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A Note on Meir-Keeler Contractions on Dislocated Quasi-b-Metric
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Abstract. In this manuscript, we show that Meir-Keeler type contractions posses a fixed point in the setting
of dislocated quasi-b-metric.

1. Introduction and Preliminaries

Throughout the paper, let R and N denote the set of real numbers and positive integers, respectively.
In addition, let R+

0 := [0,∞) and N0 :=N ∪ {0}.

Definition 1.1. [1] For a nonempty set M, a dislocated quasi-b-metric is a function ρ : M ×M→ R+
0 such that for

all u, v,w ∈M and a fixed constant s ≥ 1:

(ρ1) if ρ(u, v) = 0 then u = v.

(ρ2) ρ(u, v) ≤ s[ρ(u,w) + ρ(w, v)].

Moreover, the pair (M, ρ) is called dislocated quasi-b-metric space (DqbMS).

Example 1.2. The function ρb : R+
0 ×R

+
0 → R

+
0 defined as

ρb(x, y) = max{x, y} + x

for all x, y ∈ R is a dislocated quasi-b-metric on R.

Example 1.3. The function ρb : R ×R→ R+
0 defined as

ρb(x, y) = |x − y|2 + 2|y|

for all x, y ∈ R is a dislocated quasi-b-metric on R.

Example 1.4. The function ρb : R ×R→ R+
0 defined as

ρb(x, y) = |x − y| + 3|x|2 + 2|y|2

for all x, y ∈ R is a dislocated quasi-b-metric on R.
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The basic topological notions and analog of standard topological tools have been derived in straight
way, see e.g. [1]. Each dislocated quasi-b-metric ρ on a non-empty set M have a topology τρ that was
generated by the family of open balls

Oε(u) = {v ∈M : |ρ(u, v) − ρ(u,u)| < ε, } for all u ∈M and ε > 0.

In the setting of the DqbMS (M, ρ), we say that a sequence {un} converges to a point u ∈M if the following
limit exists (and finite):

lim
n→∞

ρ(un,u) =︸︷︷︸
(R)

ρ(u,u) =︸︷︷︸
(L)

lim
n→∞

ρ(u,un). (1)

If ρ(u,u) = 0, then it is called 0-convergence.
Moreover, a sequence {un} is said to be Cauchy if the following limit

lim
n→∞

ρ(um,un) =︸︷︷︸
(R)

L1 =︸︷︷︸
(L)

lim
n→∞

ρ(un,um), (2)

exists and is finite, where m ≥ n. Furthermore, if L1 = 0 in (2), then we say that {un} is a 0−Cauchy sequence.
As it is expected, a pair (M, ρ) is called complete DqbMS if for each Cauchy sequence {un}, there is some

u ∈M such that

L2 = lim
n→∞

ρ(un,u) = lim
n→∞

ρ(um,un) =︸︷︷︸
(R)

ρ(u,u) =︸︷︷︸
(L)

lim
n→∞

ρ(un,um) = lim
n→∞

ρ(u,un). (3)

Analogously, a pair (M, ρ) is called 0−complete DqbMS if for each 0−Cauchy sequence {un}, converges
to a point u ∈M such that L2 = 0 in (3).

If only the equality (R) holds in (1), (2), respectively, we say that {un} has a ”left limit”, is ”right Cauchy,”
respectively. Moreover, if (R) holds in (3), we say that X is right-complete. Analogously, the notions of left
limit, left Cauchy and left complete can be defined. In these equations (1), (2),(3), if both (R) and (L) holds,
then we can the corresponding standard definition.

Let (M, ρ) and (K, σ) be DqbMS’s. A mapping T : M→ K is called continuous if

lim
n→∞

ρ(un,u) = ρ(u,u) = lim
n,m→∞

ρ(un,um),

then we have

lim
n→∞

σ(Tun,Tu) = σ(Tu,Tu) = lim
n,m→∞

σ(Tun,Tum).

The proof of the following lemma is straightforward and hence we omit it.

Lemma 1.5. (cf. [5]) For a DqbMS (M, ρ), we have the following observations:

(A) If ρ(u, v) = 0 = ρ(v,u) then ρ(u,u) = ρ(v, v) = 0.

(B) For a sequence {un} with limn→∞ ρ(un,un+1) = 0 = limn→∞ ρ(un+1,un), we have

lim
n→∞

ρ(un,un) = lim
n→∞

ρ(un+1,un+1) = 0.

