Filomat 31:16 (2017), 5057–5064 https://doi.org/10.2298/FIL1716057T

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Symmetric Difference Between Pseudo B-Fredholm Spectrum and Spectra Originated from Fredholm Theory

Abdelaziz Tajmouati^a, Mohamed Amouch^b, Mohammed Karmouni^a

^a Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications Fez, Morocco ^bDepartment of Mathematics University Chouaib Doukkali, Faculty of Sciences, Eljadida. 24000, Eljadida, Morocco

Abstract. In this paper, we continue the study of the pseudo B-Fredholm operators of Boasso, and the pseudo B-Weyl spectrum of Zariouh and Zguitti; in particular we find that the pseudo B-Weyl spectrum is empty whenever the pseudo B-Fredholm spectrum is, and look at the symmetric differences between the pseudo B-Weyl and other spectra.

1. Introduction and Preliminaries

Throughout, *X* denotes a complex Banach space and $\mathcal{B}(X)$ denotes the Banach algebra of all bounded linear operators on *X*. Berkani [6] has defined $T \in \mathcal{B}(X)$ to be a "B-Fredholm operator" if there is an integer $n \ge 0$ for which the range $R(T^n) = T^n(X)$ is closed, while the restriction T_n to $R(T^n)$ is Fredholm in the usual sense, and then *T* to be "B-Weyl" if also the Fredholm operator T_n has index zero. The "B-Fredholm" and "B-Weyl" spectrum of $T \in \mathcal{B}(X)$ are now defined in the obvious way, as the Fredholm and Weyl spectrum of T_n . Berkani [4] also showed that *T* is B-Fredholm iff it has a direct sum decomposition $T = T_1 \oplus T_0$ with T_1 Fredholm and T_0 nilpotent; further [5] this decomposition respects the index: *T* is B-Weyl iff T_1 is Weyl. Boasso [7] has used the decomposition to extend the Berkani concept to "pseudo B" Fredholm and Weyl operators, $T = T_1 \oplus T_0 \in \mathcal{B}(X)$ for which T_1 is Fredholm, respectively Weyl, while T_0 is only quasinilpotent, see also [28]. The pseudo B-Fredholm and pseudo B-Weyl spectrum are defined by

 $\sigma_{pBF}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not pseudo B-Fredholm}\}.$

 $\sigma_{pBW}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not pseudo B-Weyl}\}.$

For $T \in \mathcal{B}(X)$ we denote by T^* , R(T), N(T), $\sigma(T)$, respectively the adjoint, the range, the null space and the spectrum of *T*. Recall that $T \in \mathcal{B}(X)$ is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (SVEP for short) if for every open neighbourhood $U \subseteq \mathbb{C}$ of λ_0 , the only analytic function $f : U \longrightarrow X$ which satisfies the equation (T - zI)f(z) = 0 for all $z \in U$ is the function $f \equiv 0$. An operator *T* is said to

Received: 13 September 2016; Accepted: 13 February 2017

²⁰¹⁰ Mathematics Subject Classification. Primary 47A53; Secondary 47B10

Keywords. Fredholm operators, pseudo Fredholm operators, pseudo B-Fredholm operator, pseudo B-Weyl spectrum.

Communicated by Dragan S. Djordjević

Email addresses: abdelaziz.tajmouati@usmba.ac.ma (Abdelaziz Tajmouati), mohamed.amouch@gmail.com (Mohamed Amouch), mohammed.karmouni@usmba.ac.ma (Mohammed Karmouni)

have the SVEP if *T* has the SVEP for every $\lambda \in \mathbb{C}$. Obviously, every operator $T \in \mathcal{B}(X)$ has the SVEP at every $\lambda \in \rho(T) = \mathbb{C} \setminus \sigma(T)$, hence *T* and *T*^{*} have the SVEP at every point of the boundary $\partial(\sigma(T))$ of the spectrum.

An operator $T \in \mathcal{B}(X)$ is said to be semi-regular, if R(T) is closed and $N(T) \subseteq R^{\infty}(T) = \bigcap_{n \ge 0} R(T^n)$. The corresponding spectrum is the semi-regular spectrum $\sigma_{se}(T)$ defined by $\sigma_{se}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not semi-regular}\}$, see [1].

In the other hand, recall that an operator $T \in \mathcal{B}(X)$ admits a generalized Kato decomposition, (GKD for short), if there exists two closed *T*-invariant subspaces X_1 , X_2 such that $X = X_1 \oplus X_2$, $T_1 = T |_{X_1}$ is semi-regular and $T_0 = T |_{X_2}$ is quasi-nilpotent, in this case *T* is said a pseudo Fredholm operator. If we assume in the definition above that $T_0 = T |_{X_2}$ is nilpotent, then *T* is said to be of Kato type. Clearly, every semi-regular operator is of Kato type and a quasi-nilpotent operator has a GKD, see [18, 21] for more information about generalized Kato decomposition.

