoot Yτb − b are independent to get the
decomposition

vb(y) = Ey[e−rτb ek(Yτb−b)]

= Ey[e−rτb 1H0 ] +

m−∑
i=1

Ey[e−rτb 1Hi ]Ei[ek(Yτb−b)]

= πf̂−[−k],

where Ei stands for the expectation under P conditioned on Hi.
We use the optional stopping approach to the reflected process Y and the martingale introduced in [8]

to compute the vector π. Note that ∆St = St − St− and Sc have finite number of jumps in each finite time
interval and finite expected variation respectively. Applying [8] we find that for γ ∈ iR and r > 0

Nt =(G(−γ) − r)
∫ t

0
(−rs + γYs)ds + eγY0 − e−rt+γYt + γ

∫ t

0
e−rsdSc

s +
∑

0<s≤t

e−rs[1 − e−γ∆Ss ]

is a zero mean martingale. Here we used that if ∆Ss or dSs is positive then Ys = 0. It is easy to check
that |Nτb∧t| can be dominated by an integrable function. We conclude that Ey[Nτb ] = 0 by applying Doob’s
optional stopping theorem (see [1]) with the stopping time τb ∧ t. Expanding the equality Ey[Nτb ] = 0 for
y < b leads to

0 = (G(−γ) − r)Ey

[ ∫ τb

0
e−rs+γYs ds

]
+ eγ(y∨0−y)

− eγbπf̂−[−γ] + γδ0 +

m+∑
j=1

δ j(1 − f̂+[γ] j). (7)

Identity (7) can be extended to hold for γ in the complex plane except finitely many poles (the eigenvalues
of −T−,T+) by analytic continuation. Letting γ = −ρi, where ρi is a root of G(ρ) = r, we find system (6).
Since for minimal representations of F± the number of unknowns is equal to the number of equations, the
last assertion follows.

3.3. The ruin time and the expected discounted dividends

Now we can present an expression for the Laplace transform of the ruin time.

Theorem 2. The Laplace transform of the ruin time for the process (2) can be expressed as

Ex[e−rτb ] = π1

for x ∈ [0, b], where π solves the system (6) for y = x − b and 1 denotes a column vector of ones.

Proof. From Proposition 1(a) (Proposition 2.1(I) in [4]) we have

Ex[e−rτ̃b ] = Ex−b[e−rτb ].
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Decomposing the probability space in H0, . . . ,Hm− and using the fact that the time of overshoot τb and the
phase in which the upcrossing occurs are independent, yields the decomposition

Ex−b[e−rτb ] = Ex−b[e−rτb 1H0 ] +

m−∑
i=1

Ex−b[e−rτb 1Hi ]Ei[1Ω]

= π1,

where Ei denotes the expectation under P conditioned on Hi and the theorem is proved.

We next present an expression for the total expected discounted dividends.

Theorem 3. Let b > 0. For x ∈ [0, b] the total expected discounted dividends for the process (2) can be expressed as

Ex

[ ∫ τ̃b

0
e−rtdLb

t

]
= h(x − b) − πG,

where

h(−x) = E[e−rTx (XTx − x)] + E[e−rTx ]
∫
∞

0
E[e−rTz ]dz,

π solves the system (6) for y = x − b and G = (Ei[h(−Yτb )], i ∈M−).

Proof. From Theorem 1 (Theorem 2.1 in [4]) we have

Ex

[ ∫ τ̃b

0
e−rtdLb

t

]
= h(x − b) − Ex−b

[
e−rτb h(−Yτb )

]
,

where, for x ≥ 0,

h(−x) = E[e−rTx (XTx − x)] + E[e−rTx ]
∫
∞

0
E[e−rTz ]dz.

Now, as before, we split the probability space in H0, . . . ,Hm− and use the fact that, conditionally on the
phase in which the upcrossing occurs, the time of overshoot τb and the overshoot Yτb − b are independent,
to find the decomposition

Ex−b

[
e−rτb h(−Yτb )

]
= Ex−b[e−rτb 1H0 ] +

m−∑
i=1

Ex−b[e−rτb 1Hi ]Ei[h(−Yτb )]

= πG,

where Ei stands for the expectation under P conditioned on Hi and the theorem is proved.

Note that if we knew the distribution of the reflected process Y for the Lévy phase-type process we
could calculate the Laplace transform of the ruin time using Theorem 2 and the total expected discounted
dividends using Theorem 3. This could be the topic of some further research.
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