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Abstract. The ωµ−metric spaces, with ωµ a regular ordinal number, are sets equipped with a distance
valued in a totally ordered abelian group having as character ωµ, but satisfying the usual formal properties
of a real metric. The ωµ−metric spaces fill a large and attractive class of peculiar uniform spaces, those with
a linearly ordered base. In this paper we investigate hypertopologies associated with ωµ−metric spaces,
in particular the Hausdorff topology induced by the Bourbaki-Hausdorff uniformity associated with their
natural underlying uniformity. We show that two ωµ−metrics on a same topological space X induce on
the hyperspace CL(X), the set of all non-empty closed sets of X, the same Hausdorff topology if and only
if they are uniformly equivalent. Moreover, we explore, again in the ωµ−metric setting, the relationship
between the Kuratowski and Hausdorff convergences on CL(X) and prove that an ωµ−sequence {Aα}α<ωµ

which admits A as Kuratowski limit converges to A in the Hausdorff topology if and only if the join of A
with all Aα is ωµ−compact.

1. Introduction

The hyperspace CL(X) of all closed nonempty subsets of a bounded metric space (X, d) can be metrized
with the Hausdorff metric dH, defined as:

dH(A,B) := max{sup{ρ(x,A) : x ∈ B}, sup{ρ(x,B) : x ∈ A}},

which in turn induces on CL(X) the Hausdorff topology τH(d), [4]. It is very well-known that two compatible
metrics on a same topological space X generate the same Hausdorff topology on CL(X) if and only if they
are uniformly equivalent and that the proof of this result is based on the Efremović Lemma. It is also
very well-known that any sequence in CL(X) which converges in the Hausdorff topology to a limit A has
the same A as its Kuratowski limit. The converse is not generally true even in the hyperspace of the
non-empty compact subsets of X, as Kuratowski proved in [13]. In this paper we investigate the cited
properties in the ωµ−metric case. The ωµ−metric spaces fill a large and attractive class of peculiar uniform
spaces containing the usual metric ones. In an extensive work [20] Sikorski introduced the concept of
ωµ−metric space as a set X equipped with a distance ρ : X × X → G, valued in a totally ordered abelian

2010 Mathematics Subject Classification. Primary 54B20; Secondary 54A05, 54A10, 54A20, 54A25, 54E15, 54E35, 54E99, 54F05, 06A05,
06F20

Keywords. ωµ−metric spaces, uniform spaces, uniform spaces with linearly ordered bases, ωµ−additive topologies, Hausdorff
topology, Bourbaki-Hausdorff uniformity, uniform equivalence for ωµ−metrics, Kuratowski convergence, Efremovič Lemma, totally
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additive group G, admitting a decreasing ωµ−sequence convergent to 0 in the order topology, satisfying
the usual formal properties of a real metric, i.e. positiveness, simmetry and triangle inequality. It is worth
noting that in 1934 D. Kurepa had already introduced the pseudo-distancial spaces which are equivalent to
ωµ−metric spaces,[12, 14]. When the range of an ωµ−metric ρ is a complete lattice, the existence of infima
and suprema is guaranteed and so, consequently, the introduction of the distance between points and sets
and of the Hausdorff distance between sets in the usual way. The Hausdorff distance ρH on CL(X), when
it makes sense, is in its turn an ωµ−metric, which induces on CL(X) a topology τH(ρ), which has been
named again as the Hausdorff topology associated with ρ, [21]. Of course, the Hausdorff topology τH(ρ)
is at the same time the topology induced by the Bourbaki-Hausdorff uniformity on CL(X) associated with
the underlying uniformity of ρ, [4, 10]. By using essentially a generalization of the Efremović Lemma due
to Alfsen-Njastad, [1], related to uniform spaces with a linearly ordered base of diagonal nhbds, actually
the underlying uniform spaces of ωµ−metric spaces are of this type, we show that two ”ω−metrics” on
a same space X generate the same Hausdorff topology on CL(X) iff they are uniformly equivalent. We
formulate also a uniform version as follows: Two uniformities with linearly ordered bases generate the
same Hausdorff topology iff they coincide. Then, again in the ωµ−metric framework, we focus on the
relationship between the Hausdorff convergence and the Kuratowski convergence for ωµ−sequences. To
end we give a necessary and sufficient condition for the Kuratowski convergence to be as strong as the
Hausdorff convergence involving ωµ−compactness.

