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Abstract. In the present paper, we introduce slant Riemannian maps from an almost contact manifold
to Riemannian manifolds. We obtain the existence condition of slant Riemannian maps from an almost
contact manifold to Riemannian manifolds. Moreover, we find the necessary and sufficient condition for
slant Riemannian map to be totally geodesic and investigate the harmonicity of slant Riemannian maps
from Sasakian manifold to Riemannian manifolds. Finally, we obtain a decomposition theorem for the total
manifolds and also provide some examples of such maps.

1. Introduction

In 1992, Fisher introduced Riemannian maps between Riemannian manifolds in [7] as a generalization
of the notions of isometric immersions and Riemannian submersions. Riemannian submersion between
Riemannian manifolds equipped with differentiable structure were studied by Watson in [20]. Watson also
showed that the base manifold and each fiber have the same kind of structure as the total space, in most
cases [20] and [6]. Since then almost Hermitian submersion have been extended to the almost contact
manifolds [5], [10], locally conformal Kähler manifolds [12] and quaternion Kähler manifolds [11]. Given
a C∞− map F from a Riemannian manifold to a Riemannian manifold according to the conditions on the
map F we call F a harmonic map [7], totally geodesic map [7], an isometric immersion [20], a Riemannian
submersion [8] etc. The other basic maps for comparing geometric structures defined on Riemannian
manifolds are Riemannian submersions and they were studied by O’Neill [14] and Gray [9]. It is also
important to note that Riemannian maps satisfy the eikonal equation which is a bridge between geometric
optics and physical optics. For Riemannian maps and their application in spacetime geometry, see [8]. N.
Nore were studied second fundamental form of a map in [13] and some results were obtained for semi-slant
submanifolds of Sasakian manifold in [3]. For application of manifolds and tensor, see [1]. Recently Sahin
studied conformal Riemannian map [15], slant Riemannian Maps [16], anti-invariant Riemannian maps
[17], biharmonic Riemannian maps [18] and semi-invariant Riemannian maps [19]. Motivated by above,
we study slant Riemannian maps from almost contact manifolds,
In this paper, as another generalization of contact submersions, anti-invariant submersions and slant
submersions we study slant Riemannian maps from an almost contact manifold to Riemannian manifolds.
In section 2, we recall basic facts for Riemannian maps and an almost contact manifold. We also define
slant Riemannian maps from an almost contact manifold. In section 3, we obtain a characterization of
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such maps and investigate the harmonicity of slant Riemannian maps from an almost contact manifold to
Riemannian manifolds. Then we find necessary and sufficient conditions for slant Riemannian maps to
be totally geodesic. In section 4, we obtain a decomposition theorem for the total manifold by using slant
Riemannian maps from Sasakian manifold to Riemannian manifolds and also provide some examples.

2. Preliminaries

In this section, we are going to recall main definitions and properties of an almost contact manifold,
Riemannian maps and slant Riemannian maps. Let F : (M, 1m) −→ (N, 1n) be a smooth map between
Riemannian manifolds such that 0 < rankF < min{m,n}, where dimM = m and dimN = n. Then we denote
the kernel space of F∗ by kerF∗ and consider the orthogonal complementary space H = (kerF∗)⊥ to kerF∗ in
TM. Thus the tangent bundle of M has the following decomposition

TM = kerF∗ ⊕H .

Where kerF∗ = D ⊕ ξ, D is a distribution in kerF∗ and ξ is orthogonal vector field to D in kerF∗. We denote
the range of F∗ by ran1eF∗ and consider the orthogonal complementary space (ran1eF∗)⊥ to ran1eF∗ in the
tangent bundle TN of N. Since 0 < rankF < min{m,n}, we always have (ran1eF∗)⊥. Thus the tangent bundle
TN of N has following decomposition

TN = (ran1eF∗) ⊕ (ran1eF∗)⊥.