(C) If u , v then ρ(u, v) > 0 and ρ(v,u) > 0.

(D) Let V be a closed subset of M and {un} be a sequence in V. If un → u as n→∞, then u ∈ V.

(E) For a sequence {un} in M such that un → u as n→∞ with ρ(u,u) = 0, then limn→∞ ρ(un, v) = ρ(u, v) for all
v ∈M.
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Very recently, Popescu [6] propose the notion of triangular α-orbital admissible:

Definition 1.6. [6] Suppose that α : M ×M → R+
0 is a function. A self-mapping T : M → M is said to be an

α-orbital admissible if

(T3) α(u,Tu) ≥ 1⇒ α(Tu,T2u) ≥ 1

Furthermore, T is called triangular α-orbital admissible if T is α-orbital admissible and

(T4) α(u, v) ≥ 1 and α(v,Tv) ≥ 1⇒ α(u,Tv) ≥ 1

1.1. (b)-comparison functions.
For a fixed real number s ≥ 1, let Ψb be all functions ϕb : [0,+∞)→ [0,+∞) satisfying the conditions

(b1) ϕb is increasing,
(b2) there exist k0 ∈N, a ∈ (0, 1) and a convergent series of nonnegative terms

∑
∞

k=1 νk such that sk+1ϕk+1
b (t) ≤

askϕk
b(t) + νk, for k ≥ k0 and any t ∈ [0,∞).

Any ϕb ∈ Ψb is called (b)-comparison function [12]. For s = 1, in the definition above, ϕb is known as
(c)-comparison functions.

We will need the following essential properties in our further discussion.

Lemma 1.7. ([11–13]) For a comparison function ϕb : [0,+∞)→ [0,+∞) the following hold:

(1) the series
∑
∞

k=0 skϕk(t) converges for any t ∈ [0,+∞);
(2) the function bs : [0,+∞)→ [0,+∞) defined by bs(t) =

∑
∞

k=0 skϕk(t), t ∈ [0,∞) is increasing and continuous at
0.

(3) each iterate ϕk
b of ϕ k ≥ 1, is also a comparison function;

(4) ϕb is continuous at 0;
(5) ϕb(t) < t, for any t > 0 .

For more details on comparison functions and examples we refer the reader to [11],[12].

2. Main Results

2.1. (α,ψ)-Meir-Keeler type contraction
We introduce the following notion which is an improved version of Meir-Keeler contraction.

Definition 2.1. Let (M, ρ) be a DqbMS. We say that T : M → M is an (α,ψ)-Meir-Keeler type contraction if
there exist two functions ψ ∈ Ψ and α : M ×M→ R+

0 satisfying the following condition:
For each ε > 0, there exists δ > 0 such that

ε ≤ ψ(ρ(u, v)) < ε + δ implies α(u, v)ρ(Tu,Tv) < ε.

Notice that for an (α,ψ)-Meir-Keeler type contraction T : M→M, we have

α(u, v)ρ(Tu,Tv) ≤ ψ(ρ(u, v)), for any u, v ∈M.

In what follows we shall state and prove the first main result of this section.

Theorem 2.2. Suppose that (M, ρ) is a complete DqbMS and a self-mapping T : M → M is a (α,ψ)-Meir-Keeler
type contraction. Assume also that

(i) T is α-orbital admissible;
(ii) there exists u0 ∈M such that α(u0,Tu0) ≥ 1; and α(Tu0,u0) ≥ 1;

(iii) T is continuous.
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Then, there exists u ∈M such that Tu = u.

Proof. Due to assumption (ii) of theorem, there exists u0 ∈M such that α(u0,Tu0) ≥ 1 and α(Tu0,u0) ≥ 1. We
shall setup an iterative sequence {un} in M as

un+1 = Tun, for all n ∈N0. (4)

Notice that in case of existing a k ∈Nwith uk = uk+1, the proof is over since u = uk = uk+1 = Tuk = Tu.
Consequently, we assume that un , un+1, for all n. Due to Lemma 1.5 part (C), for un , un+1, we have

ρ(un,un+1) > 0 and ρ(un+1,un) > 0, for all n ∈N0. (5)

Since T is α-orbital admissible, again by (ii), we get

α(u0,u1) = α(u0,Tu0) ≥ 1 =⇒ α(Tu0,Tu1) = α(u1,u2) ≥ 1,

and

α(u1,u0) = α(Tu0,u0) ≥ 1 =⇒ α(Tu1,Tu0) = α(u2,u1) ≥ 1.

