Filomat 31:16 (2017), 5065–5071 https://doi.org/10.2298/FIL1716065A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Warped Product Bi-Slant Submanifolds of Cosymplectic Manifolds

Lamia Saeed Alqahtani^a, Mića S. Stanković^b, Siraj Uddin^a

^aDepartment of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia ^bDepartment of Mathematics, Faculty of Sciences and Mathematics, University of Nis, Serbia

Abstract. In this paper, we study warped product bi-slant submanifolds of cosymplectic manifolds. It is shown that there is no proper warped product bi-slant submanifold other than pseudo-slant warped product. Finally, we give an example of warped product pseudo-slant submanifolds.

1. Introduction

In [6], Cabrerizo et al. introduced the notion of bi-slant submanifolds of almost contact metric manifolds as a generalization of contact CR-submanifolds, slant and semi-slant submanifolds. They have obtained non-trivial examples of such submanifolds. One of the class of such submanifolds is that of pseudo-slant submanifolds [8]. We note that the pseudo-slant submanifolds are also studied under the name of hemi-slant submanifolds [19].

Warped product submanifolds have been studied rapidly and actively, since Chen introduced the notion of CR-warped products of Kaehler manifolds [10, 11]. Different types of warped product submanifolds have been studied in several kinds of structures for last fifteen years (see [2, 15, 18, 20, 22]). The related studies on this topic can be found in Chen's book and a survey article [12, 13].

Recently, warped product submanifolds of cosymplectic manifolds were studied in ([1],[15], [20–22]). In this paper, we study warped product bi-slant submanifolds of cosymplectic manifolds. We prove the non-existence of proper warped product bi-slant submanifolds of a cosymplectic manifold. Finally, we give an example of special class of warped product bi-slant submanifolds known as warped product pseudo-slant submanifolds studied in [23].

2. Preliminaries

Let (*M*, *g*) be an odd dimensional Riemannian manifold with a tensor field φ of type (1, 1), a global vector field ξ (*structure vector field* and a dual 1-form η of ξ such that

$$\varphi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y) \tag{1}$$

Received: 23 September 2016; Accepted: 09 December 2016

²⁰¹⁰ Mathematics Subject Classification. 53C15; 53C40; 53C42; 53B25

Keywords. Warped products, bi-slant submanifolds, warped product bi-slant submanifolds, pseudo-slant warped product, cosymplectic manifolds

Communicated by Dragan S. Djordjević

The research was supported by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G-688-247-37. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Email addresses: lalqahtani@kau.edu.sa (Lamia Saeed Alqahtani), stmica@ptt.rs (Mića S. Stanković), siraj.ch@gmail.com (Siraj Uddin)

for any $X, Y \in \Gamma(T\widetilde{M})$, then \widetilde{M} is called an *almost contact metric manifold* [4], where $\Gamma(T\widetilde{M})$ denotes the set all vector fields of \widetilde{M} and I being the identity transformation on $T\widetilde{M}$. As a consequence, the dimension of \widetilde{M} is odd (= 2m + 1), $\varphi(\xi) = 0 = \eta \circ \varphi$ and $\eta(X) = g(X, \xi)$. The fundamental 2-form Φ of \widetilde{M} is defined $\Phi(X, Y) = g(X, \varphi Y)$. An almost contact metric manifold ($\widetilde{M}, \varphi, \xi, \eta, g$) is said to be *cosymplectic* if $[\varphi, \varphi] = 0$ and $d\eta = 0$, $d\Phi = 0$, where $[\varphi, \varphi](X, Y) = \varphi^2[X, Y] + [\varphi X, \varphi Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y]$ and d is an exterior differential operator.

Let $\widetilde{\nabla}$ denotes the Levi-Civita connection on \widetilde{M} with respect to the Riemannian metric g. Then in terms of the covariant derivative of φ , the cosymplectic structure is characterized by the relation $(\widetilde{\nabla}_X \varphi)Y = 0$, for any $X, Y \in \Gamma(T\widetilde{M})$ [16]. From the formula $(\widetilde{\nabla}_X \varphi)Y = 0$, it follows that $\widetilde{\nabla}_X \xi = 0$.

