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Abstract. In this paper, generalized Cayley graphs are studied. It is proved that every generalized Cayley
graph of order two times a prime is a Cayley graph. Special attention is given to generalized Cayley graphs
on abelian groups. It is proved that every generalized Cayley graph on an abelian group with respect to
an automorphism which acts as inversion is a Cayley graph if and only if the group is elementary abelian
2-group, or its Sylow 2-subgroup is cyclic. Necessary and sufficient conditions for a generalized Cayley
graph to be unworthy are given.

1. Introduction

In this paper we consider generalized Cayley graphs, first introduced in [7].

Definition 1.1. Let G be a group, S a subset of G and α an automorphism of G such that the following conditions are
satisfied:

(i) α2 = 1,

(ii) if x ∈ G then α(x−1)x < S,

(iii) if x, y ∈ G and α(x−1)y ∈ S then α(y−1)x ∈ S.

Then the generalized Cayley graph X = GC(G,S, α) on G with respect to the ordered pair (S, α) is the graph with
vertex set G, with two vertices x, y ∈ V(X) being adjacent in X if and only if α(x−1)y ∈ S. In other words, a vertex
x ∈ G is adjacent to all the vertices of the form α(x)s, where s ∈ S.
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Note that (ii) implies that X has no loops, and (iii) implies that X is undirected. Also, in view of (i),
the condition (iii) is equivalent to α(S−1) = S. Namely, by letting x = 1 in (iii), we obtain α(S−1) = S, and
conversely, if α(S−1) = S, then α(x−1)y ∈ S implies that α(y−1α(x)) = α(y−1)x ∈ S. If α = 1 then we say that
GC(G,S, α) is a Cayley graph and write simply Cay(G,S). Therefore every Cayley graph is also a generalized
Cayley graph, but the converse is not true (see [7, Proposition 3.2]). A generalized Cayley graph GC(G,S, α)
is connected if and only if S is a left generating set for the quasigroup (G, ∗), where f ∗ 1 = α( f )1 for all
f , 1 ∈ G (see [7, Proposition 3.5]). Recall that a quasigroup (G, ∗) is a set G with binary operation ∗, in which
for arbitrary two elements a, b ∈ G, the equations a ∗ x = b and y ∗ a = b have uniquely defined solutions
x and y. A subset S of a quasigroup G is said to be a left generating set of G if for each 1 ∈ G there exist
s1, . . . , sm ∈ S such that 1 = (. . . ((s1 ∗ s2) ∗ s3) ∗ . . . ∗ sm).

In [7] the properties of generalized Cayley graphs relative to canonical double covers (also called bipartite
double covers) of graphs were studied. For graphs X and Y the direct product X × Y of X and Y is the graph
with vertex set V(X×Y) = V(X)×V(Y), and two vertices (x1, y1) and (x2, y2) are adjacent in X×Y if and only
if x1 is adjacent with x2 in X and y1 is adjacent with y2 in Y. Canonical double cover B(X) of a graph X is the
direct product X × K2 (K2 is the complete graph on two vertices). It is easily seen that Aut(B(X)) contains a
subgroup isomorphic to Aut(X) ×Z2. If Aut(B(X)) is isomorphic to Aut(X) ×Z2 then the graph X is called
stable, otherwise it is called unstable. This concept was first defined by Marušič et al. [6] and studied later
most notably by Surowski [9, 10], Wilson [11], Lauri et al. [5].

In [7, Proposition 3.3]) it is proved that every stable generalized Cayley graph is also a Cayley graph.
Therefore, every generalized Cayley graph which is not Cayley graph is unstable. Recently, the existence of
infinitely many vertex-transitive generalized Cayley graphs which are not Cayley graphs was proven (see
[3]).

In this paper we continue studying the properties of generalized Cayley graphs started in [3]. Since for
defining generalized Cayley graphs one needs a group automorphism of order two, in Section 2 we study
some properties of such automorphisms. We first prove that for studying generalized Cayley graphs, it
suffices to consider only the representatives of the conjugacy classes in Aut(G) (see Proposition 2.1). We
also show how all generalized Cayley graphs on abelian groups of odd order can be represented in a simple
way (see Proposition 2.4).