Recall that $T \in \mathcal{B}(X)$ is said to be quasi-Fredholm if there exists $d \in \mathbb{N}$ such that

- 1. $R(T^n) \cap N(T) = R(T^d) \cap N(T)$ for all $n \ge d$;
- 2. $R(T^d) \cap N(T)$ and $R(T) + N(T^d)$ are closed in X.

An operator is quasi-Fredholm if it is quasi-Fredholm of some degree *d*. Note that semi-regular operators are quasi-Fredholm of degree 0 and by results of Labrousse [18], in the case of Hilbert spaces, the set of quasi-Fredholm operators coincides with the set of Kato type operators. For every bounded operator $T \in \mathcal{B}(X)$, let us define the generalized Kato spectrum as follows :

 $\sigma_{GK}(T) := \{\lambda \in \mathbb{C} : T - \lambda I \text{ does not admit a generalized Kato decomposition}\}.$

It is know that $\sigma_{GK}(T)$ is always a compact subsets of the complex plane contained in the spectrum $\sigma(T)$ of *T* [13, Corollary 2.3]. Note that $\sigma_{GK}(T)$ is not necessarily non-empty, see [13, 14] for more information about $\sigma_{GK}(T)$.

In [4], Berkani proved that every B-Fredholm operator in Hilbert space is a quasi-Fredholm operator. The proof is based on the decomposition of quasi-Fredholm operators of Labrousse [18] which was proved only for Hilbert-spaces operators. This gap was subsequently filled by Müller in [26, Theorem 7] and the result holds in more general setting of Banach space.

As a continuation of [7] and [28], in section two, we prove that every pseudo B-Fredholm operator is a pseudo-Fredholm operator. Also, we study the relationships between the class of pseudo B-Fredholm and other class of operator. we characterize when the pseudo B-Fredholm spectrum is empty or most countable. In section tree, we study the components of the complement of the pseudo B-Fredholm spectrum $\sigma_{pBF}(T)$, to obtain a classification of the components by using the constancy of the subspaces quasi-nilpotent part and analytic core. In the last section, we show that the symmetric difference $\sigma_{se}(T)\Delta\sigma_{pBF}(T)$ is at most countable.

2. The Class of Pseudo B-Fredholm Operators

In the following theorem we prove that every pseudo B-Fredholm operator is pseudo Fredholm.

Theorem 2.1. Let $T \in \mathcal{B}(X)$. If T is pseudo B-Fredholm, then T is pseudo Fredholm.

Proof. Let $T \in \mathcal{B}(X)$. If T is pseudo B-Fredholm operator, then there exists two closed subsets M and N of X such that $X = M \oplus N$ and $T = T_1 \oplus T_2$ with $T_1 = T_{|M|}$ is a Fredholm operator and $T_2 = T_{|N|}$ is quasi-nilpotent. Since T_1 is Fredholm then T admits a Kato decomposition, hence there exists M', M'' two closed subsets of M such that $M = M' \oplus M''$, $T_1 = T'_1 \oplus T''_1$ with $T'_1 = T_{1|M'}$ is a semi-regular operator and $T''_1 = T'_{1|M''}$ is nilpotent. Then $X = M' \oplus M'' \oplus N$, and $T = S \oplus R$ where $S = T'_1$ is a semi-regular operator and $R = T''_1 \oplus T_2$ is a quasi-nilpotent operator, hence T is a pseudo Fredholm operator. \Box

The following example (Müller [25]) shows that the pseudo B-Fredholm operators form a proper subclass of the pseudo Fredholm operators.

Example 2.2. Let *H* be the Hilbert space with an orthonormal basis $(e_{i,j})$, where *i* and *j* are integers such that $ij \leq 0$. Define operator $T \in \mathcal{B}(H)$ by :

$$Te_{i,j} = \begin{cases} 0 & if \ i = 0, \ j > 0\\ e_{i+1,j} & Otherewise \end{cases}$$

We have $N(T) = \bigvee_{j>0} \{e_{0,j}\} \subset R^{\infty}(T)$ and R(T) is closed, then T is a semi-regular operator but T is not a Fredholm

operator, since $dimN(T) = \infty$.

Let Q a quasinilpotent operator in H which is not nilpotent and no commute with T, then $S = T \oplus Q$ is a pseudo Fredholm operator but is not pseudo B-Fredholm operator, hence the class of pseudo B-Fredholm operator is a proper subclass of pseudo Fredholm operator.

Remark 2.3. In [28, Remark 2.5] and [8, Proposition 1.2], If T is a bilateral shift on $l^2(\mathbb{N})$, we have :

- 1. *T* is pseudo B-Weyl if and only if *T* is Weyl or *T* is quasi-nilpotent operator.
- 2. *T* is pseudo Fredholm if and only if *T* is semi-regular or *T* is quasi-nilpotent operator.

