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Available at: http://www.pmf.ni.ac.rs/filomat

On Submersions of the Complex Indicatrix

Elena Popovicia

aDepartment of Mathematics and Informatics, Transilvania, University of Braşov, Romania

Abstract. In this paper we study the complex indicatrix associated to a complex Finsler space as an
embedded CR - hypersurface of the holomorphic tangent bundle, considered in a fixed point. Following
the study of CR - submanifolds of a Kähler manifold, there are investigated some properties of the complex
indicatrix as a real submanifold of codimension one, using the submanifold formulae and the fundamental
equations. As a result, the complex indicatrix is an extrinsic sphere of the holomorphic tangent space in
each fibre of a complex Finsler bundle. Also, submersions from the complex indicatrix onto an almost
Hermitian manifold and some properties that can occur on them are studied. As application, an explicit
submersion onto the complex projective space is provided.

1. Introduction

Many geometers have investigated the relationships between the geometric properties of a Riemannian
or Finsler manifold M and those of its unit tangent sphere bundle, or indicatrix ([3–5, 11, 16, 22], etc.).
This represents a well-known and interesting research field, mainly because the indicatrix is a compact and
strictly convex set surrounding the origin, which is used, for example, in the volume definition of a Finsler
space or in the Hodge theories.

However, in the present paper, we extend the study to unit sphere bundle of a complex Finsler manifold
(M,F). The complex indicatrix will be treated as an embedded real hypersurface in a complex space,
i.e. a CR submanifold, and its properties will be described intrinsically by studying the properties of the
holomorphic vector fields which are tangent to the indicatrix. Thus, having in mind the similarity (in term
of distributions) between the total space of a Riemannian submersion and a CR-submanifold of a Kähler
manifold, considered by S. Kobayashi [14], it comes naturally to study the submersions of the complex
indicatrix.

Firstly, in Section 1, we recall some basic notions about complex Finsler geometry and the geometry
of CR-manifolds. Then, in the second Section, we analyse the complex indicatrix in a fixed point z0 as a
CR-hypersurface of the holomorphic tangent bundle, which can be locally viewed as a Kähler manifold.
Moreover, we obtain the fundamental equations of the complex indicatrix as a real submanifold of codi-
mension one. The properties of submersions from the complex indicatrix as CR-hypersurface of the Kähler
manifold T′zM onto an almost Hermitian manifold M′ are studied in Section 3 (e.g. the link between the
holomorphic sectional curvatures of T′zM and M′ in Theorem 3, the Kähler-Einstein properties in Theorem
4). Also, a submersion on the complex projective space is emphasized by Theorem 5.

Now, we will make a short overview of the concepts and terminology used in the geometries of complex
Finsler manifolds (as in [1, 17]) and CR-submanifolds (see [6–8, 12–14]). Let M be a complex manifold,
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dimC M = n, and z := (zk), k = 1, ..,n, the complex coordinates on a local chart (U, ϕ). The complexified
of the real tangent bundle TCM splits into the sum of holomorphic tangent bundle T′M and its conjugate
T′′M, i.e. TCM = T′M ⊕ T′′M. The bundle T′M is in its turn a 2n-dimensional complex manifold, of local
coordinates in a local chart as (zk, ηk) ∈ T′M, k = 1, ..,n.

Definition 1.1. A complex Finsler space is a pair (M,F), with F : T′M → R+, F = F(z, η), is a continuous
function satisfying the following conditions:

i. F is a smooth function on T̃′M := T′M \ {0};

ii. F(z, η) ≥ 0, the equality holds if and only if η = 0;

iii. F(z, λη) = |λ|F(z, η), ∀λ ∈ C;

iv. the Hermitian matrix
(
1i j̄(z, η)

)
is positive definite, where 1i j̄ = ∂2L

∂ηi∂η̄ j is the fundamental metric tensor, with
L := F2 the complex Lagrangian associated to the complex Finsler function F.