Now, a smooth map F : (Mm, 1m)→ (Nn, 1n) is called Riemannian map at x ∈M. If the horizontal restriction
Fh
∗xm

: (kerF∗xm )⊥ → (ran1eF∗xm ) is a linear isometry between the inner product space ((kerF∗xm )⊥.1m(xm) |
(kerF∗xm )⊥) and (ran1eF∗xm .1n(xn) |( ran1eF∗xm )), xn = F(xm). Therefore Fisher stated in [15] that a Riemannian
map is a map which is isometric in maximum possible domain. In another words, F∗ satisfies the equation

1m(X,Y) = 1n(F∗X,F∗Y), (2.1)

for vector fields X,Y ∈ H . It follows that isometric immersion and Riemannian submersion are particular
Riemannian map with kerF∗ = 0 and (ran1F∗)⊥ = 0. It is known that a Riemannian map is a submersion
and this fact implies that the rank of the linear map F∗x : TxM −→ TF(x)N is constant for x in each connected
component of M. Now, we recall a useful results which are related to the second fundamental form and
the tension field of Riemannian map. Let (M, 1m) and (N, 1n) be a Riemannian manifolds and suppose
that F : M → N is a smooth map between them. Then the differential F∗ of F can be viewed a section of
bundle Hom(TM,F−1TN) −→M, where F−1TN is the pullback bundle which has fibers (F−1TN)x = TF(x), x ∈
M. Hom(TM,F−1TN) has a connection ∇ induced from the Levi-Civita connection ∇M and the pullback
connection. The second fundamental form of F is given by

(∇F∗)(X,Y) = ∇F
XF∗(Y) − F∗(∇M

X Y), (2.2)

for X,Y ∈ Γ(TM). It is known that the second fundamental form is symmetric [2]. It is shown in [18] that the
second fundamental form (∇F∗)(X,Y),∀X,Y ∈ Γ(kerF∗)⊥, of a Riemannian map has no component in ran1F∗.
More precisely we have the following.

Lemma 2.1. Let F be a Riemannian map from a Riemannian manifold (M, 1m) to a Riemannian manifold (N, 1n).
Then

1n((∇F∗)(X,Y),F∗(Z)) = 0,∀X,Y,Z ∈ Γ((kerF∗)⊥). (2.3)

As a result of Lemma (2.1), we obtain

(∇F∗)(X,Y) ∈ Γ((ran1F∗)⊥),∀X,Y,∈ Γ((kerF∗)⊥). (2.4)

For the tension field of a Riemannian map between Riemannian manifolds, we get the following:
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Lemma 2.2. Let F : (Mm, 1m) −→ (Nn, 1n) be a Riemannian map between Riemannian manifolds. Then the tension
field τ of F is

τ = −m1F∗(H) + m2H2, (2.5)

where m1 = dim(kerF∗),m2 = rankF, H and H2 are the mean curvature vector fields of the distribution kerF∗ and
ran1F∗, respectively.

Let F be a Riemannian map from a Riemannian manifold (M, 1m) to a Riemannian manifold (N, 1n). Then
we define T andA as

AEF = H∇HEVF +V∇HEHF, (2.6)

TEF = H∇VEVF +V∇VEHF, (2.7)

for vector fields E,F on M, where ∇ is the Levi-Civita connection of 1m. In fact one can see that these tensor
fields are O’Neill’s tensor fields which are defined for Riemannian submersions. For any E ∈ Γ(TM),TE and
AE are skew-symmetric on (Γ(TM), 1m) reversing the horizontal and vertical distributions. It is also easy to
see that T is vertical, TE = TVE andA is horizontal,A = AHE. We note that the tensor field T satisfies

TUW = TWU,∀U,W ∈ Γ(kerF∗). (2.8)

On the other hand, from (2.4) and (2.5), we obtain

∇VW = TVW + ∇̂VW, (2.9)

∇VX = H∇VX + TVX, (2.10)

∇XV = AXV +V∇XV, (2.11)