The most natural choice of an automorphism of order 2 is the mapping that inverts all elements, that is
ι : x 7→ x−1. This mapping is an automorphism of a group G if and only if G is abelian group. Therefore, we
study generalized Cayley graphs on abelian groups arising from the inversion automorphism ι : x 7→ x−1

in Section 3. We prove that in some cases, all graphs constructed in this way turn out to be Cayley graphs
(but not necessarily on an abelian group). We prove the following theorem.

Theorem 1.2. Let G be an abelian group and let ι be the inversion automorphism of G. Then every generalized
Cayley graph on G with respect to ι is a Cayley graph if and only if one of the following holds:

(i) G is an elementary abelian 2-group;
(ii) the Sylow 2-subgroup of G is cyclic.

In Section 4 we consider generalized Cayley graphs of order twice a prime, and prove that there are no
non-Cayley graphs among them.

Theorem 1.3. Every generalized Cayley graph of order 2p is a Cayley graph.

Necessary and sufficient conditions for a generalized Cayley graph to be unworthy are given in Section
5 (a graph is called unworthy if it has two vertices with the same neighbours). Using this it is proved that
for an abelian group G, involutory automorphism α of G, and the maximal allowed set S in Definition 1.1,
the graph GC(G,S, α) is isomorphic to the lexicographic product of a complete graph and an empty graph,
see Corollary 5.4.

2. Group Automorphisms of Order Two

For defining a generalized Cayley graph on a group G, one needs an automorphism of G of order two.
Therefore it is important to understand the structure of such group automorphisms. We start this section
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with the following proposition, which tells us that for studying generalized Cayley graphs on a group G, it
is sufficient to consider only the representatives of conjugacy classes in Aut(G).

Proposition 2.1. GC(G,S, α) � GC(G, ϕ(S), ϕαϕ−1) for any ϕ ∈ Aut(G).

Proof. Let us first prove that ϕ(S) and ϕαϕ−1 satisfy the conditions from Definition 1.1.

(i) (ϕαϕ−1)2 = ϕαϕ−1ϕαϕ−1 = id.

(ii) Suppose that there exists 1 ∈ G such that (ϕαϕ−1)(1−1)1 ∈ ϕ(S). Then ϕ−1((ϕαϕ−1)(1−1)1) ∈ S, and
consequently α((ϕ−1(1))−1)ϕ−1(1) ∈ S, a contradiction.

(iii) (ϕαϕ−1)(ϕ(S)) = ϕ(α(S)) = ϕ(S−1) = ϕ(S)−1.

Mapping ϕ is clearly a bijective mapping from G to G. Let {x, y} be an arbitrary edge in GC(G,S, α). Then
y = α(x)s for some s ∈ S. Further we have

ϕ(y) = ϕ(α(x)s) = ϕ(α(x))ϕ(s) = (ϕα)(x)ϕ(s) = (ϕαϕ−1)(ϕ(x))ϕ(s).

This implies that ϕ(x) and ϕ(y) are adjacent in GC(G, ϕ(S), ϕαϕ−1). Similarly, one can see that if ϕ(x) and
ϕ(y) are adjacent in GC(G, ϕ(S), ϕαϕ−1), then x and y are adjacent in GC(G,S, α). Therefore ϕ is in fact an
isomorphism between GC(G,S, α) and GC(G, ϕ(S), ϕαϕ−1).

For a group G and α ∈ Aut(G), the set Fix(α) is defined as Fix(α) = {1 ∈ G | α(1) = 1}. We let ωα : G→ G
be the mapping defined by ωα(x) = α(x)x−1 and let ωα(G) = {ωα(1) | 1 ∈ G}. Notice that Definition 1.1(ii)
is equivalent to ωα(G) ∩ S = ∅, that is ωα(G) is the set of forbidden elements for the generating set of
the graph GC(G,S, α). In the following proposition some properties of these sets are given. The proof is
straightforward and is omitted.

Proposition 2.2. Let G be a group and α ∈ Aut(G) such that α2 = 1. Then the following hold:

(a) Fix(α) is a subgroup of G;

(b) If G is an abelian group then ωα(G) is a subgroup of G;

(c) α(x) = x−1, for every x ∈ ωα(G).

Observe that the set ωα(G) is not always a subgroup of G. For example, if G = A4 and α acts on G as a
conjugation by (1 2), then ωα(G) = {id, (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 2)(3 4)}, which is not a subgroup of A4.