By the same argument we can prove :

1. *T* is pseudo B-Fredholm if and only if *T* is Fredholm or *T* is quasi-nilpotent operator.

2. *T* is generalized Drazin if and only if *T* is invertible or *T* is quasi-nilpotent operator.

Corollary 2.4. Let $T \in \mathcal{B}(X)$. Then

$$\sigma_{GK}(T) \subset \sigma_{pBF}(T) \subset \sigma_{pBW}(T)$$

Lemma 2.5. [22] Let $T \in \mathcal{B}(X)$ and let G a connected component of $\rho_{se}(T) = \mathbb{C} \setminus \sigma_{se}(T)$. Then

$$G \setminus \sigma(T) \neq \emptyset \Longrightarrow G \cap \sigma(T) = \emptyset$$

Lemma 2.6. [8] Let $T \in \mathcal{B}(X)$. $\sigma_{se}(T) \setminus \sigma_{GK}(T)$ is at most countable

Since $\sigma_{se}(T) \setminus \sigma_{pBF}(T) \subset \sigma_{se}(T) \setminus \sigma_{GK}(T)$, we can easily obtain that:

Corollary 2.7. Let $T \in \mathcal{B}(X)$. $\sigma_{se}(T) \setminus \sigma_{pBF}(T)$ is at most countable.

Proposition 2.8. Let $T \in \mathcal{B}(X)$. Then the following statements are equivalent :

- 1. $\sigma_{pBF}(T)$ is at most countable
- 2. $\sigma_{pBW}(T)$ is at most countable
- 3. $\sigma(T)$ is at most countable

Proof. 1) \Longrightarrow 3) Suppose that $\sigma_{pBF}(T)$ is at most countable then $\rho_{pBF}(T)$ is connexe, by corollary 2.7 $\rho_{pBF}(T) \setminus \rho_{se}(T)$ is at most countable. Hence $\rho_{se}(T) \cap \rho_{pBF}(T) = \rho_{pBF}(T) \setminus (\rho_{pBF}(T) \setminus \rho_{se}(T))$ is connexe. By lemma 2.5 $\sigma(T) = \sigma_{se}(T) \cup \sigma_{pBF}(T)$. Therefore $\sigma(T) = \sigma_{pBF}(T) \cup (\rho_{pBF}(T) \setminus \rho_{se}(T))$ is at most countable. 3) \Longrightarrow 1) Obvious.

2) \implies 3) If $\sigma_{pBW}(T)$ is at most countable then $\rho_{pBW}(T)$ is connexe, since every pseudo B-Weyl operator is a pseudo B-Fredholm operator by corollary 2.7 $\rho_{pBW}(T) \setminus \rho_{se}(T)$ is at most countable. Hence $\rho_{se}(T) \cap \rho_{pBW}(T) = \rho_{pBW}(T) \setminus (\rho_{pBW}(T) \setminus \rho_{se}(T))$ is connexe. By lemma 2.5 $\sigma(T) = \sigma_{se}(T) \cup \sigma_{pBW}(T)$. Therefore $\sigma(T) = \sigma_{pBW}(T) \cup (\rho_{pBW}(T) \setminus \rho_{se}(T))$ is at most countable. 3) \implies 2) Obvious. \square

Corollary 2.9. Let $T \in \mathcal{B}(X)$, if $\sigma_{GK}(T)$ is at most countable. Then: *T* is a spectral operator if and only if *T* is similar to a paranormal operator.

Proof. See [23, Theoerem 2.4 and Corollary 2.5]

Let $T \in \mathcal{B}(X)$. The operator range topology on R(T) is the topology induced by the norm $\|.\|_T$ defined by $\|y\|_T := \inf_{x \in X} \{\|x\| : y = Tx\}$. For a detailed discussion of operator ranges and their topology we refer the reader to [11].

T is said to have uniform descent for $n \ge d$ if $R(T) + N(T^n) = R(T) + N(T^d)$ for $n \ge d$. If in addition, $R(T^n)$ is closed in the operator range topology of $R(T^d)$ for $n \ge d$, then *T* is said to have topological uniform descent (TUD for brevity) for $n \ge d$. The topological uniform descent spectrum :

$$\sigma_{ud}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ does not have TUD}\}$$

Let $T \in \mathcal{B}(X)$, the ascent of T is defined by $a(T) = min\{p \in \mathbb{N} : N(T^p) = N(T^{p+1})\}$, if such p does not exists we let $a(T) = \infty$. Analogously the descent of T is $d(T) = min\{q \in \mathbb{N} : R(T^q) = R(T^{q+1})\}$, if such q does not exists we let $d(T) = \infty$ [20]. It is well known that if both a(T) and d(T) are finite then a(T) = d(T) and we have the decomposition $X = R(T^p) \oplus N(T^p)$ where p = a(T) = d(T). The descent and ascent spectra of $T \in \mathcal{B}(X)$ are defined by :

 $\sigma_{des}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ has not finite descent}\}$

 $\sigma_{ac}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ has not finite ascent } \}.$

On the other hand, a bounded operator $T \in \mathcal{B}(X)$ is said to be a Drazin invertible if there exists a positive integer *k* and an operator $S \in \mathcal{B}(X)$ such that

$$ST = TS$$
, $T^{k+1}S = T^k$ and $S^2T = S$.