2. Background

First, we need to review some relevant definitions, notations and results that we draw from [4, 6, 7, 22].
In an extensive work [20], Sikorski introduced the concept of ωµ−metric space as a set X equipped with

a distance ρ : X × X → G, valued in a totally ordered abelian additive group G, admitting a decreasing
ωµ−sequence convergent to 0 in the order topology, satisfying the usual formal properties of a real metric,
i.e. positiveness, symmetry and triangle inequality. Recall that if (G,+, <) is a totally ordered abelian group,
whose neutral element 0 is not isolated in the order topology, the character of G is the minimal ordinal
number ωµ for which there is a strictly decreasing ωµ−sequence convergent to 0.

Any ωµ−metric is naturally associated with the topology τρ having as a base the collection of all balls
defined as usual. The topology τρ carries peculiar properties. In particular, it is T2 and paracompact,
ωµ−additive [3, 20, 21], that is every α−intersection of open sets is in its turn open for any α < ωµ, and
0−dimensional in the uncountable case.

Moreover, naturally attached to ρ there is the diagonal uniformity Uρ admitting as a base the collection
of diagonal neighborhods

{Uα := {(x, y) ∈ X × X : ρ(x, y) < εα} : α < ωµ},

where {εα}α<ωµ is a strictly decreasing ωµ− sequence convergent to 0 in G. Since Uα ⊂ Uβ when β < α,
the uniformity Uρ has a linearly ordered base.

Remind that a (diagonal) uniformity has a linearly ordered base when it admits a base {Uα : α ∈ A} of
diagonal neighborhoods (entourages), α running over an ordered set (Λ, <), and Uα contains Uβ whenever
α < β, [6, 7, 22].
The two concepts ofωµ−metric and uniformity with a linearly ordered base are dual of each other. Actually
in 1934 D. Kurepa had already introduced the pseudo-distancial spaces which later revealed equivalent to
uniform spaces with a linearly ordered base,[12, 14]. In [21], Stevenson and Thron proved :

Theorem 2.1. A separated uniform space (X,U ) is ωµ− metrizable if and only if it has a linearly ordered base and
ℵµ is the least power of such a base.

More precisely, they constructed for any uniformity U on X with a linearly ordered base {Uα : α < ωµ}
with minimal power ℵµ, an ωµ−metric ρ on X having U as natural associated uniformity, taking its values
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in Jµ, the group of of all functions x : {α < ωµ} → Z with the pointwise addition and lexicographic order,
with range the complete, as proved by Sierpinski [19], lattice Dµ, of all functions x : {α < ωµ} → {0, 1}. In Jµ
the ωµ−sequence {1α}α<ωµ with 1α so defined:

1α(β) = 0, when β , α and 1α(α) = 1

is a minimal ωµ−sequence decreasing and convergent to the zero of Jµ.
As it is possible to notice the theory of non-metrizable linearly uniformizable spaces appears as a gener-
alization of the metrizable case but there are also various particular features which don’t have analogous
for metrizable spaces. For example, an ωµ−metric space which is ωµ−totally bounded and ωµ−complete,
just complete, not necessarily is ωµ−compact and the Bourbaki-Hausdorff uniformity associated with a
complete ωµ−metric is generally not complete, [2].

We conclude with the following essential tool due to Alfsen and Njastad, [1]:

Lemma 2.1. Generalized Efremovič Lemma in the uniform version : Let (X,U ) be a uniform space. Let
{xα}, {yα}, be two nets with α running in a totally ordered set Λ, and U, V two diagonal neighborhoods with V4

⊂ U.
If (xα, yα) < U for each α ∈ Λ, then there exists a cofinal subset Γ in Λ so that (xα, yβ) < V for each α, β ∈ Γ.
Generalized Efremovič Lemma in the ωµ−metric version : Let (X, ρ) be an ωµ−metric space. Let {xα}, {yα}
be two nets with α running in a totally ordered set Λ, and ε, η two elements in the basic group with 0 < 4η < ε. If
ρ(xα, yα) ≥ ε for each α ∈ Λ, then there exists a cofinal subset Γ in Λ so that ρ(xα, yβ) > η for each α, β ∈ Γ.