∇XY = H∇XY +AXY, (2.12)

for X,Y ∈ Γ((kerF∗)⊥) and V,W ∈ Γ(kerF∗), where ∇̂VW =V∇VW.
From now on, for simplicity, we denote by ∇n both the Levi-Civita connection of (N, 1n) and its pullback
along F. Then for any vector field X on M and any section V of (ran1F∗)⊥, where (ran1F∗)⊥ is the subbundle
of F−1(TM) with fibers (F∗(TxM)⊥) orthogonal complement of F∗(TxM) for 1n over x, we have ∇F⊥

X V which is
the orthogonal projection of ∇n

X on (F∗(TM))⊥. In [13] the author also showed that ∇F⊥ is a linear connection
on (F∗(TM))⊥ such that ∇F⊥12 = 0. We now define SV as

∇
2
F∗XV = −SVF∗X + ∇F⊥

X V, (2.13)

where SVF∗X is the tangential component (a vector field along F) of ∇2
F∗X

V. It is easy to see that SVF∗X is
bilinear in V and F∗X and SVF∗X at x depends only on Vx and F∗xXx. By direct computation, we get

1n(SVF∗X,F∗Y) = 1n(V, (∇F∗)(X,Y)), (2.14)

for X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ((ran1F∗)⊥). Since (∇F∗) is symmetric , it follows thatSV is a symmetric linear
transformation of ran1F∗.
Now, we define slant Riemannian map from almost contact manifold to Riemannian manifolds.

Definition 2.3. Let F be a Riemannian map from an almost contact manifold M(J, 1m, η, ξ) to a Riemannian manifold
(N, 1n). If for any non zero vector X ∈ Γ(kerF∗) − {ξ}, the angle θ(X) between JX and the space kerF∗ is a constant,
i.e. it is independent of the choice of the point x ∈M and choice of the tangent vector in kerF∗ − {ξ}, then we say that
F is a slant Riemannian map. In this case, the angle θ is called the slant angle of the slant Riemannian map.

Since F is a subimmersion, it follows that the rank of F is constant on M, then the rank theorem for functions
implies that kerF∗ is an integrable subbundle of TM, ([2], p. 205). Thus it follows from above definition
that the leaves of the distribution kerF∗ of a slant Riemannian map are slant submanifolds of M for slant
submanifolds, see [4]. Note that a slant Riemannian map is proper if it is not submersion.
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2.1. Almost contact manifold
A n− dimensional differential manifold M is said to have an almost contact structure M(J, ξ, η) if it carries

a tensor field J of type (1, 1), a vector field ξ and 1−form η on M respectively such that

J2 = −I + η ⊗ ξ, Jξ = 0, η ◦ J = 0, η(ξ) = 1, (2.15)

where I denotes identity tensor. An almost contact structure is said to be normal if N + dη ⊗ ξ = 0, where
N is the Nijenhuis tensor of J. Suppose that a Riemannian metric tensor 1 is given in M and satisfies the
condition

1(JX, JY) = 1(X,Y) − η(X)η(Y), 1(X, ξ) = η(X). (2.16)

Then M(J, ξ, η, 1m)− structure is called an almost contact metric structure.
Define a tensor field Φ of type (0, 2) by Φ(X,Y) = 1(JX,Y). If dη = Φ then an almost contact metric structure is
said to be normal contact metric structure. A normal contact metric structure is called a Sasakian structure,
which satisfies

(∇X J)Y = 1(X,Y)ξ − η(Y)X, (2.17)

∇Xξ = −JX, (2.18)

where ∇ denotes the Levi-Civita connection of 1. For a Sasakian manifold M(, J, ξ, η, 1m), it is known that

R(ξ,X)Y = 1(X,Y)ξ − η(Y)X. (2.19)

