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Abstract. The development of a new five-stages symmetric two-step method of fourteenth algebraic
order with vanished phase–lag and its first, second, third and fourth derivatives is analyzed in this paper.
More specifically: (1) we will present the development of the new method, (2) we will determine the local
truncation error (LTE) of the new proposed method, (3) we will analyze the local truncation error based
on the radial time independent Schrödinger equation, (4) we will study the stability and the interval of
periodicity of the new proposed method based on a scalar test equation with frequency different than
the frequency of the scalar test equation used for the phase–lag analysis, (5) we will test the efficiency of
the new obtained method based on its application on the coupled differential equations arising from the
Schrödinger equation.

1. Introduction and Definitions

In this paper we study the numerical solution of the close-coupled differential equations arising from
the Schrödinger equation. The problem is described by the model:

[
d2

dx2 + k2
i −

li(li + 1)
x2 − Vii

]
yi j =

N∑
m=1

Vim ymj (1)

where 1 ≤ i ≤ N and m , i and the boundary conditions :

yi j = 0 at x = 0 (2)

yi j ∼ ki xjli (kix)δi j +

(
ki

k j

)1/2

Ki j ki x nli (kix) (3)
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where jl(x) and nl(x) are the spherical Bessel and Neumann functions. We will examine the case in which
all channels are open (see [1]).

If we define the matrix K′ and the diagonal matrices M, N by (see for full details in [1]):

K′i j =

(
ki

k j

)1/2

Ki j

Mi j = kixjli (kix)δi j

Ni j = kixnli (kix)δi j

the new form of the asymptotic condition (27) is obtained:

y ∼M + NK′ .

The rotational excitation of a diatomic molecule by neutral particle impact can be found in several scien-
tific areas (electronics, quantum chemistry, theoretical physics, material science, atomic physics, molecular
physics etc). This problem is expressed by close–coupling differential equations of the Schrödinger type.
Defining the entrance channel by the quantum numbers ( j, l), the exit channels by ( j′, l′), and the total
angular momentum by J = j + l = j′ + l′, we find that (see for full details [1])[

d2

dx2 + k2
j′ j −

l′(l′ + 1)
x2

]
yJ jl

j′l′ (x) =
2µ
~2

∑
j′′

∑
l′′
< j′l′; J | V | j′′l′′; J > yJ jl

j′′l′′ (x)

where

k j′ j =
2µ
~2

[
E +
~2

2I
{ j( j + 1) − j′( j′ + 1)}

]
.

E is the kinetic energy of the incident particle in the center-of-mass system, I is the moment of inertia of the
rotator, and µ is the reduced mass of the system.

We will solve numerically the above mentioned problem using finite difference multistep methods of
the general form:

m∑
i=−m

ci yn+i = h2
m∑

i=−m

bi f (xn+i, yn+i) . (4)

where h is stepsize which is used in order to discretized the integration interval [a, b], xn denotes the n-th
point of the discrete domain. The stepsize or the step length of integration is defined by h = |xi+1 − xi|,
i = 1 − k(1)k − 1. Finally, the quantity yn is the approximated value of the function y(x) at the point xn. The
approximate value is computed using the method (4).

Remark 1.1. We call the method (4) symmetric multistep method or symmetric 2m-step method if c−i = ci and
b−i = bi, i = 0(1)m .

Applying the symmetric 2m-step method to the scalar test equation

y′′ = −φ2 y (5)

the difference equation is obtained:

Am(v) yn+m + · · · + A1(v) yn+1 + A0(v) yn + A1(v) yn−1 + · · · + Am(v) yn−m = 0 (6)

together with the corresponding characteristic equation which is given by:

Am(v)λm + · · · + A1(v)λ + A0(v) + A1(v)λ−1 + · · · + Am(v)λ−m = 0 . (7)

where v = φ h, h is the step length and A j(v) j = 0(1)k are polynomials of v.
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Definition 1.2. [22] A symmetric 2m-step method with characteristic equation given by (7) has an interval of
periodicity (0, v2

0) if, for all v ∈ (0, v2
0), the roots λi, i = 1(1)2 m of (7) satisfy:

λ1 = eiθ(v) , λ2 = e−iθ(v) and |λi| ≤ 1 , i = 3(1)2 m

where θ(v) is a real function of v.