Let *M* be a Riemannian manifold isometrically immersed in M and denote by the same symbol *g* the Riemannian metric induced on *M*. Let $\Gamma(TM)$ be the Lie algebra of vector fields in *M* and $\Gamma(T^{\perp}M)$, the set of all vector fields normal to *M*. Let ∇ be the Levi-Civita connection on *M*, then the Gauss and Weingarten formulas are respectively given by

$$\nabla_X Y = \nabla_X Y + h(X, Y) \tag{2}$$

and

$$\widetilde{\nabla}_X N = -A_N X + \nabla_X^\perp N \tag{3}$$

for any $X, Y \in \Gamma(TM)$ and $N \in \Gamma(T^{\perp}M)$, where ∇^{\perp} is the normal connection in the normal bundle $T^{\perp}M$ and A_N is the shape operator of M with respect to N. Moreover, $h : TM \times TM \to T^{\perp}M$ is the second fundamental form of M in \widetilde{M} . Furthermore, A_N and h are related by

$$g(h(X,Y),N) = g(A_N X,Y)$$
(4)

for any $X, Y \in \Gamma(TM)$ and $N \in \Gamma(T^{\perp}M)$.

For any *X* tanget to *M*, we write

$$\varphi X = TX + FX,\tag{5}$$

where *TX* and *FX* are the tangential and normal components of φX , respectively. Then *T* is an endomorphism of tangent bundle *TM* and *F* is a normal bundle valued 1-form on *TM*. Similarly, for any vector field *N* normal to *M*, we put

$$\varphi N = BN + CN,\tag{6}$$

where *BN* and *CN* are the tangential and normal components of φN , respectively. Moreover, from (1) and (5), we have

$$g(TX,Y) = -g(X,TY),$$
(7)

for any $X, Y \in \Gamma(TM)$.

A sumanifold *M* is said to be φ -invariant if *F* is identically zero, i.e., $\varphi X \in \Gamma(TM)$, for any $X \in \Gamma(TM)$. On the other hand, *M* is said to be φ -anti-invariant if *T* is identically zero i.e., $\varphi X \in \Gamma(T^{\perp}M)$, for any $X \in \Gamma(TM)$.

By the analogy with submanifolds in a Kaehler manifold, different classes of submanifolds in an almost contact metric manifold were considered. Throughout the paper we consider the structure vector field ξ is tangent to the submanifold otherwise it is a C-totally real submanifold.

(1) A submanifold M of an almost contact metric manifold \overline{M} is called a *contact CR-submanifold* [1] of \overline{M} if there exist a differentiable distribution $\mathcal{D} : p \to \mathcal{D}_p \subset T_p M$ such that \mathcal{D} is invariant with respect to φ , i.e., $\varphi(\mathcal{D}) = \mathcal{D}$ and the complementary distribution \mathcal{D}^{\perp} is anti-invariant with respect to φ , i.e., $\varphi(\mathcal{D}^{\perp}) \subset T^{\perp}M$ and TM has the orthogonal decomposition $TM = \mathcal{D} \oplus \mathcal{D}^{\perp} \oplus \langle \xi \rangle$, where $\langle \xi \rangle$ is a 1-dimensional distribution which is spanned by ξ .

- (2) A submanifold M of an almost contact metric manifold \overline{M} is said to be slant [7], if for each non-zero vector X tangent to M such that X is not proportional to $\langle \xi \rangle$, the angle $\theta(X)$ between φX and $T_p M$ is a constant, i.e., it does not depend on the choice of $p \in M$ and $X \in T_p M \langle \xi_p \rangle$. A slant submanifold is said to be *proper slant* if $\theta \neq 0$ and $\neq \frac{\pi}{2}$.
- (3) A submanifold *M* of an almost contact metric manifold \widetilde{M} is called semi-slant [6], if it is endowed with two orthogonal distributions \mathcal{D} and \mathcal{D}^{θ} , such that $TM = \mathcal{D} \oplus \mathcal{D}^{\theta} \oplus \langle \xi \rangle$ where \mathcal{D} is invariant with respect to φ and \mathcal{D}^{θ} is proper slant, i.e., $\theta(X)$ is the angle between φX and \mathcal{D}^{θ}_p is constant for any $X \in \mathcal{D}^{\theta}_p$ and $p \in M$.
- (4) A submanifold *M* of a an almost contact metric manifold \widetilde{M} is said be pseudo-slant (or hemi–slant) [8], if it is endowed with two orthogonal distributions \mathcal{D}^{\perp} and \mathcal{D}^{θ} such that $TM = \mathcal{D}^{\perp} \oplus \mathcal{D}^{\theta} \oplus \langle \xi \rangle$, where \mathcal{D}^{\perp} is anti-invariant with respect to φ and \mathcal{D}^{θ} is proper slant.