3. Slant Riemannian Maps from an Almost Contact Manifold

In this section, as a generalization of almost contact submersions, slant submersions, anti-invariant
Riemannian submersions and Riemannian maps from Hermitian manifold to a Riemannian manifold, we
introduce slant Riemannian maps from an almost contact manifold to a Riemannian manifold. We first
study the existence of such maps and investigate the effect of slant Riemannian maps on the geometry of
the total manifold, the base manifold and themselves. Also, we study the geometry of leaves of distribution
on the total manifold arisen from such maps. At last, we obtain necessary and sufficient condition for slant
Riemannian maps from an almost contact manifold to a Riemannian manifold to be harmonic and totally
geodesic.
Let F be a slant Riemannian map from an almost contact manifold M(J, ξ, η, 1m) to a Riemannian manifold
(N, 1n). Then for X ∈ Γ(kerF∗), we write

JX = φX + ωX, (3.1)

where φX and ωX are vertical and horizontal part of JX. Similarly, for Z ∈ Γ((kerF∗)⊥), we have

JZ = BZ + CZ, (3.2)

where BZ and CZ are vertical and horizontal part of JZ.
Using equations (2.9), (2.10), (2.17), (2.19), (3.1) and (3.2), we get

(∇Xω)Y = CTXY − TXφY, (3.3)

(∇Xφ)Y = BTXY − TXωY + R(ξ,X)Y, (3.4)

where ∇ is the Levi-Civita connection on M and

(∇Xω)Y = H∇XωY − ω∇̂XY,
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(∇Xφ)Y = ∇̂XφY − φ∇̂XY,

for X,Y ∈ Γ(kerF∗).
Let F be a slant Riemannian map from an almost contact manifold M(J, ξ, η, 1m) to a Riemannian manifold
(N, 1n). Then we say that ω is parallel with respect to the Levi-Civita connection ∇ on kerF∗ if its covariant
derivative with respect to ∇ vanishes, i.e., we get

(∇Xω)Y = ∇XωY − ω(∇XY) = 0,

for X,Y ∈ Γ(kerF∗).
Let F be a slant Riemannian map from an almost contact manifold M(J, ξ, η, 1m) to a Riemannian manifold
(N, 1n). Then ω(kerF∗) is a subspace of (kerF∗)⊥). Thus it follows that (kerF∗x) ⊕ ω(kerF∗x) is invariant with
respect to J. Then for every x ∈M, there exist an invariant subspace µx of ((kerF∗x)⊥) such that

TxM = kerF∗x ⊕ ω(kerF∗x) ⊕ µx.

Theorem 3.1. Let F be a slant Riemannian map from an almost contact manifold M(J, ξ, η, 1m) to a Riemannian
manifold (N, 1n) such that ξ ∈ Γ(kerF∗). Then, F is a slant Riemannian map if and only if there exist a constant
λ ∈ [0, 1] such that

φ2X = −λ(X − η(X)ξ), (3.5)

for X ∈ Γ(kerF∗). If F is slant Riemannian map, then λ = cos2 θ

Lemma 3.2. Let F be a slant Riemannian map from an almost contact manifold M(J, ξ, η, 1m) to a Riemannian
manifold (N, 1n) with slant angle θ. Then, we get

1m(φX, φY) = cos2θ(1m(X,Y) − η(X)η(Y)), (3.6)

1m(ωX, ωY) = sin2θ(1m(X,Y) − η(X)η(Y)), (3.7)

for any X,Y ∈ Γ(kerF∗).

The proof of the above Theorem and Lemma is exactly the same with slant immersions [3] for Sasakian
case. Therefore we omit its proof.
Also, using equation (3.6), we have {e1, secθφe1, e2, secθφe2, ......, ek, secθφek, ξ} is an orthonormal frame for
Γ(kerF∗). On the other hand using equation (3.7), we can easily conclude that {cscθωe1, cscθωe2, ....., cscθωer} is
orthonormal frame for Γ(ω(kerF∗)). As in slant immersions, we call the frame {e1, secθφe1, e2, secθφe2, ........., ek,
secθφek, cscθωe1, cscθωe2, ....., cscθωer, ξ} an adopted frame for slant Riemannian maps. We note that since
the distribution kerF∗ is integrable it follows that TXY = TYX for X,Y ∈ Γ(kerF∗). Then the following Lemma
can be obtain by using Theorem (3.1).