Definition 1.3. [22] A multistep method is called P-stable if its interval of periodicity is equal to (0,∞).

Definition 1.4. A multistep method is called singularly P-stable if its interval of periodicity is equal to (0,∞)\S with
S a finite set of points.

Definition 1.5. [50], [56] For a symmetric 2m-step method, with the characteristic equation given by (7), its phase–
lag is the leading term in the expansion of

t = v − θ(v) .

We call that for the above method the the phase–lag is of order q, if the quantity t = O(vq+1) as v→∞ holds.

Definition 1.6. [41] We call symmetric 2m-step method phase-fitted if its phase–lag is equal to zero.

Theorem 1.7. [50] The symmetric 2m-step method with characteristic equation given by (7) has phase–lag order q
and phase–lag constant c given by

−cvq+2 + O(vq+4) =
2 Am(v) cos(m v) + · · · + 2 A j(v) cos( j v) + · · · + A0(v)

2 m2 Am(v) + · · · + 2 j2 A j(v) + · · · + 2 A1(v)
. (8)

2. The New Five-Stages Fourteenth Algebraic Order P–Stable Two–Step Method with Vanished Phase–
Lag and its First, Second, Third and Fourth Derivatives

Let us consider the following family of five-stages symmetric two–step methods

ŷn = yn − a0 h2
(

fn+1 − 2 fn + fn−1

)
y̌n = yn − a1 h2

(
fn+1 − 2 f̂n + fn−1

)
− 2 a2 h2 f̂n

ŷn+ 1
2

=
1
2

(
yn + yn+1

)
− h2

[
a3 f̌n +

(1
8
− a3

)
fn+1

]
ŷn− 1

2
=

1
2

(
yn + yn−1

)
− h2

[
a3 f̌n +

(1
8
− a3

)
fn−1

]
yn+1 + a4 yn + yn−1 = h2

[
b1

(
fn+1 + fn−1

)
+b0 fn + b2

(
f̂n+ 1

2
+ f̂n− 1

2

)]
(9)

where a0 = 45469
862066800 , a2 = − 86919

13439282 , a3 = 6719641
52720800 , fn+i = y′′

(
xn+i, yn+i

)
, i = −1

(
1
2

)
1, f̂n = y′′

(
xn, ŷn

)
, f̌n =

y′′
(
xn, y̌n

)
and ai, i = 1, 4 b j j = 0(1)2 are free parameters.

The difference equation (6) and the characteristic equation (7) with m = 1 are produced by applying the
above presented method (9) to the scalar test equation (5) leads. The polynomials A j(v), j = 0, 1 which are
included in the formulae (6) and (7) are given by:
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A1(v) = 1 +
1
8

v2 (8 b1 + 4 b2) −
1
8

v4 b2 (8 a3 − 1) + 2 v6 b2 a1 a3 + 4 v8 b2a0 a3 (a2 − a1)

A0(v) = a4 + v2 (b0 + b2) + 2 v4 b2 a3 + 4 v6 b2 a3 (a2 − a1) + 8 v8 b2a0 a3 (a1 − a2) (10)

Requiring the above five-stages method (9) to have eliminated the phase-lag and its first, second, third
and fourth derivatives with respect to v, we obtain the remaining coefficients b0, b1, b2, a1 and a4 of the
method (9), which are, in general, rational functions of v.