We note that on a slant submanifold if $\theta = 0$, then it is an invariant submanifold and if $\theta = \frac{\pi}{2}$, then it is an anti-invariant submanifold. A slant submanifold is said to be *proper slant* if it is neither invariant nor anti-invariant.

It is known that [7] if *M* is a submanifold of an almost contact metric manifold \widetilde{M} such that $\xi \in TM$, then *M* is a slant submanifold with slant angle θ if and only if

$$T^{2} = \cos^{2}\theta \left(-I + \eta \otimes \xi\right) \tag{8}$$

The following relations are the consequences of (8) as

$$g(TX, TY) = \cos^2 \theta \left(g(X, Y) - \eta(X)\eta(Y) \right), \tag{9}$$

$$g(FX, FY) = \sin^2 \theta \left(g(X, Y) - \eta(X)\eta(Y) \right) \tag{10}$$

for any $X, Y \in \Gamma(TM)$. Another characterization of a slant submanifold of an almost contact metric manifold is obtained by using (5), (6) and (8) as

$$BFX = \sin^2 \theta \left(-X + \eta(X)\xi\right), \quad CFX = -FTX \tag{11}$$

for any $X \in \Gamma(TM)$.

In [6], Cabrerizo et al defined and studied bi-slant submanifolds of almost contact metric manifolds as follows:

Definition 2.1. Let M be an almost contact metric manifold and M a real submanifold of M. Then, we say that M is a bi-slant submanifold if there exists a pair of orthogonal distributions \mathcal{D}_1 and \mathcal{D}_2 on M such that

- (*i*) The tangent space TM admits the orthogonal direct decomposition $TM = \mathcal{D}_1 \oplus \mathcal{D}_2 \oplus \langle \xi \rangle$.
- (*ii*) $T\mathcal{D}_1 \perp \mathcal{D}_2$ and $T\mathcal{D}_2 \perp \mathcal{D}_1$
- (iii) For any $i = 1, 2, \mathcal{D}_i$ is a slant distribution with slant angle θ_i .

Let d_1 and d_2 denote the dimensions of \mathcal{D}_1 and \mathcal{D}_2 , respectively. Then from the above definition, it is clear that

- (i) If $d_1 = 0$ or $d_2 = 0$, then *M* is a slant submanifold.
- (ii) If $d_1 = 0$ and $\theta_2 = 0$, then *M* is invariant.
- (iii) If $d_1 = 0$ and $\theta_2 = \frac{\pi}{2}$, then *M* is an invariant submanifold.
- (iv) If neither $d_1 = 0$ nor $d_2 = 0$ and $\theta_1 = 0$, then *M* is a semi-slant submanifold with slant angle θ_2 .
- (v) If neither $d_1 = 0$ nor $d_2 = 0$ and $\theta_1 = \frac{\pi}{2}$, then *M* is a pseudo-slant submanifold with slant angle θ_2 .

A bi-slant submanifold of an almost contact metric manifold \overline{M} is called *proper* if the slant distributions \mathcal{D}_1 , \mathcal{D}_2 are of slant angles θ_1 , $\theta_2 \neq 0$, $\frac{\pi}{2}$.

We refer to [6] and [14] for non-trivial examples of bi-slant submanifolds.

3. Warped product bi-slant submanifolds

In [3], Bishop and O'Neill introduced the notion of warped product manifolds as follows: Let M_1 and M_2 be two Riemannian manifolds with Riemannian metrics g_1 and g_2 , respectively, and a positive differentiable function f on M_1 . Consider the product manifold $M_1 \times M_2$ with its projections $\pi_1 : M_1 \times M_2 \to M_1$ and $\pi_2 : M_1 \times M_2 \to M_2$. Then their warped product manifold $M = M_1 \times_f M_2$ is the Riemannian manifold $M_1 \times M_2 = (M_1 \times M_2, g)$ equipped with the Riemannian structure such that

$$g(X,Y) = g_1(\pi_{1\star}X,\pi_{1\star}Y) + (f \circ \pi_1)^2 g_2(\pi_{2\star}X,\pi_{2\star}Y)$$