Lemma 3.3. Let F be a slant Riemannian map from an almost contact manifold M(J, ξ, η, 1m) to a Riemannian
manifold (N, 1n). if ω is parallel with respect to ∇ on kerF∗, then we have

TφXφX = −cos2θ(TXX − η(X)TXξ) (3.8)

Proof. If ω is parallel, from (3.3), we get

CTXY = TXφY, (3.9)

for X,Y ∈ Γ(kerF∗). Interchange X and Y in equation (3.9), we obtain

TXφY = TYφX, (3.10)

Substituting Y by φX in above equation and then using Theorem (3.1), we obtain the required formula.
Now, we give necessary and sufficient condition for F to be harmonic.
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Theorem 3.4. Let F be a slant Riemannian map from an almost contact manifold M(J, ξ, η, 1m) to a Riemannian
manifold (N, 1n). Then F is harmonic if and only if

Tφeiφei = −cos2θ(Tei ei − η(ei)Teiξ),

trace |ω(kerF∗)
∗F∗(SE j F∗(.)) ∈ Γ(µ),

trace |µ ∗F∗(SE j F∗(.)) ∈ Γ(ω(kerF∗)),

where {e1, secθφe1, e2, secθφe2, ......, ek, secθφek, ξ} is an orthonormal frame for Γ(kerF∗) and {Es} is an orthonormal
frame of Γ((ran1F∗)⊥).

Proof. Let a canonical orthonormal frame {e1, secθφe1, e2, secθφe2, ......, ek, secθφek, cscθωe1, cscθωe2, ..., cscθωer,
ξ, ē1, ē2, ....., ēm} such that {e1, secθφe1, e2, secθφe2, ......, en, secθφen, ξ} is an orthonormal basis of kerF∗ and
{ē1, ē2, ....., ēm} of µ, where θ is the slant angle. Then F is harmonic if and only if

k∑
i=1

(∇F∗)(ei, ei) + sec2
k∑

i=1

(∇F∗)(φei, φei) + (∇F∗)(ξ, ξ) + csc2
r∑

i=1

(∇F∗)(ωei, ωei) +

m∑
j=1

(∇F∗)(ē j, ē j) = 0. (3.11)

Using equations (2.2) and (2.9), we get

k∑
i=1

(∇F∗)(ei, ei) + sec2
k∑

i=1

(∇F∗)(φei, φei) = −F∗(Tei ei + sec2
Tφeiφei − η(ei)Teiξ). (3.12)

Also, from Lemma (2.1), we have csc2∑r
i=1(∇F∗)(ωei, ωei) +

∑m
j=1(∇F∗)(ē j, ē j) ∈ Γ((ran1eF∗)⊥). So, we can

conclude that

csc2
r∑

i=1

(∇F∗)(ωei, ωei) +

m∑
j=1

(∇F∗)(ē j, ē j) = csc2
r∑

i=1

t∑
s=1

1n((∇F∗)(ωei, ωei),Es)Es)

+

m∑
j=1

t∑
s=1

1n((∇F∗)(ωē j, ωē j),Es)Es, (3.13)

where {Es} is orthonormal basis of Γ((ran1eF∗)⊥). Then using equation (2.14), we obtain

csc2
r∑

i=1

(∇F∗)(ωei, ωei) +

m∑
j=1

(∇F∗)(ē j, ē j) = csc2
r∑

i=1

t∑
s=1

1n(SEs F∗(ωei).(ωei))Es

+

m∑
j=1

t∑
s=1

1n(SEs F∗(ē j).F∗(ē j))Es. (3.14)

From the adjoint of equation (3.12) and (3.14), we obtain our result.