For the case of heavy cancelations for some values of |v| in the above formulae for the coefficients
ai, i = 1, 4, b j, j = 0(1)2 (for example when for some values of |v| the denominators of the above mentioned
formulae tends to zero), the following Taylor series expansions of the coefficients of the new proposed
method are given :

b0 =
73205
63882

−
268231049 v10

65515082994473112
−

919415963248290307 v12

1536211880206812011062379520

−
383510767812831146456483461 v14

6290506983536381400746023037661696000

−
112993489295613339275461895630889307 v16

9177109151142072457681085941667119274803200000

−
3574947188682068105561456426143979158013414773 v18

1537557485511809490260622664794434560681352329568256000000
+ · · ·

b1 =
51911

383292
−

268231049 v10

393090497966838672
−

7372668718000121 v12

837933752840079278761297920

−
13402462074996214041574451 v14

7548608380243657680895227645194035200

−
1791227815975385746653812576725411 v16

2898034468781707091899290297368563981516800000

−
71236245323783632117323259820548586866076243 v18

542667347827697467150807999339212197887536116318208000000
+ · · ·

b2 = −
19970
95823

+
268231049 v10

98272624491709668
+

709836811410718063 v12

2304317820310218016593569280

+
976567308334087661101956119 v14

18871520950609144202238069112985088000

+
95518844325726650959382894630347 v16

10121811563759638740089433023897558023680000

+
71126707403604459863545762870680798756023011 v18

41933385968503895188926072676211851654945972624588800000
+ · · ·
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a1 = −
2793

26878564
−

7901 v8

24613731926784
−

2318230486344757 v10

30660994215770847312384000

−
41833754819711695609331 v12

2954145165880903492009611939840000

−
120687447714040670536331310419693 v14

47622737786876047538505817429907666534400000

−
32452932825512034631802740432679245302899 v16

72206708059883668077365343865542548170873012224000000

−
8419813153869698775909990314240348924870286575527 v18

105819909784720807589918040509015421101367596452317757440000000
+ · · ·

a4 = −2 −
134317 v16

15752663892725760
−

23669085961481 v18

23085742540911986641305600
+ · · · (11)

The behavior of the coefficients is given in the Figure 1.

Figure 1: Behavior of the coefficients of the new proposed method for several values of v = φ h.
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Below we give the formula of the Local Truncation Error of the new proposed Five–Stages Two–Step
Method (9), which is indicated as: NM2S5S4DV :

LTENM2S5S4DV =
134317

551343236245401600
h16

(
y(16)

n − 70φ8 y(8)
n − 224φ10 y(6)

n

−280φ12 y(4)
n − 160φ14 y(2)

n − 35φ16 yn

)
+ O

(
h18

)
. (12)

3. Analysis of the Method

3.1. Error Analysis
In order to study the local truncation error formula of the new proposed method, we use the following

test equation :

y′′(x) = (V(x) − Vc + G) y(x) (13)

where

• V(x) is a potential function,

• Vc a constant value approximation of the potential for the specific x,

• G = Vc − E and E is the energy.

Remark 3.1. The test equation (13) which is use for the local truncation error analysis is the radial time independent
Schrödinger equation.

The following methods will be studied :

3.1.1. Classical Method (i.e., Method (9) with Constant Coefficients)

LTECL =
134317

551343236245401600
h16 y(16)

n + O
(
h18

)
. (14)

3.1.2. The Five–Stages Two–Step Method with Vanished Phase–Lag and Its First, Second and Third Derivatives
Developed in [61]

LTENM2S5S3DV =
134317

551343236245401600
h16

(
y(16)

n + 56φ10 y(6)
n + 140φ12 y(4)

n

+120φ14 y(2)
n + 35φ16 yn

)
+ O

(
h18

)
. (15)

3.1.3. The Five–Stages Two–Step Method with Vanished Phase–Lag and Its First, Second, Third and Fourth Deriva-
tives Developed in Section 2.