for any vector field *X*, *Y* tangent to *M*, where \star is the symbol for the tangent maps. A warped product manifold $M = M_1 \times_f M_2$ is said to be *trivial* or simply a *Riemannian product manifold* if the warping function *f* is constant. Let *X* be an unit vector field tangent to M_1 and *Z* be an another unit vector field on M_2 , then from Lemma 7.3 of [3], we have

$$\nabla_X Z = \nabla_Z X = (X \ln f) Z \tag{12}$$

where ∇ is the Levi-Civita connection on *M*. If $M = M_1 \times_f M_2$ be a warped product manifold then M_1 is a totally geodesic submanifold of *M* and M_2 is a totally umbilical submanifold of *M* [3, 10].

Definition 3.1. A warped product $M_1 \times_f M_2$ of two slant submanifolds M_1 and M_2 with slant angles θ_1 and θ_2 of a cosymplectic manifold \widetilde{M} is called a warped product bi-slant submanifold.

A warped product bi-slant submanifold $M_1 \times_f M_2$ is called *proper* if both M_1 and M_2 are proper slant submanifolds with slant angle θ_1 , $\theta_2 \neq 0$, $\frac{\pi}{2}$ of \widetilde{M} . A warped product $M_1 \times_f M_2$ is contact CR-warped product if $\theta_1 = 0$ and $\theta_2 = \frac{\pi}{2}$ discussed in [22]. Also, a warped product bi-slant submanifold $M = M_1 \times_f M_2$ is pseudo-slant warped product if $\theta_2 = \frac{\pi}{2}$ [23].

In this section, we investigate the geometry of warped product bi-slant submanifolds of the form $M_1 \times_f M_2$ of a cosymplectic manifold \widetilde{M} , where M_1 and M_2 are slant submanifolds of \widetilde{M} . It is noted that on a warped product submanifold $M = M_1 \times_f M_2$ of a cosymplectic manifold \widetilde{M} if the structure vector field ξ is tangent to M_2 , then warped product is simply a Riemannian product (trivial) [15]. Now, throughout we consider the structure vector field ξ is tangent to the base manifold M_1 .

First, we give the following lemma for later use.

Lemma 3.2. Let $M = M_1 \times_f M_2$ be a warped product bi-slant submanifold of a cosymplectic manifold M such that ξ is tangent to M_1 , where M_1 and M_2 are slant submanifolds of \widetilde{M} . Then

$$g(h(X,Y),FV) = g(h(X,V),FY)$$
(13)

for any $X, Y \in \Gamma(TM_1)$ and $V \in \Gamma(TM_2)$.

Proof. For any $X, Y \in \Gamma(TM_1)$ and $V \in \Gamma(TM_2)$, we have

$$g(h(X, Y), FV) = g(\widetilde{\nabla}_X Y, FV)$$

= $g(\widetilde{\nabla}_X Y, \varphi V) - g(\widetilde{\nabla}_X Y, TV)$
= $-g(\widetilde{\nabla}_X \varphi Y, V) + g(\widetilde{\nabla}_X TV, Y).$

Then from (2), (5) and (12), we obtain

$$g(h(X,Y),FV) = -g(\nabla_X TY,V) - g(\nabla_X FY,V) + (X\ln f)g(TV,Y).$$

Last term in the right hand side of above relation vanishes identically by the orthogonality of the vector fields, thus we have

$$g(h(X, Y), FV) = g(TY, \nabla_X V) + g(A_{FY}X, V).$$

Again from (12), (4) and the orthogonality of vector fields, we get the desired result. \Box

Lemma 3.3. Let $M = M_1 \times_f M_2$ be a warped product bi-slant submanifold of a cosymplectic manifold \widetilde{M} such that ξ is tangent to M_1 , where M_1 and M_2 are proper slant submanifolds of \widetilde{M} with slant angles θ_1 and θ_2 , respectively. Then

$$g(h(X,Z),FV) = g(h(X,V),FZ)$$
(14)

for any $X \in \Gamma(TM_1)$ and $Z, V \in \Gamma(TM_2)$.