The positivity of (1i j̄) from condition iv. ensures the existence of the inverse (1 j̄i), with 1 j̄i1ik̄ = δ j̄
k̄
.

Moreover, it is equivalent to the convexity of L and to the strongly pseudoconvex property of the complex
indicatrix IzM = {η | 1i j̄(z, η)ηiη̄ j = 1} in a fixed point z ∈M.

Moreover, the third condition implies that L is homogeneous with respect to the complex norm L(z, λη) =
λλ̄L(z, η), ∀λ ∈ C, and by applying Euler’s formula we get that:

∂L
∂ηk

ηk =
∂L
∂η̄k

η̄k = L;
∂1i j̄

∂ηk
ηk =

∂1i j̄

∂η̄k
η̄k = 0 and L = 1i j̄η

iη̄ j. (1)

An immediate consequence of the above homogeneity conditions concerns the following Cartan complex

tensors: Ci j̄k :=
∂1i j̄

∂ηk and Ci j̄k̄ :=
∂1i j̄

∂η̄k . They have the following properties:

Ci j̄k = Ck j̄i ; Ci j̄k̄ = Cik̄ j̄ ; Ci j̄k = C jı̄k̄ and (2)

Ci j̄kη
k = Ci j̄k̄η̄

j = Ci j̄kη
i = Ci j̄k̄η̄

k = 0 (3)

In the geometry of a complex Finsler space are studied the geometric objects of the complex manifold
T′M endowed with a Hermitian metric structure defined by 1i j̄. A first step is the analyze of the sections
of complexified tangent bundle of T′M, TC(T′M) = T′(T′M) ⊕ T′′(T′M), where T′′u (T′M) = T′u(T′M). Let
V(T′M) ⊂ T′(T′M) be the vertical bundle, locally spanned by (1, 0)− vector fields { ∂

∂ηk }. Fundamental
in ”linearization” of the complex Finsler geometry is the complex nonlinear connection, briefly (c.n.c.),
which is the supplementary complex subbundle to V(T′M) in T′(T′M) [17]. The horizontal distribution
Hu(T′M) is locally spanned by { δ

δzk = ∂
∂zk − N j

k
∂
∂η j }, where N j

k(z, η) are the coefficients of the (c.n.c.). Then,

the pair {δk := δ
δzk , ∂̇k := ∂

∂ηk } represents the adapted frame of the (c.n.c.), having the dual adapted base

{dzk, δηk := dηk + Nk
j dz j
}. Further we will use the following notation η̄ j := η j̄ to denote a conjugate object.

Cauchy-Riemann (or CR) submanifolds of almost Hermitian or Kähler manifolds were introduced by
A. Bejancu, [6–8]. This notion was generalized to the Finsler geometry by S. Dragomir in [12, 13]. A real
n-dimensional submanifold M̃ of the 2m-dimensional almost Hermitian Finsler space (M, 1), is said to be a
CR-submanifold if it carries a pair of complementary Finslerian distributions (with respect to the restriction
of 1 to M̃), D : u → Du ⊂ TuM̃ and D⊥ : u → D⊥u ⊂ TuM̃, such that D is invariant, J(Du) = Du, and
D
⊥ is anti-invariant, J(D⊥u ) ⊂ (TuM̃)⊥, for each u ∈ M̃, Here J is an almost complex structure on M̃. A

CR-submanifold is called holomorphic or complex if dimD⊥u = 0, totally-real if dimDu = 0 and proper if it is
neither holomorphic nor totally-real. Any real hypersurface M̃ of M is a CR-submanifold, where we define
D
⊥ : u→D⊥u = J(TuM̃)⊥ and takeD to be the complementary orthogonal distribution of D⊥ in TM̃.
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The study of Riemannian submersion φ : M̃ → M′ of a Riemannian manifold M̃ onto a Riemannian
manifold M′ was initiated by O’Neill [19]. Considering that for a CR-submanifold M̃ of a Kähler manifold
M the distributionD⊥ is integrable [10], S.Kobayashi observed in [14] the similarity between the total space
of a submersion φ and the CR-submanifold M̃ of a Kähler manifold M, in terms of distributions. Thus,
Kobayashi considered that a submersion from a CR-submanifold M̃ of a Kähler manifold M onto an almost
Hermitian manifold M′ is a Riemannian submersion φ : M̃→M′ with the following conditions (given for the
case (TM̃)⊥ = J(D⊥)):