LTENM2S5S4DV =
134317

551343236245401600
h16

(
y(16)

n − 70φ8 y(8)
n − 224φ10 y(6)

n

−280φ12 y(4)
n − 160φ14 y(2)

n − 35φ16 yn

)
+ O

(
h18

)
. (16)
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In order to study the local truncation error formulae, we substitute the higher order derivatives, which
are requested in the LTE formulae (14) - (16) given above, by the formulae produced using the test problem
(13). Consequently , we obtain the new formulae of LTE with general form :

LTE = hp
m∑

i=0

ai Gi . (17)

where ai are constant numbers (classical methods) or formulae of φ (fitted methods) and p is the algebraic
order of the specific method.

We investigate two cases for the parameter G :

• The Energy and the Potential are closed each other. Consequently, G = Vc − E ≈ 0 ⇒ Gi = 0, i =
1, 2, . . . .
Consequently,

– the local truncation error for the classical method (constant coefficients)
– the local truncation error for the five–stages two–step method with eliminated phase–lag and its

first, second and third derivatives developed in [61]
– the local truncation error for the five–stages two–step method with eliminated phase–lag and its

first, second, third and fourth derivatives developed in Section 2

are the same since the formulae of the LTE are free from G (i.e. LTE = hp a0 in (14)) and the free from
G terms in the local truncation errors are the same in the above mentioned three cases. Therefore, for
these values of G, the above mentioned three methods are of comparable accuracy.

• The Energy is much larger or much smaller then the Potential. Therefore, G = Vc − E >> 0 or
G = Vc − E << 0 and |G| >> 0. Consequently, the most accurate method is the method with the
minimum power of G in the formula of LTE (i.e. the most accurate method is the method with
minimum i in (17)).

In the following we present the asymptotic expansions of the Local Truncation Errors :
3.1.4. Classical Method

LTECL =
134317

551343236245401600
h16

(
y (x) G8 + · · ·

)
+ O

(
h18

)
. (18)

3.1.5. The Four–Stages Two–Step P–Stable Method with Vanished Phase–Lag and Its First, Second and Third
Derivatives Developed in [61]

LTENM2S5S3DV =
134317

9845414932953600
h16

[(
20 1 (x) y (x)

d2

dx2 1
(x) + 15

( d
dx
1 (x)

)2

y (x)

+10
(

d3

dx3 1
(x)

)
d

dx
y (x) + 31

(
d4

dx4 1
(x)

)
y (x)

)
G5 + · · ·

]
+ O

(
h18

)
. (19)

3.1.6. The Five–Stages Two–Step Method with Vanished Phase–Lag and Its First, Second, Third and Fourth
Derivatives Developed in Section 2.

LTENM2S5S4DV =
134317

615338433309600
h16

[((
d4

dx4 1
(x)

)
y (x)

)
G5 + · · ·

]
+ O

(
h18

)
. (20)
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The above analysis leads to the following theorem:

Theorem 3.2.

• Classical Method (i.e., the method (9) with constant coefficients): For this method the error increases as the
eighth power of G.

• Fourteenth Algebraic Order Five–Stages Two–Step Method with Vanished Phase–lag and its First, Second and
Third Derivatives developed in [61]: For this method the error increases as the fifth power of G.

• Fourteenth Algebraic Order Five–Stages Two–Step Method with Vanished Phase–lag and its First, Second,
Third and Fourth Derivatives developed in Section 2: For this method the error increases as the fifth power of
G but with lower coefficient than the method developed in [61].

Consequently, for large values of |G| = |Vc − E|, the new proposed fourteenth algebraic order five–stages two–step
method with vanished phase–lag and its first, second, third and fourth derivatives developed in Section 2 is the most
accurate method for the numerical solution of the radial Schrödinger equation .

3.2. Stability and Interval of Periodicity Analysis
The scalar test equation which will be used for the stability and interval of periodicity analysis is give

by :

y′′ = −ω2 y . (21)

Remark 3.3. The comparison of the test equations (5) and (21) leads to the conclusion that the frequency φ is not
equal with the frequency ω, i.e., ω , φ.