Proof. For any $X \in \Gamma(TM_1)$ and $Z, V \in \Gamma(TM_2)$, we have

$$g(\widetilde{\nabla}_X Z, V) = (X \ln f) g(Z, V).$$
(15)

On the other hand, we also have

$$g(\widetilde{\nabla}_X Z, V) = g(\varphi \widetilde{\nabla}_X Z, \varphi V) = g(\widetilde{\nabla}_X \varphi Z, \varphi V).$$

Using (5), we derive

$$g(\widetilde{\nabla}_X Z, V) = g(\widetilde{\nabla}_X TZ, TV) + g(\widetilde{\nabla}_X TZ, FV) + g(\widetilde{\nabla}_X FZ, \varphi V).$$

Then from (1), (2), (12), (9) and the cosymplectic characteristic, we find that

$$g(\nabla_X Z, V) = \cos^2 \theta_2 \left(X \ln f \right) g(Z, V) + g(h(X, TZ), FV) - g(\nabla_X \varphi FZ, V).$$

By using (6), we arrive at

$$g(\nabla_X Z, V) = \cos^2 \theta_2 \left(X \ln f \right) g(Z, V) + g(h(X, TZ), FV) - g(\nabla_X BFZ, V) - g(\nabla_X CFZ, V).$$

Then from (11), we obtain

$$g(\widetilde{\nabla}_X Z, V) = \cos^2 \theta_2 \left(X \ln f \right) g(Z, V) + g(h(X, TZ), FV) + \sin^2 \theta_2 g(\widetilde{\nabla}_X Z, V) + g(\widetilde{\nabla}_X FTZ, V).$$

= $(X \ln f) g(Z, V) + g(h(X, TZ), FV) - g((X, V), FTZ).$ (16)

Then from (15) and (16), we compute

g(h(X,TZ),FV) = g((X,V),FTZ)

Interchanging Z by TZ and using (8), we obtain

$$\cos^2 \theta_2 g(h(X, Z), FV) = \cos^2 \theta_2 g((X, V), FZ).$$

Since *M* is proper, then $cos^2\theta_2 \neq 0$, thus from the above relation we get (14), which proves the lemma completely. \Box

Theorem 3.4. There does not exist any proper warped product bi-slant submanifold $M = M_1 \times_f M_2$ of a cosymplectic manifold \widetilde{M} such that M_1 and M_2 are proper slant submanifolds of \widetilde{M} .

Proof. When the structure vector field ξ is tangent to M_2 , then warped product is trivial. Now, we consider $\xi \in \Gamma(TM_1)$ and for any $X \in \Gamma(TM_1)$ and $Z, V \in \Gamma(TM_2)$, we have

$$g(h(X,Z),FV) = g(\widetilde{\nabla}_Z X,FV) = g(\widetilde{\nabla}_Z X,\varphi V) - g(\widetilde{\nabla}_Z X,TV).$$

Using (1), (2), (5), (12) and the cosymplectic characteristic equation, we derive

$$\begin{split} g(h(X,Z),FV) &= -g(\widetilde{\nabla}_Z \varphi X,V) - (X\ln f) \, g(Z,TV) \\ &= -g(\widetilde{\nabla}_Z TX,V) - g(\widetilde{\nabla}_Z FX,V) - (X\ln f) \, g(Z,TV). \end{split}$$

Again, from (2), (3), (4) and (12), we find that

$$g(h(X, Z), FV) = -(TX \ln f) g(Z, V) + g(A_{FX}Z, V) - (X \ln f) g(Z, TV)$$

= -(TX \ln f) g(Z, V) + g(h(Z, V), FX)
- (X \ln f) g(Z, TV). (17)

Interchanging Z by V in (17) and using (1), we obtain

$$g(h(X, V), FZ) = -(TX \ln f) g(Z, V) + g(h(Z, V), FX) + (X \ln f) g(Z, TV).$$
(18)

Then from (17), (18) and Lemma 3.3, we arrive at

$$(X \ln f) g(Z, TV) = 0.$$
 (19)

Interchanging Z by TZ in (19) and using (9), we get

$$\cos^2\theta_2(X\ln f)\,q(Z,V) = 0. \tag{20}$$

Since *M* is proper, then $\cos^2 \theta_2 \neq 0$, thus from (20) we conclude that *f* is constant. Hence, the theorem is proved completely. \Box

From relation (20) of Theorem 3.4, if *M* is not proper and $\theta_1 = \frac{\pi}{2}$, then *M* is a pseudo-slant warped product of the form $M_{\theta_1} \times_f M_{\perp}$ and this a case which has been discussed in [23] for its characterisation and inequality.