Lemma 3.5. Let F be a slant Riemannian map from an almost contact manifold M(J, ξ, η, 1m) to a Riemannian
manifold (N, 1n). if ω is parallel with respect to ∇ on kerF∗, then (3.8) is satisfied.

It is remarkable that the equality (3.8)(as a result of above lemma parallelω) is enough for a slant submersion
to be harmonic however for a slant Riemannian map this case is not valid anymore.
In this part, we now investigate necessary and sufficient condition for a slant Riemannian map F to be
totally geodesic. We recall that a differentiable map F between Riemannian manifolds (M, 1m) and (M, 1n) is
called a totally geodesic map if (∇F∗)(X,Y) = 0 for all X,Y ∈ Γ(TM)
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Theorem 3.6. Let F be a slant Riemannian map from a Sasakian manifold M(J, ξ, η, 1m) to a Riemannian manifold
(N, 1n). Then F is totally geodesic if and only if

1n((∇F∗)(U, ωV),F∗(CX)) − 1n((∇F∗)(U, ωφV),F∗(X)) = 1m(TUωV,F∗(BX)),

1n(∇F
XF∗(ωφU),F∗(Y)) − 1n((∇F

XF∗)(ωU),F∗(CY)) = 1m(AXωU,F∗(BY)),

and

∇
F
XF∗(Y) + F∗(C(AXBY +H∇m

XCY) + ω(V∇m
XBY +AXCY)) ∈ Γ(kerF∗),

for X,Y ∈ Γ((kerF∗)⊥) and U,V ∈ D where ∇m is the Levi-Civita connection of M.

Proof. The decomposition of the total manifold of a slant Riemannian map, follows that F is totally geodesic
if and only if 1n(∇F∗(U,V),F∗(X)) = 0, 1n(∇F∗(X,U),F∗(Y)) = 0 and (∇F∗)(X,Y) = 0 for U,V ∈ D and
X,Y ∈ Γ((kerF∗)⊥). Since F is a slant Riemannian map, using (2.1) we get

1n(∇F∗(U,V),F∗(X)) = −1m(∇m
UV,X) (3.15)

Since M is Sasakian manifold. Then using equations (3.1) and (3.2), we obtain

1n((∇F∗)(U,V),F∗(X)) = −cos21m(∇m
UV,X) + 1m(∇m

UωφV,X) − 1m(∇m
UωV,BX) − 1m(∇m

UωV,CX).

Now, using equations (2.2) and (2.10), we have

1n((∇F∗)(U,V),F∗(X)) = −sec2
{−1m(TUωV,BX) + 1n((∇F∗)(U, ωV),F∗(CX)) − 1n((∇F∗)(U, ωφV),F∗(X))}.

(3.16)

Also in a similar way, we have

1n((∇F∗)(X,U),F∗(Y)) = −sec2
{−1m(AXωU,BY + 1n(∇F

XF∗(ωφU),F∗(CY)) − 1n(∇F
XF∗(ωU),F∗(Y))}. (3.17)

Now, using equations (2.2) and (2.17), we obtain

(∇F∗)(X,Y) = ∇F
XF∗(Y) + F∗(J∇F

X JY − J(∇X J)Y), (3.18)

for X,Y ∈ Γ((kerF∗)⊥).
Then using equations (3.1), (3.2),(2.9)-(2.14) and (2.16), we get

(∇F∗)(X,Y) = ∇F
XF∗(Y) + F∗(BAXBY + CAXBY + φV∇F

XBY + ωV∇F
XBY +BH∇F

XCY + CH∇F
XCY

+ φAXCY + ωAXCY).

Since BAXBY + φV∇F
XBY +BH∇F

XCY + φAXCY ∈ Γ(kerF∗). We obtain

(∇F∗)(X,Y) = ∇F
XF∗(Y) + F∗(CAXBY + ωV∇F

XBY + CH∇F
XCY + ωAXCY). (3.19)

We obtain result from (3.16), (3.17) and (3.19).