Iteratively, we find that

α(un,un+1) ≥ 1 and α(un+1,un) ≥ 1 for all n ∈N0. (6)

Since T is an (α,ψ)-Meir-Keeler type contraction, we find

ρ(un,un+1) = ρ(Tun−1,Tun)
≤ α(un−1,un)ρ(Tun−1,Tun)
≤ ψ(ρ(un−1,un)),

(7)

for each n ∈N by taking (4) and (6) into account.
Combining (5) and the property of ψ, we derive that

ρ(un,un+1) ≤ ψ(ρ(un−1,un)) < ρ(un−1,un), (8)

for each n ∈N. Furthermore, by the repeating the same argument, we find that

ρ(un+1,un) ≤ ψ(ρ(un,un−1)) < ρ(un,un−1), (9)

for each n ∈N.
Thus, we conclude that {ρ(un−1,un)} is a non-increasing and bounded sequence. Hence, there exists

t ∈ [0,∞) such that

lim
n→∞

ρ(un−1,un) = t.

As a next step, we shall prove that t = 0. Suppose, on the contrary, that t > 0. Since T is an (α,ψ)-Meir-Keeler
type contraction, for ε = ψ(t) > 0, there exists δ > 0 and a natural number m such that

ε ≤ ψ(ρ(um−1,um)) < ε + δ implies α(um−1,um)ρ(Tum−1,Tum) < ε.

On account of (6), we get that

ρ(um,um+1) = ρ(Tum−1,Tum) ≤ α(um−1,um)ρ(Tum−1,Tum) < ε = ψ(t) < t,

a contradiction, since t = inf{ρ(un,un+1) : n ∈N}.
Eventually, we have

lim
n→∞

ρ(un−1,un) = 0. (10)



E. Karapınar / Filomat 31:13 (2017), 4305–4318 4309

In the same way, we conclude also that

lim
n→∞

ρ(un,un−1) = 0.

In what follows we shall prove that {un} is a left-0-Cauchy sequence. That is,

lim
n→∞

ρ(un,un+k) = 0, for all k ∈N. (11)

First, we observe from (8) that

ρ(un,un+1) ≤ ψ(ρ(un−1,un)) for all n ∈N. (12)

Since, ψ is nondecreasing, by iteration, we conclude that

ρ(un,un+1) ≤ ψn(ρ(u0,u1)) for all n ∈N. (13)

Now, by using (ρ2),(4),(6) and (13), we have the following

ρ(un,um) ≤ sρ(un,un+1) + ... + sm−nρ(um−1,um)

≤
∑m−1

p=n sp+1−nψp(ρ(u0,u1))

= s
∑m−1

p=n spψp(ρ(u0,u1))

(14)

By Lemma 1.7, we know that the series
∑
∞

k=0 skϕk(t) converges for any t ∈ [0,+∞) Hence, letting n→∞ in the
inequality above, we conclude that {un} is left-Cauchy. Analogously, we derive that {un} is right-0-Cauchy.
Herewith, the iterative sequence {un} is 0-Cauchy.

Since (M, ρ) is a 0-complete DqbMS, then there exists u ∈M such that

0 = lim
n→∞

ρ(un,u) = lim
n→∞

ρ(um,un) = ρ(u,u) = lim
n→∞

ρ(un,um) = lim
n→∞

ρ(u,un) (15)

As T is continuous, then we deduce that

lim
n→∞

ρ(un+1,Tu) = lim
n→∞

ρ(Tun,Tu) = ρ(Tu,Tu) = lim
n→∞

ρ(Tun,Tun+k) = 0. (16)

Since un+1 → u as n→∞ and ρ(u,u) = 0, then by using Lemma 1.5, we get

lim
n→∞

ρ(un+1,Tu) = ρ(u,Tu). (17)

From (16) and (17), we derive that ρ(u,Tu) = 0. By (ρ1), we conclude that Tu = u.

Theorem 2.3. Suppose that (M, ρ) is a complete DqbMS and a self-mapping T : M → M is a (α,ψ)-Meir-Keeler
type contraction. Assume also that

(i) T is α-orbital admissible;
(ii) there exists u0 ∈M such that α(u0,Tu0) ≥ 1 and α(Tu0,u0) ≥ 1;

(iii) if {un} is a sequence in M such that α(un,un+1) ≥ 1 for all n and un → u ∈M as n→∞, then α(un,u) ≥ 1 for
all n.