This is also equivalent to the fact that $T = T_1 \oplus T_2$; where T_1 is invertible and T_2 is nilpotent. Recall that an operator T is Drazin invertible if it has a finite ascent and descent. The concept of Drazin invertible operators has been generalized by Koliha [17]. In fact $T \in \mathcal{B}(X)$ is generalized Drazin invertible if and only if $0 \notin acc\sigma(T)$ the set of all points of accumulation of $\sigma(T)$, which is also equivalent to the fact that $T = T_1 \oplus T_2$ where T_1 is invertible and T_2 is quasinilpotent. The Drazin and generalized Drazin spectra of $T \in \mathcal{B}(X)$ are defined by :

 $\sigma_D(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not Drazin invertible}\}\$

 $\sigma_{qD}(T) = \{\lambda \in \mathbb{C}, T - \lambda I \text{ is not generalized Drazin}\}$

We denote by, $\sigma_{des}^{e}(T)$, $\sigma_{rGD}(T)$ and $\sigma_{lGD}(T)$ respectively the essential descent, right generalized Drazin and left generalized Drazin spectra of *T*. According to corollary 2.8, [8, Theorem 3.3] and [16, corollary 3.4], we have the following:

Corollary 2.10. Let $T \in \mathcal{B}(X)$. Then the following statements are equivalent

- 1. $\sigma(T)$ is at most countable;
- 2. $\sigma_{pBF}(T)$ is at most countable;
- 3. $\sigma_{nBW}(T)$ is at most countable;
- 4. $\sigma_{ud}(T)$ is at most countable;
- 5. $\sigma_{GK}(T)$ is at most countable;
- 6. $\sigma_{GD}(T)$ is at most countable;
- 7. $\sigma_{lGD}(T)$ is at most countable;
- 8. $\sigma_{rGD}(T)$ is at most countable;
- 9. $\sigma_D(T)$ is at most countable;
- 10. $\sigma_{se}(T)$ is at most countable;
- 11. $\sigma_{BF}(T)$ is at most countable;
- 12. $\sigma_{BW}(T)$ is at most countable;
- 13. $\sigma_{des}(T)$ is at most countable;
- 14. $\sigma_{des}^{e}(T)$ is at most countable;

In [15], the showed that an operator with TUD for $n \ge d$, $K(T) = R^{\infty}(T)$ and $\overline{H_0(V)} = \overline{N^{\infty}(V)}$, where K(T) and $H_0(T)$ are the analytic core and the quasinilpotent part of *T*. For a pseudo B-Fredholm operator, these properties do not necessarily hold. Indeed: let *X* be the Banach space of continuous functions on [0, 1], denoted by C([0, 1]), provided with the infinity norm. We define by *V*, the Volterra operator, *X* by :

$$Vf(x) := \int_0^x f(x) \, \mathrm{d}x.$$

V is injective and quasi-nilpotent. In addition, $N^{\infty}(V) = \{0\}$, $K(V) = \{0\}$ and we have $R^{\infty}(V) = \{f \in C^{\infty}[0,1]: f^{(n)}(0) = 0, n \in \mathbb{N}\}$, thus $R^{\infty}(V)$ is not closed. Hence:

- 1. $K(V) \neq R^{\infty}(V)$
- 2. $\overline{H_0(V)} \neq \overline{N^{\infty}(V)}$

Note that *V* is a compact operator, then R(V) is not closed.

Theorem 2.11. There exists a pseudo B-Fredholm operator T such that :

- 1. $K(T) \neq R^{\infty}(T)$,
- 2. $\overline{H_0(T)} \neq \overline{N^{\infty}(T)}$,
- 3. R(T) is not closed.

Proposition 2.12. Let $T \in \mathcal{B}(X)$. Then the following statements are equivalent

- 1. $\sigma_{pBF}(T)$ is empty
- 2. $\sigma_{pBW}(T)$ is empty
- 3. $\sigma_{GK}(T)$ is empty
- 4. $\sigma(T)$ is finite

Proof. 3) \iff 4) see [8, Theorem 3.3].