(i) D⊥ is the kernel of φ∗;

(ii) φ∗ : Du → Tφ(u)M′ is complex isometry for every u ∈ M̃.

2. The Complex Indicatrix as a CR-hypersurface

Given a complex Finsler manifold (M,F), we consider T′zM the corresponding holomorphic tangent space
of M and Fz the Finsler metric in an arbitrary fixed point z ∈ M. Thus, (T′zM,Fz) is a complex Minkowski
space, of complex coordinate system (ηi), where η = (ηi) = ηi ∂

∂zi |z. The Hermitian metric on T̃′zM, associated
to Fz, is defined by G and has the explicit form:

G :=
∂2F2

z

∂ηi∂η̄ j dη j
⊗ dη̄k = 1 jk̄(z, η)dη j

⊗ dη̄k.

Clearly, G is smooth at η = 0 if and only if Fz is a Hermitian norm.
A linear connection∇ on M extends by linearity to TCM [17], which is isomorphic to VC(T′M) via vertical

lift, and it is well defined by the next set of coefficients Γi
jk = Γı̄

j̄k̄
, Γı̄

j̄k
= Γi

jk̄
, Γı̄jk = Γi

j̄k̄
, Γı̄

jk̄
= Γi

j̄k
. We require ∇

to be a compatible complex connection with respect to the natural complex structure J

J(∂̇k) = i∂̇k, J(∂̇k̄) = −i∂̇k̄, with i :=
√

−1, (4)

i.e. ∇J = 0. So, it results that ∇ conserves the holomorphic tangent space.
We can choose ∇ to be the Levi-Civita connection, which is a metrical and symmetric connection and,

using (2), we get the following non-zero components of the Levi-Civita connection:

Ci
jk := Γi

jk = Γı̄
j̄k̄

= 1h̄iC jh̄k = 1h̄i∂̇k1 jh̄,

with Ci
jk = Ci

k j and Ci
jkη

j = Ci
jkη

k = 0. Since Γi
j̄k

= Γı̄
j̄k

= 0, it takes that the Levi-Civita connection is Hermitian.

Moreover, it is equivalent to the linear Chern connection on pull-back tangent bundle π∗T′M = span{ ∂∂zi },
with π : T′M→M the natural projection (as in [2]), and since Ci

jk−Ci
k j = 0, we get that (T̃′zM,Fz) is Kählerian

and ∇ is a Kählerian connection, i.e. ∇X(JY) = J∇XY.
By direct calculation we obtain ∂F

∂ηi = 1
2 li := ηi

2F and ∂F
∂η̄i = 1

2 lı̄ := ηı̄
2F .

So, for an arbitrary fixed point z on M, the unit sphere in (T′zM,Fz) is the so-called complex indicatrix in z
as:

IzM =
{
η ∈ T′zM | F(z, η) = 1

}
.

Since the Hermitian matrix
(
1i j̄(z, η)

)
is positive definite, then L = F2 is convex and the complex indicatrix IzM

is a strictly pseudo convex submanifold. Moreover, as we have only one defining equation which involves
the real valued Finsler function F, the complex indicatrix IzM is a real hypersurface of the holomorphic
tangent bundle, and thus a CR-hypersurface in T′zM, ∀z ∈M.
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Let (u1, ...,u2n−1) be local real coordinates on IzM and let