Then, there exists u ∈M such that Tu = u.

Proof. By repeating the lines in the proof of Theorem 2.2, we conclude that there exists a Cauchy sequence
{un}. Since M is complete, it converges to some u ∈M. On the other hand, from (6) and (iii), we have

α(un,u) ≥ 1, for all n. (18)
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By using (ρ2) and (18) with the assumption of the Theorem that T is a (α,ψ)-Meir-Keeler type contraction,
we obtain

ρ(Tu,u) ≤ sρ(Tu,Tun) + sρ(un+1,u)
≤ sα(un,u)ρ(Tun,Tu) + sρ(un+1,u)
≤ sψ(ρ(un,u)) + sρ(un+1,u).

Since ψ is continuous at t = 0, by letting n→∞ in the inequality above, we find

ρ(Tu,u) = 0.

It yields that Tu = u due to (ρ1).

Example 2.4. Let M = [0,∞) endowed with ρ(u, v) = |x − y| + |x| for all u, v ∈ [0,∞). It is clear that (M, ρ) is a
complete DqbMS. Define T : M→M and α : M ×M→ R+

0 by:

Tu =
u2

3
, and α(u, v) =

{
1 if u = v = 0;
0 otherwise .

We can prove easily T is an(α,ψ)-Meir-Keeler type contraction and it is an α-orbital admissible.
Moreover, there exists u0 ∈M such that α(u0,Tu0) ≥ 1. In fact, for u0 = 0, we have

α(0,T0) = 1.

Now, we show that T is a continuous. Let lim
n→∞

un = u in the context of DqbMS (M, ρ), that is,

lim
n→∞

ρ(un,u) = ρ(u,u) = lim
n,m→∞

ρ(un,um).

We shall show that T is continuous. Indeed,

lim
n→∞

ρ(Tun,Tu) = lim
n→∞
|Tun − Tu| + |Tun|

= ρ(Tu,Tu) = |Tu − Tu| + |Tu| = Tu = u2

3
= lim

n,m→∞
ρ(Tun,Tum) = lim

n,m→∞
|Tun − Tum| + |Tun|

= lim
n,m→∞

∣∣∣∣ u2
n

3 −
u2

m
3

∣∣∣∣ + |
u2

n
3 |.

So all hypotheses of Theorem 2.2 are satisfied. Consequently, T has a fixed point. Notice that u = 0 is a
fixed point of T.

In the following example, a self-mapping T is not continuous.

Example 2.5. Let M = [0,∞) endowed with the dislocated metric ρ(u, v) = max{u, v} + |u| for all u, v ∈ [0,∞).
Define T : M→M and α : M ×M→ R+

0 by:

Tu =

{
1
2 u3
− 1 u > 1,

0 0 ≤ u ≤ 1, and α(u, v) =

{
1 if u, v ∈ [0, 1],
0 otherwise .

Clearly T is not continuous at 1 which shows that Theorem 2.2 is not applicable in this case.
We shall prove that a self-mapping T is an (α − ψ)-Meir-Keeler type contraction. Let ε > 0 be given.

Take δ > 0 and suppose that ε ≤ ψ(ρ(u, v)) < ε + δ we want to show that

α(u, v)ρ(Tu,Tv) < ε.
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Suppose that α(u, v) = 1, then u, v ∈ [0, 1] and so Tu = 0,Tv = 0. Hence

ρ(Tu,Tv) = ρ(0, 0)
= max{0, 0} + |0| = 0
< ε.

Also, T is an α-orbital-admissible. To see this, let α(u, v) ≥ 1, then both u, v ∈ [0, 1]. Due to definition of
T, we have Tu = 0 ∈ [0, 1] and Tv = 0 ∈ [0, 1]. Thus, we get α(Tu,Tv) ≥ 1.

Moreover, there exists u0 ∈M such that α(u0,Tu0) ≥ 1. Indeed, for u0 = 0 we have

α(0,T0) = α(0, 0) = 1 = α(0, 0) = α(T0, 0).

Finally, let {un} be a sequence in M such that α(un,un+1) ≥ 1 for all n and un → u ∈ M as n → ∞. Since
α(un,un+1) ≥ 1 for all n, by the definition of α, we have un ∈ [0, 1] for all n and u ∈ [0, 1], then α(un,u) = 1.