Now, we give an example of such warped products.

Example 3.5. Let \mathbb{R}^7 be the Euclidean 7-space endowed with the standard metric and cartesian coordinates (x_1 , x_2 , x_3 , y_1 , y_2 , y_3 , t) and with the canonical structure given by

$$\varphi\left(\frac{\partial}{\partial x_i}\right) = \frac{\partial}{\partial y_i}, \quad \varphi\left(\frac{\partial}{\partial y_j}\right) = -\frac{\partial}{\partial x_j}, \quad \varphi\left(\frac{\partial}{\partial t}\right) = 0, \quad 1 \le i, j \le 3.$$

If we assume a vector field $X = \lambda_i \frac{\partial}{\partial x_i} + \mu_j \frac{\partial}{\partial y_j} + \nu \frac{\partial}{\partial t}$ of \mathbb{R}^7 , then $\varphi X = \lambda_i \frac{\partial}{\partial y_i} - \mu_j \frac{\partial}{\partial x_j}$ and $\varphi^2(X) = -\lambda_i \frac{\partial}{\partial x_i} - \mu_j \frac{\partial}{\partial y_j} = -X + \nu \frac{\partial}{\partial t}$. Also, we can see that $g(X, X) = \lambda_i^2 + \mu_j^2 + \nu^2$ and $g(\varphi X, \varphi X) = \lambda_i^2 + \mu_j^2$, where g is the Euclidean metric tensor of \mathbb{R}^7 . Then, we have $g(\varphi X, \varphi X) = g(X, X) - \eta(X)\xi$, where $\xi = \frac{\partial}{\partial t}$ and hence (φ, ξ, η, g) is an almost contact structure on \mathbb{R}^7 . Consider a submanifold M of \mathbb{R}^7 defined by

$$\phi(u, v, w, t) = (u\cos v, u\sin v, w, w\cos v, w\sin v, 2u, t), v \neq 0, \frac{\pi}{2}$$

for non-zero *u* and *w*. The tangent bundle *TM* of *M* is spanned by

$$Z_{1} = \cos v \frac{\partial}{\partial x_{1}} + \sin v \frac{\partial}{\partial x_{2}} + 2 \frac{\partial}{\partial y_{3}},$$

$$Z_{2} = -u \sin v \frac{\partial}{\partial x_{1}} + u \cos v \frac{\partial}{\partial x_{2}} - w \sin v \frac{\partial}{\partial y_{1}} + w \cos v \frac{\partial}{\partial y_{2}}$$

$$Z_{3} = \frac{\partial}{\partial x_{3}} + \cos v \frac{\partial}{\partial y_{1}} + \sin v \frac{\partial}{\partial y_{2}}, \quad Z_{4} = \frac{\partial}{\partial t}.$$

Then, we have

$$\varphi Z_1 = \cos v \frac{\partial}{\partial y_1} + \sin v \frac{\partial}{\partial y_2} - 2 \frac{\partial}{\partial x_3},$$

$$\varphi Z_2 = -u \sin v \frac{\partial}{\partial y_1} + u \cos v \frac{\partial}{\partial y_2} + w \sin v \frac{\partial}{\partial x_1} - w \cos v \frac{\partial}{\partial x_2}$$

$$\frac{\partial}{\partial y_1} = -u \sin v \frac{\partial}{\partial y_1} + u \cos v \frac{\partial}{\partial y_2} + w \sin v \frac{\partial}{\partial x_1} - w \cos v \frac{\partial}{\partial x_2}$$

$$\varphi Z_3 = \frac{\partial}{\partial y_3} - \cos v \frac{\partial}{\partial x_1} - \sin v \frac{\partial}{\partial x_2}, \quad \varphi Z_4 = 0.$$