η j = η j(u1, ..,u2n−1), ∀ j ∈ {1, ..,n}

be the equations of the inclusion map i : IzM ↪→ T̃′zM. Set l j = 1
Fη

j and l j = 1 jk̄lk̄. Since L(z, η(u)) = 1, by
differentiation after u, we obtain

l j
∂η j

∂uα
+ l j̄

∂η j̄

∂uα
= 0, α = 1, 2n − 1, j = 1,n. (5)

Tangent map i∗ acts on the tangent vectors of the complex indicatrix as

i∗

(
∂
∂uα

)
= Xα :=

∂ηk

∂uα
∂

∂ηk
+
∂η̄k

∂uα
∂

∂η̄k
,

where Xα is a real tangent vector of the indicatrix expressed in terms of tangent vectors of the complexified
tangent bundle of T′M. From (5), we can set (cf. [13])

N = l j∂̇ j + l j̄∂̇ j̄ (6)

and thus we obtain GR(Xα,N) = 0, where by GR we have denoted the Riemannian metric applied to real
vector fields given by

GR(X,Y) = ReG(X′,Y′), (7)

where X′ and Y′ are the holomorphic and the anti-holomorphic part, respectively, of tangent vectors
X,Y ∈ TC(T′M), given by X′ = 1

2 (X − iJX) and Y′ = 1
2 (Y + iJY), where i =

√
−1. Consequently N ∈ TR(IzM)⊥,

so that N is the normal vector of the indicatrix bundle. Also, the normal vector has unit length, i.e.
GR(N,N) = 1.

If we apply the theory of submanifolds and denote by ∇̃ and ∇⊥ the induced tangent and normal
connection on IzM of the Levi-Civita connection ∇ of T′zM, the Gauss-Weingarten formulae are

∇XY = ∇̃XY + h(X,Y) and ∇XW = −AWX + ∇⊥XW, (8)

for any X,Y ∈ Γ(TR(IzM)) and W ∈ Γ(TR(IzM)⊥), with h and A the second fundamental form and the shape
operator (or Weingarten operator) of IzM, respectively. Since TR(IzM)⊥ = span{N}, these maps are defined by
the following set of local coefficients hαβ, Aα

β , regarded as:

h(Xβ,Xα) = hαβN, AN(Xβ) = Aα
βXα, ∀Xα,Xβ ∈ TR(IzM).

The Riemannian metric on T′zM obtained from the Hermitian metric G in (7) and the induced metric on the
complex indicatrix will be denoted by the same symbol GR, the last one representing the restriction of GR

to the real tangent vector fields of IzM. Making the notations Bi
α := ∂ηi

∂uα , Bı̄α := ∂η̄i

∂uα and Re(τ) = 1
2 (τ + τ̄), for

any form τ ∈ Ap,q(M), we obtain:

Proposition 2.1. Let (M,F) be a complex Finsler manifold and z ∈ M an arbitrary fixed point. With respect to the
Levi-Civita connection ∇, we have:

∇XαN =
1
F

Xα, ∇XβXα = 2Re {[Xβ(Bi
α) + Bk

βB
j
αCi

jk]∂̇i}, 1αβ := GR(Xα,Xβ) = Re(1i j̄B
i
αB j̄

β).

Since we have GR(∇XY,N) = GR(h(X,Y),N) and GR(∇XN,Xβ) = −GR(ANX,Xβ), it results:

Proposition 2.2. The local coefficients of the second fundamental form and Weingarten operator are given by

hαβ = Re
(
liXβ(Bi

α) + liBk
βB

j
αCi

jk

)
and Aα

β = −
1
F
δαβ .
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Since ∇⊥Xα
N = 0, the Weingarten formula becomes

∇XαN = −ANXα, ∀Xα ∈ T (IzM) . (8’)

Using Proposition 2.2, it results that

ANXα = −
1
F

Xα. (9)

Moreover, using following relation

GR(h(Xα,Xβ),N) = GR(ANXα,Xβ), ∀Xα,Xβ ∈ Γ(TR(IzM)), (10)

which holds with respect to any metric connection, we obtain

Proposition 2.3. The local coefficients of the second fundamental form of the indicatrix hypersurface satisfy

hαβ = −
1
F
1αβ.