3. Hausdorff Hypertopology on CL(X)

When the range of an ωµ−metric ρ is a complete lattice, as in the construction of Stevenson and Thron
(see section 2), the existence of infima and suprema is guaranteed and so, consequently, the introduction of
the distance between points x and sets A as:

ρ(x,A) = inf{ρ(x, y) : y ∈ A},

of the Hausdorff distance between sets A,B, as:

ρH(A,B) := max{sup{ρ(x,A) : x ∈ B}, sup{ρ(x,B) : x ∈ A}}.

The Hausdorff distance ρH, when it makes sense, is an ωµ−metric [21]. The topology τH(ρ) associated with
the Hausdorff distance has been named the Hausdorff hypertopology associated with ρ.

It follows that, if U is a uniformity on X with a linearly ordered base {Uα : α < ωµ}, the Bourbaki-
Hausdorff uniformity on CL(X), the set of all closed nonempty subsets of X, having as a base:

{ H(Uα) := {(A,B) ∈ CL(X) × CL(X) : A ⊆ Uα[B] and B ⊆ Uα[A] } : α < ωµ }

associated with U is ωµ−metrizable in its turn. Of course, the topology associated with the Bourbaki-
Hausdorff uniformity relative to the underlying uniformity is just the Hausdorff topology.

Observe that a same topological space can have compatible ”ω−metrics” with values in groups with
different characters. In other words: given a topological space X, it can happen that there are an ωµ−metric
and an ων−metric both on X with ωµ different from ων, as the following example illustrates. But, that is
possible only if X is discrete.

Example 3.1. Take the set Ωµ, of all ordinals less thanωµ, ωµ , ω0.Obviously, Ωµ endowed with the discrete
metric is a uniformly discrete ω0−metric space. On the other hand, Ωµ equipped with the discrete topology
admits as compatible ωµ−metric taking its values in Jµ, (see section 2), the following one : d(α, β) = 1α if
α < β and d(α, α) = 0. Indeed, for each α ∈ Ωµ the ball centered at α, S1β [α] = {α}when α < β. But, Ωµ is not
d−uniformly discrete because for each 1β, S1β [α] , {α} when α > β. So definitively, there is an ω0−metric
and at the same time an ωµ−metric, ωµ , ω0, both generating the same topology on Ωµ.
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But, in the case X admits an ωµ−metric and an ων−metric with, for example, ων < ωµ, then X has to be
discrete. In fact, if BU = {Uα : α < ωµ} and BV = {Vβ : β < ων} are bases for the underlying uniformities,
for any fixed point x ∈ X it happens that each β < ων has a correspondent ordinal α(β), ωµ > α(β) > β so
that Uα(β))[x] ⊆ Vβ[x]. Since the set {α(β) : β < ων} has a cardinality less than or equal to ℵν(< ℵµ), then, by
the ωµ−additivity of X, it follows that ∩{Uα(β) : β < ων} is a nhbd of x. Finally:

∩ {Uα(β)[x] : β < ων} ⊆ ∩ {Vβ[x] : β < ων} = {x}.

Now, we are ready to show that the Hausdorff hypertopology associated with anωµ−metric is a uniform
character.

Theorem 3.1. Let X be a topological space.If dµ is an ωµ−metric on X with base group G and ρν an ων−metric again
on X with base group F, then τH(dµ) = τH(ρν) on CL(X) if and only if dµ and ρν are uniformly equivalent.