So, we conclude that all hypotheses of Theorem 2.3 are fulfilled. Hence, we proved that T has a fixed
point.

2.2. Generalized (α,ψ)-Meir-Keeler type contraction
Definition 2.6. Suppose that (M, ρ) is a DqbMS. A self-mapping T : M → M is said to be a generalized (α,ψ)-
Meir-Keeler type contraction if there exist ψ ∈ Ψ and α : M ×M→ R+

0 such that for each ε > 0, there exists δ > 0
such that

ε ≤ ψ(P(u, v)) < ε + δ implies α(u, v)ρ(Tu,Tv) < ε,

where
P(u, v) = max

{
ρ(u, v), ρ(u,Tu), ρ(v,Tv)

}
.

If a self-mapping T : M→M is a generalized-(α,ψ)-Meir-Keeler type contraction, then we have

α(u, v)ρ(Tu,Tv) ≤ ψ(P(u, v)), for any u, v ∈M.

The following is the first main result of this section.

Theorem 2.7. Suppose that (M, ρ) is a complete DqbMS, a self-mapping T : M→ M is a generalized-(α,ψ)-Meir-
Keeler type contraction and the following conditions are fulfilled:

(i) T is triangular α-orbital admissible mapping;
(ii) there exists u0 ∈M such that α(u0,Tu0) ≥ 1 and α(Tu0,u0) ≥ 1;

(iii) T is continuous.

Then, T has a fixed point, that is, there exists u ∈M such that Tu = u.

Proof. Take u0 ∈M such that α(u0,Tu0) ≥ 1 and α(Tu0,u0) ≥ 1. As in the proof of Theorem 2.2, we construct
an iterative sequence {un} in M in the following way:

un+1 = Tun, for each n ∈N0. (19)

By the same reason in Theorem 2.2, we assume that un , un+1, for all n,

ρ(un,un+1) > 0, and ρ(un+1,un) > 0, for all n ∈N. (20)

By assumption (i) of theorem in the mind, we find that

α(un,um) ≥ 1, and α(um,un) ≥ 1, for all m,n ∈Nwith n < m. (21)

Step 1: We shall prove that

lim
n→∞

ρ(un,un+1) = 0.
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Taking (20) and (21) into account together with the fact that T is a generalized-(α,ψ)-Meir-Keeler type
contraction mapping, for each n ∈Nwe derive

ρ(un,un+1) = ρ(Tun−1,Tun)
≤ α(un−1,un)ρ(Tun−1,Tun)
≤ ψ(P(un−1,un))
< P(un−1,un),

(22)

where

P(un−1,un) = max{ρ(un−1,un), ρ(un−1,Tun−1), ρ(un,Tun)}

= max{ρ(un−1,un), ρ(un,un+1)}.

Let us analyze these cases. Let P(un−1,un) = ρ(un,un+1). Since ψ is nondecreasing, from (22), we derive

ρ(un,un+1) ≤ ψ(ρ(un,un+1)) < ρ(un,un+1), (23)

a contradiction. Thus, P(un−1,un) = ρ(un−1,un) and again by (22), we conclude

ρ(un,un+1) ≤ ψ(ρ(un−1,un)) < ρ(un−1,un), for all n ∈N. (24)

Consequently, we find that the sequence {ρ(un,un+1)} is a non-increasing and bounded below by zero.
Hence, there exists t ∈ [0,∞) such that

lim
n→∞

ρ(un,un+1) = t. (25)

Recursively, we derive from (24) that

ρ(un,un+1) ≤ ψn(ρ(u0,u1)), for all n, (26)

by keeping in the mind that ψ is nondecreasing.
On account of (26) and (Ψ1), we obtain

lim
n→∞

ρ(un,un+1) = 0.

Analogously, one can derive that

lim
n→∞

ρ(un+1,un) = 0.