An action of a group A on a group G is called coprime if (|A|, |G|) = 1. If G is of odd order, and α is an
involutory automorphism of G, then the action of A = 〈α〉 on G is coprime. Then by [4, 8.2.7], it follows that
G = Fix(α)ωα(G). Moreover, if G is abelian, then we have the following result (this result was first proved
by Miller [8] in 1909).

Proposition 2.3. [4, 8.4.2] If G is an abelian group of odd order then G = Fix(α) × ωα(G).

Proposition 2.3 enables us to describe generalized Cayley graphs on an abelian group of odd order in
the following way.

Proposition 2.4. Let X be a generalized Cayley graph on an abelian group of odd order. Then X is isomorphic to the
graph Y given with

1. V(Y) = G1 × G2, where G1 and G2 are abelian groups of odd order;

2. E(Y) = {{(11, 12), (11s1, 1−1
2 s2)} | (11, 12) ∈ G1 × G2, (s1, s2) ∈ S} where S ⊆ (G1 \ {1}) × G2 such that

(s1, s2) ∈ S⇔ (s−1
1 , s2) ∈ S.
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Proof. Let X = GC(G,S, α) be a generalized Cayley graph on an abelian group G of odd order. By Proposi-
tion 2.3 it follows that G = G1 × G2, where G1 = Fix(α) and G2 = ωα(G). Let ϕ be a natural isomorphism
between G and G1 × G2, that is ϕ(1) = (11, 12), where 1 = 1112, 1 ∈ G, 11 ∈ G1, 12 ∈ G2. Let S = ϕ(S).
Recall that by Definition 1.1(ii) we have S ∩ ωα(G) = ∅. Hence, for every s ∈ S, we have s = s1s2, where
s1 ∈ G1 \ {1} and s2 ∈ G2, implying that S ⊆ (G1 \ {1}) × G2. Also, since s ∈ S ⇔ α(s−1) ∈ S, it follows that
(s1, s2) ∈ S⇔ (s−1

1 , s2) ∈ S.
Let {1, α(1)s} be an edge of X. Then 1 = 1112, and s = s1s2, where 11, s1 ∈ G1, 12, s2 ∈ G2 and s ∈ S.

This further implies that α(1)s = α(1112)s1s2 = 111
−1
2 s1s2 = (11s1)(1−1

2 s2). Hence we obtain ϕ(1) = (11, 12) and
ϕ(α(1)s) = (11s1, 1−1

2 s2). Therefore, ϕ is an isomorphism between X and Y.

If G is an abelian group of even order, and G = E ×O, where E has 2-power order, and O has odd order,
then Aut(G) = Aut(E) × Aut(O). If α is an involutory automorphism of G, then α = α1 · α2, where α1 is an
involutory automorphism of E and α2 is an involutory automorphism of O. By Proposition 2.3 it follows that
O = Fix(α2)×ωα2 (O), and consequently α centralizes Fix(α2) and acts by inversion on ωα2 (O). The difficulty
now lies in describing the action of α1 on E. It is clear that E = Z2k1 × . . . ×Z2km , for 1 ≤ k1 ≤ . . . ≤ km. Then
the action of α1 on E can be given in terms of an m×m integer matrix Aα (see [2] for more details). Since α is
an involution, it follows that A2

α = I, where the equalities in i-th row are modulo 2ki . If k1 = . . . = km = 1, then
E is an elementary abelian 2-group, and there are bm

2 c conjugacy classes of involutions in Aut(E) = GL(n, 2).
Namely, since A2

α = I, it follows that x2
− 1 is the minimal polynomial of Aα. This implies that λ = 1 is the

unique eigenvalue of Aα. Moreover, Aα can be written in Jordan form with all ones on the diagonal, and
with every Jordan block of size 1 or 2. There must be at least one Jordan block of size 2, otherwise α acts
trivially on E. Hence, the number of representatives of conjugacy classes of involutions in Aut(E) = GL(n, 2)
is bm

2 c. Similarly, if E � Z2k , then α acts on E as a multiplication by a, where a ∈ {±1, 2k
± 1}. If E is neither

an elementary abelian 2-group nor a cyclic group, then the description of the action of α on E is more
complicated.