The application of the new method (9) to the scalar test equation (21) leads to the following difference
equation :

A1 (s, v)
(
yn+1 + yn−1

)
+ A0 (s, v) yn = 0

where

A1 (s, v) = 1 +
1
8

(8 b1 + 4 b2) s2 +
1
8

b2 (−8 a3 + 1) s4

+ 4 a3 b2

(
v2 a0 a2 +

1
2

a1

)
s6
− 4 a0 a1 a3 b2 s8

A0 (s, v) = a4 + (b0 + b2) s2 + 4 a3 b2

(
v2 a2 +

1
2

)
s4

− 8 a3 b2

(
v2 a0 a2 +

1
2

a1

)
s6 + 8 a0 a1 a3 b2 s8 (22)

s = ω h and v = φ h.
Substituting the coefficients ai, i = 0, 1 and bi, i = 0(1)2 into the formulae (22), we obtain the new stability

polynomials given by :

A1 (s, v) =
T10

Tdenom4
, A0 (s, v) =

T11

Tdenom5

where the formulae Tk, k = 10, 11, Tdenom4 and Tdenom5 are given in the [24].
The s − v plane of the new produced method is shown in Figure 2 .
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Figure 2: s−v plane of the new obtained five–stages symmetric two–step fourteenth algebraic order method with vanished phase–lag
and its first, second, third and fourth derivatives.

Remark 3.4. The observation of the s − v area leads to the following conclusion:

• The shadowed region of the s − v area defines the space where the method is stable,

• The white region of the s − v area defines the space where the method is unstable.

The most of the real problems in sciences and engineering contain mathematical models which request
the knowledge of one frequency per differential equation. In this category of problems belongs the coupled
equations arising from the Schrödinger equation and the related problems in quantum chemistry, material
science, theoretical physics, atomic physics, astronomy, astrophysics, physical chemistry and chemical
physics. For these cases the critical region of the s − v area is the surroundings of the first diagonal of the
s − v plane, where s = v. Investigating this region, we found that the interval of periodicity is equal to:
(0,∞).

The intervals of periodicity of similar methods are presented in Table 1:
Table in which the interval of periodicity of the new method is given together with the intervals of

periodicity of similar methods.

Table 1: Comparative Intervals of Periodicity for five–stages symmetric two–step fourteenth algebraic order method of the same form

Method Interval of Periodicity
Method developed in [61] (0, 24)

Method developed in Section 2 (0,∞)

The above analysis leads to the following theorem:

Theorem 3.5. The five–stages symmetric two–step method developed in Section 2:

• is of fourteenth algebraic order,
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• has vanished the phase–lag and its first, second, third and fourth derivatives

• has an interval of periodicity equals to: (0,∞) (when s = v)

4. Numerical Results

The new proposed method will be tested on the numerical solution of coupled differential equations
arising from the Schrödinger equation.

4.1. Error Estimation

The coupled differential equations of the Schrödinger type will be solved numerically using variable–
step algorithms.

Definition 4.1. We call a method of variable–step form if the basis of this method is the change of the step length.

Remark 4.2. In the above variable–step method, the change of the stepsize is based on the local truncation error
estimation (LTEE) procedure in the case of our numerical experiments.

In the last decades algorithms of constant or variable steps have been produced for the numerical
solution of coupled differential equations arising from the Schrödinger equation (see for example [3]-[60]) .

For the purpose of our numerical experiments, an embedded pair is used.

Remark 4.3. Symmetric multistep methods with the maximal possible algebraic order obtain highly accurate numer-
ical solutions for oscillatory and/or periodical problems.

Definition 4.4. The local truncation error control in yL
n+1 is based on the formula:

LTE =| yH
n+1 − yL

n+1 | (23)

where yL
n+1 gives the lower algebraic order solution which is obtained using the twelfth algebraic order method

developed in [60] and yH
n+1 gives the higher order solution which is obtained using the five stages symmetric two–

step method of fourteenth algebraic order with vanished phase-lag and its first, second, third and fourth derivatives
obtained in Section 3.