Step 2: We shall prove that {un} is a Cauchy sequence by using the same arguments in the proof of Theorem
2.2

Now, by using (ρ2),(4),(6) and (13), we have the following

ρ(un,um) ≤ sρ(un,un+1) + ... + snρ(um−1,um)

≤
∑m−1

p=n sp+1−nψp(ρ(u0,u1))

= s
∑m−1

p=n spψp(ρ(u0,u1))

(27)

By Lemma (1.7), we know that the series
∑
∞

k=0 skϕk(t) converges for any t ∈ [0,+∞) Hence, letting n → ∞
in the inequality above, we conclude that {un} is left-Cauchy. Analogously, we derive that {un} is right-0-
Cauchy. Herewith, the iterative sequence {un} is 0-Cauchy.
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Since (M, ρ) is a complete DqbMS, then there exists u ∈M such that

lim
n→∞

ρ(un,u) = ρ(u,u) = lim
n,m→∞

ρ(un,um) = 0. (28)

On account of the continuity of the self-mapping T, we deduce that

lim
n→∞

ρ(un+1,Tu) = lim
n→∞

ρ(Tun,Tu) = ρ(Tu,Tu) = lim
n,m→∞

ρ(Tun,Tum) = 0. (29)

Since un+1 → u as n→∞ and ρ(u,u) = 0, then by using Lemma 1.5, we get

lim
n→∞

ρ(un+1,Tu) = ρ(u,Tu). (30)

Regarding (29) and (30), we get ρ(u,Tu) = 0. Thus, by (ρ1), we conclude that Tu = u.

Theorem 2.8. Suppose that (M, ρ) is a complete DqbMS, a self-mapping T : M→ M is a generalized-(α,ψ)-Meir-
Keeler type contraction, where α ∈ ψ ∈ with ψ(t) < t

s for a constant s ≥ 1.
and the following conditions are fulfilled:

(i) T is triangular α-orbital admissible mapping;
(ii) there exists u0 ∈M such that α(u0,Tu0) ≥ 1;

(iii) if {un} is a sequence in M such that α(un,un+1) ≥ 1 for all n and un → u ∈M as n→∞, then α(un,u) ≥ 1 for
all n.

Then, T has a fixed point, that is, there exists u ∈M such that Tu = u.

Proof. Define an iterative sequence {un} in M as in Theorem 2.7. Suppose that there is k0 ∈ N such that
uk0 = uk0+1, then the proof is completed since u = uk0 = uk0+1 = Tuk0 = Tu. So, it is interesting to assume that
un , un+1, for all n ∈N0. Consequently, we have

ρ(un,un+1) > 0, for all n ∈N0,

From (21), we find that

α(un,un+1) ≥ 1, for all n ∈N0. (31)

Following the lines for the proofs of Step1 and Step2 in Theorem 2.7, we derive that {un} is a Cauchy
sequence and

lim
n,m→∞

ρ(un,um) = 0.

Since (M, ρ) is a complete DqbMS, then there exists u ∈M such that

lim
n→∞

ρ(un,u) = ρ(u,u) = lim
n,m→∞

ρ(un,um) = 0. (32)

We shall prove that u = Tu. Suppose, on the contrary, that ρ(u,Tu) > 0.
Notice from (31), (32) and (iii) that

α(un,u) ≥ 1, for all n. (33)

By using (ρ2) and (33) together with the assumption of the Theorem that T is a generalized-(α−ψ)-Meir-
Keeler type contraction, we obtain

ρ(Tu,u) ≤ sρ(Tu,Tun) + sρ(un+1,u)
≤ sα(un,u)ρ(Tun,Tu) + sρ(un+1,u)
≤ sψ(P(un,u)) + sρ(un+1,u),

(34)
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where

P(un,u) = max{ρ(un,u), ρ(un,un+1), ρ(u,Tu)}.

Notice that as ρ(u,Tu) > 0, then we must have P(un,u) > 0.

Suppose that P(un,u) = ρ(un,u), then from (34) we get

ρ(Tu,u) ≤ sψ(ρ(un,u)) + sρ(un+1,u),
< sρ(un,u) + sρ(un+1,u). (35)

Taking n→∞ in (35), we have

ρ(Tu,u) < sρ(u,u) + sρ(u,u) = 0,

which is a contradiction.

Now, we suppose that P(un,u) = ρ(un,un+1), then by (34) we find that

ρ(Tu,u) ≤ sψ(ρ(un,un+1)) + sρ(un+1,u),
< ρ(un,un+1) + sρ(un+1,u).

Letting n→∞, this implies that

ρ(Tu,u) < lim
n→∞

[ρ(un,un+1) + sρ(un+1,u)] = 0,

which is again a contradiction.

Finally, we suppose that P(un,u) = ρ(u,Tu), then again from (34), we have

ρ(Tu,u) ≤ sψ(ρ(u,Tu)) + sρ(un+1,u),

Letting n→∞, in the above inequality, we get

ρ(Tu,u) ≤ sψ(ρ(u,Tu)) + sρ(u,u),
< ρ(u,Tu) + sρ(u,u) = sρ(Tu,u), (36)

also we have a contradiction. Thus we have ρ(Tu,u) = 0 and by (ρ1), we have Tu = u.