Proof. It is trivial that two uniformly equivalent ”ω−metrics” determine the same Hausdorff topology.
Conversely. Suppose that, for example, id : (X, dµ) → (X, ρν) is not uniformly continuous. For simplicity,
choose an ωµ−sequence {εα}α<ωµ decreasing to zero in G. Then, a positive σ can be identified in F so that,
for all α < ωµ, there are in X two points xα, yα for which dµ(xα, yα) < εα but ρν(xα, yα) ≥ σ. By the ωµ−metric
version of lemma 2.1 there exist a cofinal subset Λ in {α < ωµ} and a positive η in F such that ρν(xβ, yγ) > η
for all β, γ ∈ Λ. Introduce then Aγ = {xδ : δ ∈ Λ} ∪ {yδ : δ > γ, δ ∈ Λ}, γ ∈ Λ, and A = {xδ : δ ∈ Λ}.
Now, any accumulation point a for A but not in A is a cluster point for the ωµ−sequence {xδ}δ∈Λ as well.
In fact, for each α < ωµ there is a point xβ(α) in A so that dµ(xβ(α), a) < εα. Since the net {dµ(xβ(α), a)}α<ωµ is
convergent to 0 in the base group G, whose character is ωµ, it has to be an ωµ−sequence. Hence, the set
{β(α) : α < ωµ} cannot be bounded above. Consequently, since dµ and ρν induce the same topology of X,
the two adjacent ωµ−sequences {xδ}δ∈Λ, {yδ}δ∈Λ cannot have cluster points. Thus, the sets A and Aγ are all
closed. Finally, it happens that dH(Aγ,A) → 0 while ρH(Aγ,A) 9 0 and, consequently, τH(dµ) , τH(ρν).
From A ⊂ Aγ it follows trivially A ⊂ Sεα,dµ [Aγ] for each α and γ ∈ Λ, and, furthermore, for each δ > α it
happens that yδ ∈ Sεδ,dµ [xδ] ⊆ Sεδ,dµ [A] ⊆ Sεα,dµ [A]. Thus, {Aγ}γ∈Λ converges to A in τH(dµ), while no Aγ can
be contained in Sη,ρν [A]. In fact, any yδ in Aγ has a ρν−distance from any point in A greater than η.

The uniform formulation of the previous result is the following one.

Theorem 3.2. Two uniformities with linearly ordered base give rise to the same Hausdorff topology on CL(X) if and
only if they coincide.

4. Hausdorff Convergence vs Kuratowski Convergence

We now compare in the ωµ−metric setting two generally different modes of convergence, the Hausdorff
convergence and Kuratowski convergence. It is known that the Kuratowski convergence is weaker than
the Hausdorff convergence. In the metric classical framework, in [13], Kuratowski gave a necessary and
sufficient condition involving compactness for them to agree. We perform in the ωµ−metric setting an
achievement comprehensive of the Kuratowski one by replacing compactness withωµ−compactness which
is weaker than compactness in the uncountable case.

We start with the definition and some observations on ωµ−compactness.

Definition 4.1. An ωµ−metric space is ωµ−compact if and only if any ωµ−sequence admits a cluster point.

We recall that any union of less than ℵµ ωµ−compact subsets is itself ωµ−compact. And, a closed subset
of an ωµ−compact space is ωµ−compact in its turn and, vice versa, any ωµ−compact subset is closed. The
ω0−compactness is just the usual compactness. But, in the uncountable case theωµ−compactness is weaker
than compactness, as we illustrate by exhibiting the following example.
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Example 4.1. The space D0
µ of all functions f : {α < ωµ} → {0, 1} taking the value 1 only on a finite number

of coordinates carries as ωµ−metric the Jµ−valued distance ρ : D0
µ × D0

µ → Jµ defined as : ρ( f , 1) = 0 if f =

1 and ρ( f , 1) = 1α where α is the first coordinate in which f , 1 differ, otherwise. D0
µ is ωµ−compact,[21],

but not compact. That’s why D0
µ is not totally bounded. Namely, D0

µ admits an infinite uniformly discrete
subset done by all fn,n a positive integer, defined as fn(n) = 1 while fn(α) = 0, α , n. When n < m, then
ρ( fn, fm) = 1n. But, for each integer n, 1n > 1ω0 . Consequently, any two distinct fn, fm have a ρ−distance
greater than 1ω0 .

Definition 4.2. Let (X, τ) be a Hausdorff space, and let {Aλ}λ∈Λ be a net of subsets of X. A point x0 is said a
limit point of {Aλ}λ∈Λ if each neighborhood of x0 intersects Aλ for all λ in some residual subset of Λ. A point
x1 is said a cluster point of {Aλ}λ∈Λ if each neighborhood of x1 intersects Aλ for all λ in some cofinal subset
of Λ.