1) \implies 4) If $\sigma_{pBF}(T)$ is empty then $\sigma(T) = \rho_{pBF}(T) \setminus \rho_{se}(T)$. By corollary 2.7 $\rho_{pBF}(T) \setminus \rho_{se}(T)$ is at most countable and this set is bounded, hence it is finite.

4) \Longrightarrow 1) Suppose that $\sigma(T)$ is finite then every $\lambda_0 \in \sigma(T)$ is isolated, then $X = H_0(T - \lambda_0) \oplus K(T - \lambda_0)$, [27, Theorem 4] $(T - \lambda_0)_{iH_0(T-\lambda_0)}$ is quasi-nilpotent and $(T - \lambda_0)_{iK(T-\lambda_0)}$ is surjective, hence $(T - \lambda_0)_{iK(T-\lambda_0)}$ is Fredholm. Indeed, λ_0 is an isolated point, then *T* has the SVEP at λ_0 , hence $(T - \lambda_0)_{iK(T-\lambda_0)}$ has the SVEP at 0 and it is surjective by [1, corollary 2.24] $(T - \lambda_0)_{iK(T-\lambda_0)}$ is bijective. Thus every $\lambda_0 \in \sigma(T)$, $T - \lambda_0 I$ is pseudo B-Fredholm, so $\sigma_{pBF}(T)$ is empty. 2) \iff 4) similar to 1) \iff 4). \Box

A bounded operator $T \in \mathcal{B}(X)$ is said to be a Riesz operator if $T - \lambda I$ is a Fredholm operator for every $\lambda \in \mathbb{C} \setminus \{0\}$.

Corollary 2.13. Let $T \in \mathcal{B}(X)$ a Riesz operator, then the following statements are equivalent

- 1. $\sigma_{pBF}(T)$ is empty,
- 2. $\sigma_{vBW}(T)$ is empty,
- 3. $\sigma_{GK}(T)$ is empty,
- 4. $\sigma(T)$ is finite,
- 5. K(T) is closed,
- 6. $K(T^*)$ is closed,
- 7. K(T) is finite-dimensional,
- 8. $K(T \lambda)$ is closed for all $\lambda \in \mathbb{C}$,
- 9. $codimH_0(T) < \infty$,
- 10. $codimH_0(T^*) < \infty$,

11. T = Q + F, with $Q, F \in \mathcal{B}(X)$, QF = FQ = 0, $\sigma(Q) = \{0\}$ and F is a finite rank operator.

Proof. Direct consequence of Proposition 2.12 and [9, Theorem 2.3] and [24, Corollary 9]

In the following, we will prove that if *T* is with finite descent, then *T* is pseudo B-Fredholm if and only if *T* is a B-Fredholm operator.

Proposition 2.14. Let $T \in \mathcal{B}(X)$ with finite descent. Then T is a pseudo B-Fredholm if and only if T is a B-Fredholm.

Proof. Obviously if *T* is B-Fredholm then *T* is pseudo B-Fredholm.

If *T* is a pseudo B-Fredholm then $T = T_1 \oplus T_2$ with T_1 is Fredholm operator and T_2 is quasinilpotent. Since *T* has finite descent then T_1 and T_2 have finite descent. We have T_2 is quasinilpotent with finite descent implies that is a nilpotent operator. Thus *T* is a B-Fredholm operator. \Box

3. Classification of the Components of Pseudo B-Fredholm Resolvent

We begin this section by the following lemmas which will be needed in the sequel.

Lemma 3.1. Let $T \in \mathcal{B}(X)$ a pseudo B-Fredholm, then there exists $\varepsilon > 0$ such that for all $|\lambda| < \varepsilon$, we have:

1. $K(T - \lambda) + H_0(T - \lambda) = K(T) + H_0(T)$. 2. $K(T - \lambda) \cap \overline{H_0(T - \lambda)} = K(T) \cap \overline{H_0(T)}$.

Proof. By Theorem 2.1, *T* is a pseudo Fredholm operator, hence we conclude by [8, Theorem 4.2] the result. \Box

The pseudo B-Fredholm resolvent set is defined as $\rho_{vBF}(T) = \mathbb{C} \setminus \sigma_{vBF}(T)$.

Corollary 3.2. Let $T \in \mathcal{B}(X)$ a pseudo B-Fredholm operator, then the mappings

 $\lambda \longrightarrow K(T - \lambda) + H_0(T - \lambda), \lambda \longrightarrow K(T - \lambda) \cap \overline{H_0(T - \lambda)}$ are constant on the components of $\rho_{vBF}(T)$.

We denote by $\sigma_{ap}(T)$ and $\sigma_{su}(T)$ respectively the approximate point spectrum and the surjectivity spectrum of *T*.

Lemma 3.3. Let $T \in \mathcal{B}(X)$ a pseudo B-Fredholm operator. Then the following statements are equivalent:

- 1. T has the SVEP at 0,
- 2. $\sigma_{ap}(T)$ does not cluster at 0.