3. Generalized Cayley Graphs with Respect to the Inversion Automorphism

Throughout this section we assume that G is an abelian group, and that ι is the inversion automorphism
of G, that is ι(x) = x−1 (∀x ∈ G). Before stating the main results of this section, let us recall the definition of
generalized dihedral groups. For an abelian group G, the generalized dihedral group Dih(G) is the semidirect
product G o Z2, with Z2 acting on G by inverting elements. More precisely, for i ∈ Z2 and 11, 12 ∈ G we
have

(11, i) ◦ (12, 0) = (1112, i)
(11, i) ◦ (12, 1) = (1−1

1 12, i + 1).

(Note that in a standard definition of the generalized dihedral group Dih(G) = G oZ2 the group operation
is defined by (11, i) ◦ (12, j) = (11ϕ(i)(12), i + j), where ϕ : Z2 → Aut(G) is a group homomorphism mapping
0 ∈ Z2 to the identity automorphism of G and mapping 1 ∈ Z2 to ι ∈ Aut(G). However, it is not difficult to
check that our definition is equivalent to this standard definition.)

The following theorem shows that every generalized Cayley graph with respect to the inversion auto-
morphism on an abelian group of even order with cyclic Sylow 2-subgroup is isomorphic to a Cayley graph
on a generalized dihedral group.

Theorem 3.1. Let n be a non-negative integer and let G be a finite abelian group of odd order. Then the generalized
Cayley graph GC(Z2n × G,S, ι) is isomorphic to a Cayley graph on Dih(Z2n−1 × G).

Proof. Let X = GC(Z2n × G,S, ι). If n = 0, then Definition 1.1(ii) implies that S = ∅, and therefore X has no
edges. Hence we assume that n ≥ 1. For (x, 1) ∈ Z2n × G, define a mapping ϕ : Z2n × G→ (Z2n−1 × G) ×Z2
with

ϕ((x, 1)) =
((⌊x

2

⌋
, 1

)
, x mod 2

)
.
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It is not difficult to verify that ϕ is bijection. It is also clear that ((Z2n−1 × G) × Z2, ◦) with the operation ◦
defined in the following way:

((x1, 11), i) ◦ ((x2, 12), 0) = ((x1 + x2, 1112), i)
((x1, 11), i) ◦ ((x2, 12), 1) = ((−x1 + x2, 1

−1
1 12), i + 1)

is the generalized dihedral group Dih(Z2n−1 × G). (The group G is abelian, but we write its operation in a
multiplicative way.) Observe that ((x, 1), 0)−1 = ((−x, 1−1), 0) and ((x, 1), 1)−1 = ((x, 1), 1). It is also not difficult
to verify that for x1, x2 ∈ Z2n−1 and 11, 12 ∈ G,

((x1, 11), 0)−1
◦ ((x2, 12), 1) = ((x1, 11), 1)−1

◦ ((x2, 12), 0) = ((x1 + x2, 1112), 1) (1)

Definition 1.1(ii) implies that for any (x, 1) ∈ Z2n ×G, ι
(
(x, 1)−1

)
· (x, 1) = (x, 1) · (x, 1) = (2x, 12) < S. Since

G is of odd order we have G = {12
| 1 ∈ G}. Therefore, if s = (x, 1) ∈ S, then x is odd and ϕ(s) =

((
x−1

2 , 1
)
, 1

)
.

We claim that ϕ is isomorphism between X and Y = Cay(Dih(Z2n−1 × G), ϕ(S)). Let (x1, 11) and (x2, 12)
be two adjacent vertices of X. Then (x1 + x2, 1112) ∈ S. We have already seen that for each element in S its
first coordinate is an odd element fromZ2n , hence either (x1 ≡ 0 mod 2, x2 ≡ 1 mod 2) or (x1 ≡ 1 mod 2, x2 ≡

0 mod 2).
Consider first the case when x1 ≡ 0 mod 2 and x2 ≡ 1 mod 2. Observe that now

⌊
x1
2

⌋
+

⌊
x2
2

⌋
=

⌊
x1+x2

2

⌋
.

Then ϕ((x1, 11)) =
((⌊

x1
2

⌋
, 11

)
, 0

)
and ϕ((x2, 12)) =

((⌊
x2
2

⌋
, 12

)
, 1

)
and using (1), we obtain

ϕ((x1, 11))−1
◦ ϕ((x2, 12)) =

((⌊x1

2

⌋
, 11

)
, 0

)−1
◦

((⌊x2

2

⌋
, 12

)
, 1

)
=((⌊x1

2

⌋
+

⌊x2

2

⌋
, 1112

)
, 1

)
=

((⌊x1 + x2

2

⌋
, 1112

)
, 1

)
= ϕ((x1 + x2, 1112)) ∈ ϕ(S).