Clearly, the vector fields φZ_2 is orthogonal to *TM*. Then the anti-invariant and proper slant distributions of *M* respectively are $\mathcal{D}_1 = Span\{Z_2\}$ and $\mathcal{D}_2 = Span\{Z_1, Z_3\}$ with slant angle $\theta = \cos^{-1}\left(\frac{1}{\sqrt{10}}\right)$ such that $\xi = Z_4$ is tangent to *M*. Hence, *M* is a proper pseudo-slant submanifold of \mathbb{R}^7 . Furthermore, it is easy to se that both the distributions \mathcal{D}_1 and \mathcal{D}_2 are integrable. We denote the integral manifolds of \mathcal{D}_1 and \mathcal{D}_2 by M_{\perp} and M_{θ} , respectively. Then the metric tensor *g* of the product manifold *M* of M_{\perp} and M_{θ} is

$$g = 5 du^{2} + 2 dw^{2} + dt^{2} + (u^{2} + w^{2}) dv^{2}$$
$$= g_{M_{\theta}} + (\sqrt{u^{2} + w^{2}})^{2} g_{M_{\perp}}.$$

Thus *M* is a warped product pseudo-slant submanifold of \mathbb{R}^7 of the form $M_\theta \times_f M_\perp$ with warping function $f = \sqrt{u^2 + w^2}$ such that ξ is tangent to M_θ .

References

- [1] M. Atceken, Contact CR-warped product submanifolds in cosymplectic space forms, Collect. Math. 62 (2011), 17-26.
- M. Atceken, Warped product semi-slant submanifolds in locally Riemannian product manifolds, Bull. Austral. Math. Soc. 77 (2008), 177-186.
- [3] R.L. Bishop and B. O'Neill, Manifolds of Negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
- [4] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, New York, (1976).
- [5] D.E. Blair and S.I. Goldberg, Topology of almost contact manifolds, J. Diff. Geometry 1 (1967), 347-354.
- [6] J.L. Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez, Semi-slant submanifolds of a Sasakian manifold, Geom. Dedicata 78 (1999), 183-199.
- [7] J.L. Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J. 42 (2000), 125-138.
- [8] A. Carriazo, New developments in slant submanifolds theory, Narosa Publishing House, New Delhi, (2002).
- [9] B.-Y. Chen, Slant immersions, Bull. Austral. Math. Soc. 41 (1990), 135-147.
- [10] B.-Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds, Monatsh. Math. 133 (2001), 177–195.
- [11] B.-Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds II, Monatsh. Math. 134 (2001), 103–119.
- [12] B.-Y. Chen, *Pseudo-Riemannian geometry*, δ-invariants and applications, World Scientific, Hackensack, NJ, (2011).
- [13] B.-Y. Chen, Geometry of warped product submanifolds: a survey, J. Adv. Math. Stud. 6 (2013), no. 2, 1–43.
- [14] R.S. Gupta, B.-Y. Chen's inequalities for bi-slant submanifolds in cosymplectic space forms, Sarajevo J. Math. 9 (21) (2013), 117-128.
- [15] K.A. Khan, V.A. Khan and S. Uddin, Warped product submanifolds of cosymplectic manifolds, Balkan J. Geom. Its Appl. 13 (2008), 55-65.
- [16] G.D. Ludden, Submanifolds of cosymplectic manifolds, J. Diff. Geometry, 4 (1970), 237-244.
- [17] N. Papaghiuc, Semi-slant submanifolds of Kaehlerian manifold, Ann. St. Univ. Iasi 9 (1994), 55-61.
- [18] Sahin, B. Warped product semi-invariant submanifolds of locally product Riemannian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, Tome **49** (97) (2006) 383-394.
- [19] B. Sahin, Warped product submanifolds of Kaehler manifolds with a slant factor, Ann. Pol. Math. 95 (2009), 207-226.
- [20] S. Uddin, Warped product CR-submanifolds of LP-cosymplectic manifolds Filomat 24 (1) (2010), 87–95.
- [21] S. Uddin, V.A. Khan and K.A. Khan, A note on warped product submanifolds of cosymplectic manifolds, Filomat 24 (3) (2010), 95–102.
- [22] S. Uddin and K.A. Khan, Warped product CR-submanifolds of cosymplectic manifolds, Ricerche di Matematica 60 (2011), 143–149.
- [23] S. Uddin and F.R. Al-Solamy, Warped product pseudo-slant submanifolds of cosymplectic manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat (N.S.) Tome LXIII (2016), f₂ vol. 3, 901-913.
- [24] S. Uddin, B.-Y. Chen and F.R. Al-Solamy, Warped product bi-slant immersions in Kaehler manifolds, Mediterr. J. Math., 14 (2017), 1-10.
- [25] Yano, K. and Kon, M. Structures on manifolds, Series in Pure Mathematics, World Scientific Publishing Co., Singapore, 1984.