Proof. Without loss of generality, we can assume that $\lambda_0 = 0$. 2) \Rightarrow 1) See [1].

1) \Rightarrow 2) Suppose that *T* is a pseudo B-Fredholm operator, then there exists two closed *T*-invariant subspaces $X_1, X_2 \subset X$ such that $X = X_1 \oplus X_2, T_{|X_1|}$ is Fredholm, $T_{|X_2|}$ is quasi-nilpotent and $T = T_{|X_1|} \oplus T_{|X_2|}$. Since $T_{|X_1|}$ is Fredholm, then $T_{|X_1|}$ is of Kato type by [2, Theorem 2.2] there exists a constant $\varepsilon > 0$ such that for all $\lambda \in D^*(0, \varepsilon), \lambda I - T$ is bounded below. Since $T_{|X_2|}$ is quasi-nilpotent, $\lambda I - T$ is bounded below for all $\lambda \in D^*(0, \varepsilon)$. Therefore $\sigma_{ap}(T)$ does not cluster at λ_0 . \Box

By duality we have :

Lemma 3.4. Let $T \in \mathcal{B}(X)$ a pseudo B-Fredholm operator. Then the following statements are equivalent:

- 1. T^* has the SVEP at 0,
- 2. $\sigma_{su}(T)$ does not cluster at 0.

Theorem 3.5. Let $T \in \mathcal{B}(X)$ and Ω a component of $\rho_{pBF}(T)$. Then the following alternative holds:

- 1. T has the SVEP for every point of Ω . In this case, $\sigma_{ap}(T)$ does not have limit points in Ω , every point of Ω is not an eigenvalue of T execpt a subset of Ω which consists of at most countably many isolated points.
- 2. *T* has the SVEP at no point of Ω . In this case, every point of Ω is an eigenvalue of *T*.

Proof. 1) Assume that *T* has the SVEP at $\lambda_0 \in \Omega$. By [1, Theorem 3.14] we have $K(T - \lambda_0) \cap H_0(T - \lambda_0) = K(T - \lambda_0) \cap \overline{H_0(T - \lambda_0)} = \{0\}$. According to corollary 3.2, we have $K(T - \lambda_0) \cap \overline{H_0(T - \lambda_0)} = K(T - \lambda) \cap \overline{H_0(T - \lambda)} = \{0\}$ for all $\lambda \in \Omega$. Hence $K(T - \lambda) \cap \overline{H_0(T - \lambda)} = \{0\}$ and therefore *T* has the SVEP at every $\lambda \in \Omega$ [1, Theorem 3.14]. By Lemma 3.3, $\sigma_{ap}(T)$ does not cluster at any $\lambda \in \Omega$. Consequently every point of Ω is not an eigenvalue of *T* except a subset of Ω which consists of at most countably many isolated points.

2) Suppose that *T* has the SVEP at not point of Ω . From [1, Theorem 2.22], we have $N(T - \lambda) \neq \{0\}$, for all $\lambda \in \Omega$, hence every point of Ω is an eigenvalue of *T*. \Box

Theorem 3.6. Let $T \in \mathcal{B}(X)$ and Ω a component of $\rho_{pBF}(T)$. Then the following alternative holds:

- 1. T^* has the SVEP for every point of Ω . In this case, $\sigma_{su}(T)$ does not have limit points in Ω , every point of Ω is not a deficiency value of T execpt a subset of Ω which consists of at most countably many isolated points.
- 2. T^* has the SVEP at no point of Ω . In this case, every point of Ω is a deficiency value of T.

Proof. 1) Assume that *T*^{*} has the SVEP at $\lambda_0 \in \Omega$, by [1, Theorem 3.15] we have $K(T - \lambda_0) + H_0(T - \lambda_0) = X$. According to corollary 3.2, we have $K(T - \lambda_0) + H_0(T - \lambda_0) = K(T - \lambda) + H_0(T - \lambda) = X$ for all $\lambda \in \Omega$. Hence $K(T - \lambda) + H_0(T - \lambda) = X$ and therefore *T* has the SVEP at every $\lambda \in \Omega$ [1, Theorem 3.15]. By lemma 3.4, $\sigma_{su}(T)$ does not cluster at any $\lambda \in \Omega$. Consequently every point of Ω is not a deficiency value of *T* execpt a subset of Ω which consists of at most countably many isolated points.