Similarly, if x1 ≡ 1 mod 2 and x2 ≡ 0 mod 2, then again using (1), we obtain

ϕ((x1, 11))−1
◦ ϕ((x2, 12)) =

((⌊x1

2

⌋
, 11

)
, 1

)−1
◦

((⌊x2

2

⌋
, 12

)
, 0

)
= ϕ((x1 + x2, 1112)) ∈ ϕ(S).

Therefore ϕ((x1, 11))−1
◦ ϕ((x2, 12)) ∈ ϕ(S) and hence ϕ(x1, 11) and ϕ(x2, 12) are adjacent in Y.

Suppose now that ϕ(x1, 11) and ϕ(x2, 12) are adjacent in Y for some x1, x2 ∈ Z2n and 11, 12 ∈ G. Then
ϕ((x1, 11))−1

◦ ϕ((x2, 12)) ∈ ϕ(S), and we conclude that x1 and x2 have different parity. Further, using (1),
we obtain that ϕ((x1, 11))−1

◦ ϕ((x2, 12)) = ϕ((x1 + x2, 1112)). Therefore, (x1 + x2, 1112) ∈ S, and hence (x1, 11)
and (x2, 12) are adjacent in X. This shows that ϕ is an isomorphism between X and Y, which concludes the
proof.

Theorem 3.1 shows that every generalized Cayley graph on an abelian group with cyclic Sylow 2-
subgroup and with respect to the inversion automorphism is a Cayley graph. The following two examples
show that this does not hold for abelian groups in general.

Example 3.2. Let G = Z2m ×Z2n , m ≥ 1, n ≥ 2, S = {(1, 0), (0, 1), (1, 1)} and let ι be the inversion automorphism
of G. Then GC(G,S, ι) is not vertex-transitive.

Proof. Let us consider the triangles contained in X = GC(G,S, ι). Suppose that the vertices a, b, c ∈ G form
a triangle. Each edge of this triangle is generated by a different element from S, since one element of
S generates a perfect matching of the graph. Therefore, without loss of generality we may assume that
a + b = (1, 0), b + c = (1, 1), c + a = (0, 1). From this we obtain b = (1, 0) − a, c = (1, 1) − b = (0, 1) + a and
a = (0, 1) − c = −a, and hence 2a = 0. Therefore, each triangle in X contains one element of order 2 from G.
If m ≥ 3 or n ≥ 3 then the vertex (2, 2) does not lie on a triangle, hence X is not vertex-transitive in this case.
If n = 2 and m ∈ {1, 2}, then it is not difficult to see that there exist at least two vertices of X that belong to
different number of triangles in X. This concludes the proof.



A. Hujdurović et al. / Filomat 31:13 (2017), 4033–4040 4038

Example 3.3. Let G = Z2×Z2×Z2k+1, k ≥ 1, S = {(1, 0, 0), (0, 1, 0), (1, 1, 1)} and let ι be the inversion automorphism
of G. Then GC(G,S, ι) is not vertex-transitive.

Proof. It is easy to verify that the vertex (0, 0, 0) does not lie on a triangle, whereas the vertex (0, 0, k) lies on
the triangle [(0, 0, k), (1, 0,−k), (0, 1, k + 1)]. Therefore GC(G,S, ι) is not vertex-transitive.

Before we state the main result of this section, we need the following lemma about the direct product
of generalized Cayley graphs. Recall that the direct product X × Y of graphs X and Y is the graph with
vertex set V(X × Y) = V(X) × V(Y), and two vertices (x1, y1) and (x2, y2) are adjacent in X × Y if and only if
{x1, x2} ∈ E(X) and {y1, y2} ∈ E(Y).

Lemma 3.4. Let X = GC(G1,S1, α1), Y = GC(G2,S2, α2), and let α be the automorphism of G1 × G2 defined by
α(11, 12) = (α1(11), α2(12)) for 11 ∈ G1 and 12 ∈ G2. Then X × Y � GC(G1 × G2,S1 × S2, α).