Corollary 2.4. The second fundamental form considered with respect to the complex indicatrix hypersurface is
symmetric, i.e. locally hαβ = hβα.

Remark 2.5. a) Corollary 2.4 assures the torsion free property of ∇̃, i.e. T̃(X,Y) = 0 for any tangent vector fields
X,Y of IzM. Also, ∇̃ is a metric connection, thus the induced connection ∇̃ is a Levi-Civita connection.
b) From Proposition 2.3 it is obtained that the complex indicatrix can not be a totally geodesic manifold of the
holomorphic tangent bundle T̃′zM, since the condition h(X,Y) = 0,∀X,Y ∈ Γ(TR(IzM))) (cf. [8]) is not fulfilled.

Having in mind that a CR-submanifold is totally umbilical if its first and second fundamental forms
are proportional, where the proportionality factor is a normal vector field H, called the field of curvature
vectors (see [8]), and taking into account Proposition 2.3, we obtain that:

Theorem 2.6. The complex indicatrix IzM of a complex Finsler manifold (M,F) is a totally umbilical manifold, i.e.
h(Xα,Xβ) = HGR(Xα,Xβ), with constant field of curvature vectors H = − 1

F N.

Remark 2.7. a) An equivalent condition of totally umbilical property of a subspace is ANXα = GR(N,H)Xα, which
can be verified for the complex indicatrix case by relation (9) and the above Theorem.
b) If we take into account that F = 1 on the complex indicatrix IzM, we can ommit the 1

F factor from the above results.

In the Riemannian theory, a submanifold M̃ of a Riemannian manifold M is said to be an extrinsic sphere
if it is totally umbilical and it has non-zero parallel mean curvature vector (cf. Nomizu-Yano [18]). Basic
results concerning extrinsic spheres in Riemannian and Kählerian geometry were obtained by B.Y.Chen
[9, 10]. An orientable hypersurface M̃ is an extrinsic hypersphere of a Kähler manifold M, if it is satisfied
h(X,Y) = H1(X,Y), for any X,Y vector fields on M̃. Here H denotes the mean curvature vector field of M̃
and its norm is a non zero constant function on the extrinsic hypersphere M̃. So, considering this definition
and the result from Proposition 2.3, we obtain a result which can be found in [13] as well:

Theorem 2.8. Let (M,F) be a complex Finsler manifold. Then, for an arbitrary fixed point z ∈ M, the complex
indicatrix IzM is an extrinsic sphere of the Kähler manifold T′zM.

Considering as above ∇̃ and ∇⊥ the induced tangent and normal connection on IzM of the Levi-Civita
connection of T′zM, we can obtain the link between the R(X,Y)Z and R̃(X,Y)Z curvatures of ∇ and ∇̃
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connections, respectively. Following similar steps as in [20], the Gauss, H-Codazzi, A-Codazzi and Ricci
equations of the indicatrix bundle are:

GR (R(X,Y)Z,U) = GR(R̃(X,Y)Z,U) + GR

(
Ah(X,Z)Y,U

)
− GR

(
Ah(Y,Z)X,U

)
, (11)

GR (R(X,Y)Z,N) = GR ((∇Xh) (Y,Z) − (∇Yh) (X,Z),N) , (12)
GR (R(X,Y)N,Z) = GR ((∇YA) (N,X) − (∇XA) (N,Y) ,Z) , (13)
GR (R(X,Y)N,N) = GR (h (Y,ANX) − h (X,ANY) ,N) , (14)

for any vector fields X,Y,Z,U tangent to IzM.
If we choose to use the curvature tensor of (0, 4) type given by the Riemannian curvature tensor

R(X,Y; U,Z) = GR(R(X,Y)Z,U) and we use relation (10), the Gauss equation can be rewritten as