2) Suppose that T^* has the SVEP at no point of Ω . Assume that there exists a $\lambda_0 \in \Omega$ such that $T - \lambda_0$ is surjective, then $T^* - \lambda_0$ is injective this implies that T^* has the SVEP at λ_0 . Contraduction and hence every point of Ω is a deficiency value of T. \Box

Remark 3.7. We have $\sigma_{pBF}(.) \subset \sigma_{aD}(.)$, this inclusion is proper. Indeed: Consider the operator T defined in $l^2(\mathbb{N})$ by

$$T(x_1, x_2, ...) = (0, x_1, x_2, ...), T^*(x_1, x_2, ...) = (x_2, x_3, ...).$$

Let $S = T \oplus T^*$. Then $\sigma_{gD}(S) = \{\lambda \in \mathbb{C}; |\lambda| \le 1\}$ and we have $0 \notin \sigma_{pBF}(S)$. This shows that the inclusion $\sigma_{pBF}(S) \subset \sigma_{gD}(S)$ is proper.

Next we obtain a condition on an operator such that its pseudo B-Fredholm spectrum coincide with the generalized Drazin spectrum.

Theorem 3.8. Suppose that $T \in \mathcal{B}(X)$ and $\rho_{pBF}(T)$ has only one component. Then

$$\sigma_{pBF}(T) = \sigma_{qD}(T)$$

Proof. $\rho_{pBF}(T)$ has only one component, then $\rho_{pBF}(T)$ is the unique component. Since *T* has the SVEP on $\rho(T) \subset \rho_{pBF}(T)$. By Theorem 3.5, *T* has the SVEP on $\rho_{pBF}(T)$. Similar *T*^{*} also has the SVEP on $\rho_{pBF}(T)$ by Theorem 3.6. (This since $\rho(T^*) = \rho(T) \subset \rho_{pBF}(T)$). From Lemma 3.3 and Lemma 3.4, $\sigma(T)$ does not cluster at any $\lambda \in \rho_{pBF}(T)$. Therefore $\rho_{pBF}(T) \subset iso\sigma(T) \cup \rho(T) = \rho_{gD}(T)$, hence $\rho_{pBF}(T) = \rho_{gD}(T)$.

4. Symmetric Difference for Pseudo B-Fredholm Spectrum

Let in the following we give symmetric difference between $\sigma_{pBF}(T)$ and other parts of the spectrum. Denoted by $\rho_{fK}(T) = \{\lambda \in \mathbb{C}, K(T - \lambda) \text{ is not closed }\}, \sigma_{fK}(T) = \mathbb{C} \setminus \rho_{fK}(T) \text{ and } \rho_{cr}(T) = \{\lambda \in \mathbb{C}, R(T - \lambda) \text{ is closed }\}, \sigma_{cr}(T) = \mathbb{C} \setminus \rho_{cr}(T) \text{ the Goldberg spectrum. Most of the classes of operators, for example, in Fredholm theory, require that the operators have closed ranges. Thus, it is natural to consider the closed-range spectrum or Goldberg spectrum of an operator.$

Proposition 4.1. If $\lambda \in \sigma_*(T)$ is non-isolated point then $\lambda \in \sigma_{vBF}(T)$, where $* \in \{fK, cr\}$.

Proof. Let $\lambda \in \sigma_*(T)$ an isolated point. Suppose that $T - \lambda$ is a pseudo B-Fredholm, by Lemma 2.6 there exists a constant $\varepsilon > 0$ such that for all $\mu \in D^*(\lambda, \varepsilon)$, $\mu - T$ is semi-regular. Then $R(T - \mu)$ and $K(T - \mu)$ are closed for all $\mu \in D^*(\lambda, \varepsilon)$, then λ is an isolated point of $\sigma_*(T)$, contradiction. \Box

Corollary 4.2. $\sigma_*(T) \setminus \sigma_{pBF}(T)$ is at most countable, where $* \in \{fK, cr\}$.

Proposition 4.3. Let $T \in \mathcal{B}(X)$ such that $\sigma_{cr}(T) = \sigma(T)$ and every λ is non-isolated in $\sigma(T)$. Then

$$\sigma(T) = \sigma_{cr}(T) = \sigma_{vBF}(T) = \sigma_{vBW}(T) = \sigma_e(T) = \sigma_{se}(T) = \sigma_{av}(T)$$

Proof. Since every $\lambda \in \sigma(T) = \sigma_{cr}(T)$ is non-isolated then by Proposition 4.1, we have $\sigma(T) = \sigma_{cr}(T) \subseteq \sigma_{pBF}(T) \subseteq \sigma_{e}(T) \subseteq \sigma_{e}(T) \subseteq \sigma(T)$ and since $\sigma(T) = \sigma_{cr}(T) \subseteq \sigma_{se}(T) \subseteq \sigma_{ap}(T) \subseteq \sigma(T)$, we deduce the statement of the theorem. \Box

Proposition 4.4. Let $T \in \mathcal{B}(X)$. The symmetric difference $\sigma_{se}(T)\Delta\sigma_{\nu BF}(T)$ is at most countable.