Proof. Let us first verify that GC(G1 × G2,S1 × S2, α) is well-defined, that is, that S1 × S2 and α satisfy
Definition 1.1. It is clear that α is an automorphism of G1 × G2, and that α2 = 1. We have ωα(G1 × G2) ={
α((11, 12)−1)(11, 12) | 11 ∈ G1, 12 ∈ G2

}
= ωα1 (G1) × ωα2 (G2). Since S1 ∩ ωα1 (G1) = ∅ and S2 ∩ ωα2 (G2) = ∅, it

follows that (S1 × S2) ∩ ωα(G) = ∅, and therefore Definition 1.1(ii) is satisfied. It is straightforward to verify
that α(S−1) = α1(S−1

1 ) × α2(S−1
2 ) = S1 × S2 = S, and consequently Definition 1.1(iii) is satisfied.

Let (x1, y1) and (x2, y2) be two vertices of X × Y. Then

{(x1, y1), (x2, y2)} ∈ E(X × Y)
⇔ {x1, x2} ∈ E(X) and {y1, y2} ∈ E(Y)
⇔ α1(x−1

1 )x2 ∈ S1 and α2(y−1
1 )y2 ∈ S2

⇔ α((x1, y1)−1) · (x2, y2) ∈ S1 × S2 = S
⇔ {(x1, y1), (x2, y2)} ∈ E(GC(G1 × G2,S1 × S2, α))

This shows that the mapping ϕ : VG1 × G2 → G1 × G2 defined with ϕ(x, y) = (x, y) is an isomorphism
between X × Y and GC(G1 × G2,S1 × S2, α).

Theorem 3.1 shows that every generalized Cayley graph on an abelian group with cyclic Sylow 2-
subgroup with respect to the inversion automorphism is also a Cayley graph. The same result holds if G is
an elementary abelian 2-group. Namely, in this case the inversion automorphism is the identity mapping,
since each element of G is of order 2. We are now ready to present the proof of Theorem 1.2.

Theorem 1.2. Let G be an abelian group and let ι be the inversion automorphism of G. Then every generalized
Cayley graph on G with respect to ι is a Cayley graph if and only if one of the following holds:

(i) G is an elementary abelian 2-group;

(ii) the Sylow 2-subgroup of G is cyclic.

Proof. If G is an elementary abelian 2-group, then ι is the identity map, and therefore GC(G,S, ι) � Cay(G,S).
If the Sylow 2-subgroup of G is cyclic, then G � Z2n × H, where H is an abelian group of odd order. By
Theorem 3.1 we conclude that GC(G,S, α) is a Cayley graph.

Suppose now that G is not an elementary abelian 2-group and that the Sylow 2-subgroup of G is not
cyclic. First consider the case when the Sylow 2-subgroup of G is elementary abelian. Then, since G is not
elementary abelian, the order of G must be divisible by some odd number and hence G = Z2×Z2×Z2k+1×H,
where k is a positive integer, and H is an abelian group. Let S1 = {(1, 0, 0), (0, 1, 0), (1, 1, 1)}, S2 = H \ {1H},
S = S1 × S2 and let ι1 be the restriction of ι to Z2 × Z2 × Z2k+1 and ι2 the restriction of ι to H. Then,
by Lemma 3.4, GC(G,S, ι) � GC(Z2 × Z2 × Z2k+1,S1, ι1) × GC(H,S2, ι2). Since the direct product of two
graphs is vertex-transitive if and only if both factors are vertex-transitive (see [1, Theorem 8.19]), and
since by Example 3.3, GC(Z2 × Z2 × Z2k+1,S1, ι1) is not vertex-transitive, it follows that GC(G,S, ι) is not
vertex-transitive, and consequently it is not a Cayley graph.
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If the Sylow 2-subgroup of G is not elementary abelian nor cyclic, then G � Z2m × Z2n × H for m ≥ 1
and n ≥ 2 and an abelian group H. Using Example 3.2 and Lemma 3.4 we construct a non-vertex-transitive
generalized Cayley graph on G.

4. Generalized Cayley Graphs of Order 2p

In this section we consider generalized Cayley graphs of order 2p, where p is a prime. We are now going
to prove Theorem 1.3.

Theorem 1.3. Every generalized Cayley graph of order 2p is a Cayley graph.

Proof. Let G be a group of order 2p. Then G � Z2p or G � D2p. Suppose first that G � Z2p. Then there are
only two automorphisms of G of order 2, namely the identity mapping, or the inversion automorphism ι.
For α = 1, GC(G,S, α) � Cay(G,S) by definition. For α = ι, GC(Z2p,S, α) is a Cayley graph on the group
D2p � Zp o Z2 by Theorem 3.1.