R(X,Y; U,Z) = R̃(X,Y; U,Z) + GR(h(X,Z), h(Y,U)) − GR(h(Y,Z), h(X,U)). (11’)

Moreover, if we take into consideration the totally umbilicality condition from Theorem 2.6, the above
relation becomes

R(X,Y; U,Z)R̃(X,Y; U,Z) +
1
L

GR(X,Z)GR(Y,U) −
1
L

GR(Y,Z)GR(X,U). (11’’)

If we denote by [R(X,Y)Z]⊥ the normal component of the curvature, the H-Codazzi equation has the
following form

[R(X,Y)Z]⊥ = (∇Xh) (Y,Z) − (∇Yh) (X,Z).

Using (10) for the Ricci equation, we obtain that GR (R(X,Y)N,N) = 0, and thus, R(X,Y)N has only
tangent component to the complex indicatrix. Then, the A-Codazzi equation becomes

R(X,Y)N = (∇YA) (N,X) − (∇XA) (N,Y) . (13’)

Locally, using the Gauss equation (11’) and Proposition 2.3 we obtain

Proposition 2.9. The Riemannian curvature tensor with respect to the induced Levi-Civita tangent connection of
the complex indicatrix IzM is

R̃(Xα,Xβ; Xγ,Xδ) = 2Re{B j
δB

l̄
γ[Bk

βXα(Ci
jk) − Bk

αXβ(Ci
jk)]1il̄} −

1
L
1δα1γβ +

1
L
1δβ1γα.

3. Submersions of the Complex Indicatrix IzM

Since each real orientable hypersurface M̃ of a Kähler manifold is a CR-submanifold withD⊥x = J((TxM̃)⊥)
(cf. [8]), we get that D⊥ = span{JN} for the indicatrix of a complex Finsler space case, where N is the unit
normal vector field to IzM given in (6) and J is the complex structure defined on T′zM in (4). Then we take

ξ = JN = i
(
lk∂̇k − lk̄∂̇k̄

)
, i :=

√

−1,

which is a tangent unit vector of IzM with ξ = ξ̄, such that D⊥ = span{ξ} and N = −Jξ. Then, let D be
the maximal J-invariant subspace of the tangent space of IzM, orthogonal to the one dimensional anti-
invariant distribution D⊥, such that TR(IzM) = D ⊕ D⊥. Since M is an n dimensional complex manifold,
then dimR IzM = 2n − 1 and dimRD = 2n − 2.

Theorem 3.1. [20] Let (M,F) be a complex Finsler manifold, z ∈ M an arbitrary fixed point and IzM the complex
indicatrix. Then the following affirmations take place:

(a) the anti-invariant distributionD⊥ is integrable;
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(b) even though the complex CR-structures D′, D′′ of D, D ⊗ C = D′ ⊕ D′′, are integrable, the real invariant
distributionD is no involutive, nor integrable.

For the complex indicatrix case IzM, we consider the submersion φ : IzM → M′, with M′ an almost
Hermitian manifold, such that the map φ∗ : TR(IzM) → TRM′ fulfills φ∗(ξ) = 0, i.e. TRM′ = φ∗(D), and
φ∗ : Dη → Tφ(η)M′ is a complex isometry for every η ∈ IzM.

The sections of these two complementary distributionsD andD⊥ are called the horizontal, respectively
the vertical vector fields of the submersionφ : IzM→M′. Since we have already mentioned the horizontal and
vertical bundles of a Finsler space, denoted by H(T′M) and V(T′M) in Section 1, not to make any confusion
with D and D⊥, we use for the last ones the notations from [7] and we suppose that the distributions D
and D⊥ are given by the projectors P and Q, respectively. So, for any E ∈ χ(IzM), PE and QE denote the
horizontal and the vertical components of E, respectively. Then, since the Levi-Civita connection ∇ on T′zM
is a Kählerian connection, we have ∇X(JY) = J∇XY and from the Gauss formula (8), we obtain

∇X(JPY) + ∇X(JQY) = J∇̃XY + Jh(X,Y), ∀X,Y ∈ Γ(TR(IzM)).