4. Decomposition Theorem for Slant Riemannian Maps from an Almost Contact Manifold to
Riemannian Manifolds

In this section, we find the necessary and sufficient condition for the total manifold of slant Riemannian
map to be locally product Riemannian manifold. Finally, we give some examples of slant Riemannian
maps.
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Theorem 4.1. Let F be a slant Riemannian map from a Sasakian manifold M(J, ξ, η, 1m) to a Riemannian manifold
(N, 1n). Then M is locally product Riemannian manifold if and only if

1n((∇F∗)(U, ωV),F∗(CX)) − 1n((∇F∗)(U, ωφV),F∗(X)) = 1m(TUωV,F∗(BX)),

1n(∇F
XF∗(ωφU),F∗(Y)) − 1n((∇F

XF∗)(ωU),F∗(CY)) = 1n((∇F∗)(X,BY),F∗(ωU)),

for U,V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)⊥).

Proof. For U ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)⊥), from equations (2.17), (3.1) , (3.2) and Theorem (3.1), we obtain

1m(∇m
XY,U) = −cos21m(Y,∇m

XU) + 1m(Y,∇m
XωφU) − 1m(BY,∇m

XωU) − 1m(CY,∇m
XωU). (4.1)

Since F is Riemannian map and using equation (2.2), we have

1m(∇m
XY,U) = sec2

{1n(F∗(Y),∇m
XF∗(ωφU)) − 1n(F∗(Y), (∇F∗)(X, ωφU)) + 1n((∇F∗)(X, ωU),F∗(CY))

− 1n((∇F∗)(X,BY),F∗(ωU)) − 1n(F∗(CY),∇m
XF∗(ωU))}. (4.2)

Using Lemma (2.1), we get

1m(∇m
XY,U) = sec2

{1n((F∗(Y),∇m
XF∗(ωφU)) − 1n((∇F∗)(X,BY),F∗(ωU)) − 1n(F∗(CY),∇m

XF∗(ωU))}. (4.3)

Thus we obtain our proof from (3.16) and (4.3).

Example 4.2. We consider R2n+1 with Cartesian coordinates (xi, yi, zi)(i = 1, ....,n) and its usual contact form

η =
1
2

(dz −
∑

yidxi).

The characteristic vector field ξ is given by 2 ∂
∂z and its Riemannian metric 1 and its tensor field J are given by

1 =
1
4

(η ⊕ η +
∑

((dxi)2 + (dyi)2), J =

 0 δi j 0
−δi j 0 0

0 y j 0

 , i = 1, ....,n

This gives a contact structure on R2n+1. The vector fields Ei = 2 ∂
∂yi
,En+i = 2 ∂

∂xi
+ yi

∂
∂z , ξ form a J− basis for the

contact metric structure. On the other hand, it can be shown that R2n+1(J, ξ, η, 1) is a Sasakian manifold.

Example 4.3. R5 has got a Sasakian structure as in the preceding Example 4.2. Let F : R5
−→ R2 be a map defined

by F(x1, x2, y1, y2, z) = (x1 − 2
√

2x2 + y1, 2x1 − 2
√

2x2 + y1). Then, by direct calculations

kerF∗ = span{V1 = 2E1 +
1
√

2
E4,V2 = E2,V3 = E5 = ξ}.

Then it is easy to see that F is a Riemannian Map. Moreover, JV1 = 2E3 −
1
√

2E2
and JV2 = E4 imply that

|1(JV1,V2)| = 1
√

2
. So F is a slant Riemannian map with slant angle θ = π

4

Example 4.4. Every proper slant submersion with the slant angle θ is a slant Riemannian map with (ran1F∗)⊥ = {0}

Example 4.5. Every anti-invariant Riemannian submersion from an almost contact manifold onto a Riemannian
manifold is a slant Riemannian map with the slant angle θ = π

2 and (ran1F∗)⊥ = {0}.
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