Suppose now that G � D2p = 〈τ, ρ | τ2 = ρp = 1, τρτ = ρ−1
〉. If p = 2 then the claim clearly holds,

therefore we will assume that p > 2. Let α be an automorphism of D2p of order 2. Since automorphisms
preserve the order of the elements, it follows that α(ρ) = ρk, where (k, p) = 1, and α(τ) = τρl. The fact that α
is an involution gives us the following restrictions on k and l:

ρ = α(α(ρ)) = ρk2
⇒ k ≡ ±1 (mod p)

τ = α(α(τ)) = α(τρl) = α(τ)α(ρl) = τρl(k+1)
⇒ l(k + 1) ≡ 0 (mod p).

Moreover, if k = 1 then l = 0 and α is the identity. Therefore, we can assume that α(ρ) = ρ−1 and α(τ) = τρl

for some l ∈ Zp. It is now easy to see that α is an inner automorphism of D2p which acts as conjugation by
τρ

l
2 . Now applying [7, Proposition 3.6] it follows that every generalized Cayley graph with respect to α is

a Cayley graph. This concludes the proof.

5. Unworthy Generalized Cayley Graphs

Recall that a graph X is said to be unworthy if there exist two vertices of X with the same neighbourhood
in X, and worthy otherwise. This section deals with the question which generalized Cayley graphs are
unworthy. In order to answer this question, for a group G, a subset S of G and α ∈ Aut(G) such that the
conditions from Definition 1.1 are satisfied, we define

K = {α(1) | 1S = S} = {1 | α(1)S = S}.

Observe that K is a subgroup of G.

Proposition 5.1. The vertices x and y in X = GC(G,S, α) have the same neighbours in X if and only if x−1y ∈ K.

Proof. Suppose first that x−1y ∈ K, that is, y = xk for some k ∈ K. Then the neighbourhood of x is α(x)S and
the neighbourhood of y is α(y)S = α(xk)S = α(x)α(k)S = α(x)S. Therefore x and y have the same neighbours.

Conversely, if x and y have the same neighbours, then α(x)S = α(y)S, which implies S = α(x−1y)S.
Therefore, x−1y ∈ K, and the result follows.

Corollary 5.2. The graph GC(G,S, α) is unworthy if and only if K , {1G}.

The following proposition shows that an unworthy generalized Cayley graph can be decomposed into
the lexicographic product of a worthy graph and an empty graph. (The lexicographic product of graphs X
and Y is the graph X[Y] with vertex set V(X) × V(Y), where two vertices (x1, y1) and (x2, y2) are adjacent
if and only if either {x1, x2} ∈ E(X) or x1 = x2 and {y1, y2} ∈ E(Y).) Let XK be the quotient graph of X with
respect to the partition {xK | x ∈ G}.
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Proposition 5.3. Let X = GC(G,S, α) be unworthy. Then X � XK[Kn], where n = |K|.

Proof. Suppose that the generalized Cayley graph X = GC(G,S, α) is unworthy. By Proposition 5.1, two
vertices of X have the same neighbours if and only if they belong to the same left coset of K in G. Then S is
a union of several left cosets of K, and all the vertices in the same left coset of K have the same neighbours.
It is now easy to see that X � XK[Kn].

Corollary 5.4. If G is an abelian group and S = G \ ωα(G) then GC(G,S, α) � Km[Kn], where n = ωα(G), and
m = |G|/n.

Proof. Since G is abelian, by Proposition 2.2(ii),ωα(G) is a subgroup of G. We have K = {α(1) | 1 ·(G\ωα(G)) =
G \ ωα(G)} = {α(1) | 1 · ωα(G) = ωα(G)} = {α(1) | 1 ∈ ωα(G)}. By Proposition 2.2(iii), α(1) = 1−1 for each
1 ∈ ωα(G), and therefore K = ωα(G).

We claim that XK � Km. The number of vertices in XK is equal to the index of K in G, which is
|G|/|K| = |G|/n = m. Let xK and yK be two different vertices of XK, that is x−1y < K. This implies that α(x)
and y are adjacent in X. Then, since G is abelian, α(x) = xα(x)x−1

∈ xK. Therefore, vertices xK and yK are
adjacent in XK, and consequently XK � Km. The claim now follows by Proposition 5.3.
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