2.3. The uniqueness of the fixed point

We propose the following conditions for the uniqueness of the fixed points of the mappings discussed
in sections 2.1 and 2.2. Let Fix(T) denotes the set of fixed points of the mapping T.

We, first, recollect the following interesting condition for uniqueness of a fixed point of an (α−ψ)-Meir-
Keeler type contraction.

(H) For all u, v ∈ Fix(T), then there exists w ∈M such that α(u,w) ≥ 1 and α(w, v) ≥ 1, where

Theorem 2.9. Putting condition (H) to the statements of Theorem 2.2 (respectively, Theorem 2.3), we obtain that u
is the unique fixed point of T.

Proof. Let u and ν be two distinct fixed points of T. From(H), there exists w ∈M such that

α(u,w) ≥ 1 and α(w, ν) ≥ 1.
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Due to the fact that T is α-orbital admissible, we have

α(u,Tw) ≥ 1 and α(Tw, ν) ≥ 1.

Inductively, we obtain

α(u,Tnw) ≥ 1 and α(ν,Tnw) ≥ 1,∀n ∈N.

From the above relation and since T is an (α,ψ)-MKC mapping, we have

ρ(u,Tnw) ≤ α(u,Tn−1w)ρ(Tu,Tnw)
≤ ψ(ρ(u,Tn−1w)).

Iteratively, we get

ρ(u,Tnw) ≤ ψn(ρ(u,w)).

Letting n→∞, we obtain

lim
n→∞

ρ(u,Tnw) = 0.

Similarly, we can prove that

lim
n→∞

ρ(ν,Tnw) = 0.

Using (ρ2), we have

ρ(u, ν) ≤ s[ρ(u,Tnw) + ρ(Tnw, ν)].

Taking n→∞, we find that

ρ(u, ν) = 0,

and so, by (ρ1), u = ν.

The following is an alternative uniqueness condition: (U) For all u, v ∈ Fix(T), then α(u, v) ≥ 1.

Theorem 2.10. Putting condition (U) to the statements of Theorem 2.2 (resp. Theorem 2.3 ), we find that u is the
unique fixed point of T.

Proof. Let u, ν be two distinct fixed point of T. Then by Lemma 1.5 part C, we have

ρ(u, ν) > 0.

Due the property of ψ (Ψ2), we get

ψ(ρ(u, ν)) > 0.

Let ε = ψ(ρ(u, ν)), then for any δ > 0, we find that

ε = ψ(ρ(u, ν)) < ε + δ.

Regrading (U) and the assumption of the Theorem that T is an (α,ψ)-Meir-Keeler type contraction, we
obtain

ρ(u, ν) ≤ α(u, ν)ρ(Tu,Tν)
< ψ(ρ(u, ν))
< ρ(u, ν),

which is a contradiction. Thus, u = ν.
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In what follows, we propose the conditions for the uniqueness of a fixed point of a generalized (α − ψ)-
Meir-Keeler type contraction:
(H1) For all u, v ∈ Fix(T), then there exists w ∈M such that α(u,w) ≥ 1, α(v,w) ≥ 1 and α(w,Tw) ≥ 1.
(H2) Let u, v ∈ Fix(T). If there exists a sequence {wn} in M such that α(u,wn) ≥ 1, α(v,wn) ≥ 1 and
α(wn,wn+1) ≥ 1, then

ρ(wn,wn+1) ≤ in f {ρ(u,wn), ρ(v,wn)}.

(H3) For any u ∈ Fix(T), then α(u,u) ≥ 1.

Theorem 2.11. Putting conditions (H1), (H2)and (H3) to the statements of Theorem 2.7 (respectively, Theorem 2.8),
we have that u is the unique fixed point of T.

Proof. Let u, v ∈ Fix(T) with u , v. By(H1), there exists w ∈M such that

α(u,w) ≥ 1, α(ν,w) ≥ 1 and α(w,Tw) ≥ 1.

On account of triangular α-orbital admissible property of T, we have

α(Tw,T2w) ≥ 1 and hence α(Tn−1w,Tnw) ≥ 1,∀n ∈N..