Proof. By corollary 2.7, $\sigma_{se}(T) \setminus \sigma_{pBF}(T)$ is at most countable. We have $\sigma_e(T) \setminus \sigma_{se}(T)$ consists of at most countably many isolated points (see [1, Theorem 1.65] and $\sigma_{pBF}(T) \setminus \sigma_{se}(T) \subseteq \sigma_e(T) \setminus \sigma_{se}(T)$, hence $\sigma_{pBF}(T) \setminus \sigma_{se}(T)$ is at most countable. Since

$$\sigma_{se}(T)\Delta\sigma_{pBF}(T) = (\sigma_{se}(T)\backslash\sigma_{pBF}(T)) \bigcup (\sigma_{pBF}(T)\backslash\sigma_{se}(T))$$

Therefore $\sigma_{se}(T)\Delta\sigma_{vBF}(T)$ is at most countable. \Box

Acknowledgement The authors thank the referees for his suggestions, remarks and comments thorough reading of the manuscript.

References

- [1] P. AIENA, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer. Acad. Press, 2004.
- [2] P. AIENA, E. ROSAS, Single-valued extension property at the points of the approximate point spectrum, J. Math. Anal. Appl. (2003) 279 (1) 180-188.
- [3] E. ALBRECHT, A characterization of spectral operators on Hilbert Spaces, Glasgow Math. J. 23 (1982), 91-95.
- [4] M. BERKANI, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999) 244-249.
- [5] M. BERKANI, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. (2002) 272 (2), 596-603.
- [6] M. BERKANI, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717-1723.
- [7] E. BOASSO, Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges, Math. Proc. Royal Irish Acad. Vol. 115A, No. 2 (2015), pp. 1-15.
- [8] W. BOUAMAMA, Opérateurs Pseudo Fredholm dans les espaces de Banach, Rend. Circ. Mat. Parelmo, (2004) 313-324.
- [9] W. BOUAMAMA, Opérateurs de Riesz dont le coeur analytique est fermé, Studia Mathematica 162 (1) (2004) 15-23.
- [10] S. V. DJORDJEVIĆ, G. KANTÚN-MONTIEL, On generalised T-Fredholm elements in Banach algebras, Math. Proc. Royal Irish Acad. 109A (2009) 61-66.
- [11] S. GRABINER, Ranges of products of operators, Canad. J. Math. 26, (1974), 1430-1441.
- [12] S. GRABINER, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34, 2, (1982), 317-337.
- [13] Q. JIANG, H. ZHONG, Generalized Kato decomposition, single-valued extension property and approximate point spectrum, J. Math. Anal. Appl. 356 (2009), 322-327.
- [14] Q. JIANG AND H. ZHONG, Components of generalized Kato resolvent set and single-valued extension property, Frontiers of Mathematics in China August (2012), Vol 7, Issue 4, pp 695-702.
- [15] Q. JIANG AND H. ZHONG, Topological uniform descent and localized SVEP, J. Math. Anal. Appl. 390 (2012) 355-361.
- [16] Q. JIANG, H. ZHONG, S. ZHANG, Components topological uniform descent resolvent set and local spectral theory, linear algebra and it applications 438(2013), 1149-1158.
- [17] J. J. KOLIHA, A generalized Drazin inverse, Glasgow Math. J. (1996), 38:367-81.
- [18] J. P. LABROUSSE, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Math. Palermo (2), XXIX (1980) 161-258.
- [19] K. B. LAURSEN, M. M. NEUMANN, An introduction to Local Spectral Theory, London Mathematical Society Monograph, New series, Vol. 20, Clarendon Press, Oxford, 2000.
- [20] D. LAY, A. TAYLOR, Introduction to functional analysis, J. Wiley and Sons, N. York. 1980.
- [21] M. MBEKHTA, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math J, 29 (1987) 159-175.
- [22] M. MBEKHTA, A. OUAHAB, Opérateurs s-régulier dans un espace de Banach et Théorie spectrale, Acta Sci, Math (Szeged). 59, (1994) 525-543.
- [23] M. MBEKHTA, Ascente, descente et spéctre essentiel quasi-Fredholm, Rend. Circ. Mat. Palermo 46 (1997), 175-196.
- [24] T. L. MILLER, V. G. MILLER, M. NEUMANN, On Operators with Closed Analytic core, Ren del Circ. Math. Di Palermo. S2. (2002), 495-502.
- [25] V. Müller, On the regular spectrum, J. Oper. Theory, 31(1994) 363-380.
- [26] V. MÜLLER, On the Kato-decomposition of quasi-Fredholm and B-Fredholm operators, Vienna, Preprint ESI 1013 (2001).
- [27] C. SCHMOEGER, On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. Soc. 117 (1993), 715-719.
- [28] H. ZARIOUH, H. ZGUITTI, On pseudo B-Weyl operators and generalized drazin invertible for operator matrices, Linear and Multilinear Algebra, Vol 64, Issue 7, (2016), 1245-1257.

5064