The set of all limit points of the net {Aλ}λ∈Λ is denoted by LiAλ and it is called lower (closed) limit, while
the set of all cluster points of {Aλ}λ∈Λ is denoted by LsAλ and it is called upper (closed) limit. The lower limit
is the smaller set and the upper limit the larger one. Moreover, a net {Aλ}λ∈Λ is said Kuratowski convergent

to A, more synthetically {Aλ}λ∈Λ
K
−→ A, if and only if LsAλ ⊆ A ⊆ LiAλ.

From now on, (X, d) stands for an ωµ−metric space with d : X×X→ G, and G a totally ordered Dedekind

complete abelian group with character ωµ. Next, the sign H
−→ is used to mean Hausdorff convergence.

By joining together the following two steps, we can show that the Kuratowski convergence on the
hyperspace CL(X) of anωµ−metric space X forces the Hausdorff convergence if and only if X isωµ−compact.

Theorem 4.1. Let (X, d) be anωµ−metric space. If {Aα}α<ωµ is a net ofωµ−compact subsets of X having as Hausdorff
limit A in its turn ωµ−compact, then

⋃
α<ωµ (A ∪ Aα) is ωµ − compact.

Proof. Of course, anyωµ−sequence {xα}α<ωµ when contained in A clusters. If not in A, but contained in a not
cofinal union of Aα again clusters. That’s why any not cofinal union ofωµ−compact sets isωµ−compact. So,
for simplicity, suppose xα extracted by Aα for each α. Since the hypothesis assumes that dH(Aα,A)→ 0, an
ωµ−sequence {aα}α<ωµ can be identified in A in such a way that {d(xα, aα)}α<ωµ → 0. By the ωµ−compactness
of A, it follows that {aα}α<ωµclusters in A. Consequently, by the adjacency with {aα}α<ωµ , also {xα}α<ωµ
clusters.

Theorem 4.2. Let (X, d) be an ωµ−metric space. If {Aα}α<ωµ is a net in CL(X) having as Kuratowski limit A and⋃
α<ωµ (A ∪ Aα) is ωµ−compact, then {Aα}α<ωµ converges in the Hausdorff hypertopology to the same A.

Proof. Being A ⊆ Li{Aα}, for every a ∈ A and every positive ε in G there exists aα ∈ Aα such that d(a, aα) < ε,
eventually. Hence, A ⊆ Sε[Aα], eventually. To acquire the final result by the way of contradiction, suppose
that there exists a positive ε in G such that Aα * Sε[A], cofinally. In that case a point aα can be extracted
by Aα so that d(aα, a) ≥ ε for all a ∈ A, cofinally, i.e. α running in a cofinal subset Λ. So, the net {aα}α∈Λ is
an ωµ−sequence, which by the ωµ−compactness of

⋃
α<ωµ (A ∪ Aα) admits a cluster point that, of course, is

at the same time, a cluster point of the ωµ−sequence {Aα}α<ωµ , then belonging to A, but having a positive
d-distance from A, a contradiction.

By joining the previous results we show that:

Theorem 4.3. Let (X, d) an ωµ−metric space. For ωµ−sequences in CL(X) the Kuratowski convergence forces the
Hausdorff convergence if and only if the space X is ωµ−compact.

Proof. One way is due to Theorem 4.2. Vice versa, in the case X is not ωµ−compact there is in CL(X) an
ωµ−sequence which is Kuratowski convergent but not convergent in the Hausdorff hypertopology. In that
case there is in X an ωµ−sequence {xα}α<ωµ with no cluster point. Let F be a nonempty ωµ−compact subset
of X and let denote as Fα = F ∪ {xα}, with α < ωµ. Since {Fα}α<ωµ has no cluster points outside of F, it admits
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as its Kuratowski limit just F. Nevertheless, {dH(Fα,F)}α<ωµ 9 0. If it were not so, after choosing in G a
decreasing ωµ−sequence {εα}α<ωµ convergent to zero, for each α < ωµ an index β(α) > α and two points xβ(α)
in Fβ(α), aβ(α) in F could be identified so that d(xβ(α), aβ(α)) < εα. By the cofinality of {β(α) : α < ωµ}, the nets
{xβ(α)}α<ωµ , {aβ(α)}α<ωµ should be two ωµ−sequences adjacent to each other. But, {aβ(α)}α<ωµ should cluster in
F, then so the ωµ−subsequence {xβ(α)}α<ωµ of the starting one. A violation.
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