By (T4) α(u,w) ≥ 1 and α(w,Tw) ≥ 1 yields that

α(u,Tz) ≥ 1.

since α(u,Tw) ≥ 1 and α(Tw,T2w) ≥ 1, again, by (T4), we derive

α(u,T2w) ≥ 1.

Recursively, we get

α(u,Tnw) ≥ 1,∀n ∈N. (37)

Analogously, one can get that

α(ν,Tnw) ≥ 1,∀n ∈N. (38)

Set-up a new iterative sequence {wn} by wn+1 = Twn, for all n ≥ 0 and w0 = w.
Step1: We show that

lim
n→∞

ρ(u,wn) = 0.

By (37) and the statement of the theorem that T is generalized-(α,ψ)-Meir-Keeler type contraction
mapping, we have

ρ(u,wn+1) ≤ α(u,wn)ρ(Tu,Twn)
≤ ψ(P(u,wn)).

If ψ(P(u,wn)) = 0, then

lim
n→∞

ρ(u,wn+1) = 0.

Consequently, suppose that ψ(P(u,wn)) > 0. Then, we have P(u,wn) > 0. Since T is a generalized-(α,ψ)-
Meir-Keeler type contraction mapping, we find

ρ(u,wn+1) ≤ α(u,wn)ρ(Tu,Twn)
≤ ψ(P(u,wn)),
< P(u,wn).
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where

P(wn,u) = max{ρ(wn,u), ρ(wn,wn+1), ρ(u,Tu)}.

Regarding (H2) and (ρ2), we have

P(wn,u) = ρ(wn,u).

Thus, we have

ρ(u,wn+1) < ρ(u,wn).

Letting n→∞ in the inequality above , we obtain

lim
n→∞

ρ(u,wn+1) < lim
n→∞

ρ(u,wn),

which is a contradiction. Then

P(wn,u) = ρ(wn,u) = 0.

Hence, we get

lim
n→∞

ρ(u,wn) = 0.

Step2: We shall prove that

lim
n→∞

ρ(ν,wn) = 0.

By (H3) and the assumption of the theorem that T is a generalized-(α,ψ)-Meir-Keeler type contraction
mapping, we find that

ρ(ν, ν) ≤ α(ν, ν)ρ(Tv,Tν)
≤ ψ(P(ν, ν))
= ψ(ρ(ν, ν)).

Suppose, on the contrary, ρ(ν, ν) > 0. Then, from the above inequality, we obtain

ρ(ν, ν) ≤ ψ(ρ(ν, ν)) < ρ(ν, ν),

which is a contradiction. Thus, ρ(ν, ν) = ρ(ν,Tν) = 0.
In analogous way of Step1, we can complete the proof of

lim
n→∞

ρ(ν,wn) = 0.

By (ρ2), we have

ρ(u, ν) ≤ ρ(u,Tn−1w) + ρ(Tn−1w, ν)
= ρ(u,wn) + ρ(wn, ν).

Letting n→∞ in the above inequality, we find that

ρ(u, ν) = 0,

by (ρ1), we have u = ν.
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3. Consequences

If set α(u, v) = 1 for all u, v in Theorem 2.2, we get the following result:

Theorem 3.1. Suppose that (M, ρ) is a complete DqbMS and a self-mapping T : M → M is a (α,ψ)-Meir-Keeler
type contraction. Then, there exists u ∈M such that Tu = u.

Notice that (α,ψ)-Meir-Keeler type contraction T : M→M is non-expansive, ρ(Tu,Tv) ≤ ψ(ρ(u, v)) ≤ ρ(u, v)
and hence, it is continuous.

If set α(u, v) = 1 for all u, v in Theorem 2.7 we find the following consequence:

Theorem 3.2. Suppose that (M, ρ) is a complete DqbMS, a self-mapping T : M→ M is a generalized-(α,ψ)-Meir-
Keeler type contraction. If T is continuous T has a fixed point, that is, there exists u ∈M such that Tu = u.

Conclusion

We first note that by adding a symmetry condition, ”ρ(x, y) = ρ(y, x)” to the assumptions of dislocated
quasi-b-metric, we obtain dislocated b-metric. Further, dislocated b-metric is both dislocated metric and
b-metric ( and hence standard metric). Thus, all result can be formulated in the setting of the mentioned
abstract spaces.

It is also possible to list several existing results as a consequence of our main results by choosing both
the auxiliary functions α and ψ in a proper like [2–4, 7, 8] and so on.
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