We use the following procedure:

• if LTE < acc then the step size is duplicated, i.e. hn+1 = 2 hn.

• if acc ≤ LTE ≤ 100 acc then the step size remains stable , i.e. hn+1 = hn.

• if 100 acc < LTE then the step size is halved and the step is repeated , i.e. hn+1 = 1
2 hn.

where hn is the step length which is used for the nth step of the integration and acc is the requested accuracy
for the local error LTE. From the procedure used it is easy to see the changes of the step sizes are reduced
on duplication or halving of them.
Additionally, we use also the technique of the local extrapolation which is defined as follows:

Definition 4.5. Local extrapolation is the technique in which in every step of integration we use the approximation
yH

n+1 although for the control of the LTE if it is less than acc the approximation yL
n+1 is used.
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4.2. Coupled differential equations
Problems which are expressed via coupled differential equations of the Schrödinger type can be observed

in quantum chemistry, material science, theoretical physics, atomic physics, physical chemistry, theoretical
chemistry, chemical physics, electronics etc.

The close-coupling differential equations arising from the Schrödinger equation are give by:

y′′ = −F y (24)

where

Fi j =
li(li + 1)

x2 δi j + Vi j (25)

and Vi j → 0 as x→∞.
Since we will investigate the open channels case, the following boundary conditions are hold (see for

details [1]):

yi j = 0 at x = 0 (26)

yi j ∼ kixjli (kix)δi j +

(
ki

k j

)1/2

Ki jkixnli(kix) (27)

where jl(x) and nl(x) are the spherical Bessel and Neumann functions, respectively.
In [1] detailed description of the problem is presented.
For our numerical experiments we use the following parameters:

2µ
~2 = 1000.0,

µ

I
= 2.351, E = 1.1,

V0(x) =
1

x12 − 2
1
x6 , V2(x) = 0.2283V0(x).

We follow the numerical procedure fully presented in [1]. Taken J = 6, we consider excitation of the
rotator from the j = 0 state to levels up to j′ = 2, 4 and 6 and consequently, we have sets of four, nine and
sixteen coupled differential equations, respectively. Following the methodology obtained by Bernstein [7]
and Allison [1], the potential is considered infinite for values of x less than some x0.

Table 2: Coupled Differential Equations. Real time of computation (in seconds) (RTC) and maximum absolute error (MErr) to
calculate | S |2 for the variable-step methods Method I - Method VII. acc=10−6. We note that hmax is the maximum stepsize. N
indicates the number of equations of the set of coupled differential equations.

Method N hmax RTC MErr
Method I 4 0.014 3.25 1.2 × 10−3

9 0.014 23.51 5.7 × 10−2

16 0.014 99.15 6.8 × 10−1

Method II 4 0.056 1.55 8.9 × 10−4

9 0.056 8.43 7.4 × 10−3

16 0.056 43.32 8.6 × 10−2

Method III 4 0.007 45.15 9.0 × 100

9
16
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Method IV 4 0.112 0.39 1.1 × 10−5

9 0.112 3.48 2.8 × 10−4

16 0.112 19.31 1.3 × 10−3

Method V 4 0.448 0.14 3.4 × 10−7

9 0.448 1.37 5.8 × 10−7

16 0.448 9.58 8.2 × 10−7

Method VI 4 0.448 0.09 2.9 × 10−7

9 0.448 1.10 4.5 × 10−7

16 0.448 8.57 7.4 × 10−7

Method VII 4 0.448 0.06 1.3 × 10−7

9 0.448 1.04 1.7 × 10−7

16 0.448 7.58 2.9 × 10−7

Method VIII 4 0.448 0.04 9.7 × 10−8

9 0.448 1.01 1.2 × 10−7

16 0.448 7.15 2.3 × 10−7

Method IX 4 0.448 0.04 8.8 × 10−8

9 0.448 1.02 9.2 × 10−8

16 0.448 7.48 8.9 × 10−8

Method X 4 0.896 0.01 6.5 × 10−8

9 0.896 0.41 5.1 × 10−8

16 0.896 6.06 6.0 × 10−8

The following variable step methods are used for comparison purposes:

• Method I: the Iterative Numerov method of Allison [1],

• Method II: the variable-step method of Raptis and Cash [42],

• Method III: the embedded Runge-Kutta Dormand and Prince method 5(4) [12],

• Method IV: the embedded Runge-Kutta method ERK4(2) developed in Simos [52],

• Method V: the embedded symmetric two-step method developed in [31],

• Method VI: the embedded symmetric two-step method developed in [26],

• Method VII: the embedded symmetric two-step method developed in [26],

• Method VIII: the embedded symmetric two-step method developed in [60],

• Method IX: the embedded symmetric two-step method developed in [62],

• Method X: the developed embedded symmetric two-step method developed in this paper.

In Table 2 we present the requested the methods mentioned above real time of computation for the
calculation of the square of the modulus of the S matrix for sets of 4, 9 and 16 coupled differential equations.
The maximum error in the computation of the square of the modulus of the S matrix is also presented in
the same Table. We mention that N represents the number of equations of the set of coupled differential
equations.

All computations were carried out on a IBM PC-AT compatible 80486 using double precision arithmetic
with 16 significant digits accuracy (IEEE standard).
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5. Conclusions

In the paper we developed a new five stages symmetric two-step of fourteenth algebraic order method
with eliminated phase-lag and its first, second, third and fourth derivatives. We have also presented the
analysis of the method (error analysis and stability analysis) as well as the application of the new developed
method to coupled differential equations arising from the Schrödinger equation.

Based on the above, we concluded that the new obtained method is much more efficient than known
ones for the numerical integration of the Schrödinger equation and related problems.

Acknowledgement The authors wish to thank the anonymous reviewer for his/her fruitful comments and
suggestions.
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[59] R. Vujasin, M. Senčanski, J. Radić–Perić, M. Perić, A comparison of various variational approaches for solving the one–dimensional

vibrational Schrödinger equation, MATCH Commun. Math. Comput. Chem. 63 (2) (2010) 363–378.
[60] Xiaopeng Xi and T. E. Simos, A new high algebraic order four stages symmetric two-step method with vanished phase-lag and

its first and second derivatives for the numerical solution of the Schrödinger equation and related problems, J. Math. Chem. 54
(7) 1417-1439(2016).

[61] Licheng Zhang and Theodore E. Simos, An Efficient Numerical Method for the Solution of the Schrödinger Equation, Advances
in Mathematical Physics in press

[62] Zhou Zhou and T. E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third
and fourth derivatives for the numerical solution of the radial Schrödinger equation, J. Math. Chem. 54 442-465 (2016).


	Introduction and Definitions
	The New Five-Stages Fourteenth Algebraic Order P–Stable Two–Step Method with Vanished Phase–Lag and its First, Second, Third and Fourth Derivatives
	Analysis of the Method
	Error Analysis
	Classical Method (i.e., Method (9) with Constant Coefficients)
	The Five–Stages Two–Step Method with Vanished Phase–Lag and Its First, Second and Third Derivatives Developed in chin7
	The Five–Stages Two–Step Method with Vanished Phase–Lag and Its First, Second, Third and Fourth Derivatives Developed in Section 2.
	Classical Method 
	The Four–Stages Two–Step P–Stable Method with Vanished Phase–Lag and Its First, Second and Third Derivatives Developed in chin7
	The Five–Stages Two–Step Method with Vanished Phase–Lag and Its First, Second, Third and Fourth Derivatives Developed in Section 2.

	Stability and Interval of Periodicity Analysis

	Numerical Results
	Error Estimation
	Coupled differential equations

	Conclusions