Considering that JPY ∈ D, JQY ∈ D⊥, J(T(IzM)⊥) = D⊥, using the Gauss and the Weingarten formulae (8)
and by comparing horizontal, vertical and normal parts, we obtain respectively

JP(∇̃XY) = P(∇̃X JPY) − P(AJQYX),
Jh(X,Y) = Q(∇̃X JPY) −Q(AJQYX),

JQ(∇̃XY) = h(X, JPY),

for any vector fields X,Y tangent to IzM. In particular, taking Y = ξ in the above relations, we get that

JP(∇̃Xξ) = P(ANX), Jh(X, ξ) = Q(ANX) and JQ(∇̃Xξ) = 0.

A horizontal vector field X of IzM is said to be basic if it induces (or comes from) a vector field X′ on the
base manifold M′, i.e. φ∗X = X′. Clearly, the map X 7→ X′ gives a one-to-one correspondence between the
basic vector fields of IzM and the vector fields of M′. The following lemma is adapted from O’Neill [19]:

Lemma 3.2. Let X and Y be basic vector fields on IzM. Then

(i) GR(X,Y) = G′R(X′,Y′) ◦ φ, where G′R is the Hermitian metric on M′;

(ii) the horizontal part P[X,Y] of [X,Y] is a basic vector field corresponding to [X′,Y′], i.e. φ∗(P[X,Y]) = [X′,Y′];

(iii) [ξ,X] is vertical;

(iv) P(∇̃XY) is a basic vector field corresponding to ∇′X′Y
′, where ∇′ is the covariant differentiation on M′.

For the Levi-Civita connection ∇′ on M′, we define the corresponding connection ∇̄′ for basic vector
fields on IzM by

∇̄
′

XY = P(∇̃XY), ∀X,Y ∈ Γ(D) basic. (15)

So, ∇̄′XY is a basic vector field and by Lemma 3.2 we have φ∗(∇̄′XY) = ∇′X′Y
′. By direct calculus, we obtain

∇ξξ = −
1
F

N, ∇NN = 0, ∇Nξ = 0, ∇ξN =
1
F
ξ,

and so, from the Gauss formula (8), we obtain ∇̃ξξ = 0 and h(ξ, ξ) = − 1
F N.

If we apply now the Gauss and Weingarten’s formulae of the leaves ofD andD⊥ in IzM, we define the
tensor fields C, Ã and T̃ by

∇̃XY = ∇̄
′

XY + C(X,Y), (16)
∇̃Xξ = Q(∇̃Xξ) + ÃXξ, (17)
∇̃ξX = P(∇̃ξX) + T̃ξX,
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for any basic vector fields X,Y, where C(X,Y) := Q(∇̃XY), ÃXξ := P(∇̃Xξ) and T̃ξX := Q(∇̃ξX). By taking
into consideration that ∇̃ξξ = 0, the Gauss formula for the leaves of D⊥ assures us that the leaves of the
anti-invariant distributionD⊥ are totally geodesic in IzM, but not in T′zM.

In [14] is proved that the second fundamental form C of the immersion of M′ in IzM defines a bilinear
mappingD×D 7→ D⊥ and using the properties

[X,Y] = ∇̃XY − ∇̃YX and ∇̃XGR(Y,Z) = GR(∇̃XY,Z) + GR(Y, ∇̃XZ)

of the Levi-Civita connection ∇̃, it is obtained that C(X,X) = 0, i.e. C(X,Y) = −C(Y,X), which means that C
has a skew-symmetric property, and it satisfies C(X,Y) = 1

2 Q([X,Y]) for any basic vector fields X,Y.
Also, it is easy to check that Ã : D×D⊥ 7→ D is a bilinear map and since [ξ,X] is vertical for any basic

vector field X, we have ÃXξ = P(∇̃Xξ) = P(∇̃ξX). Using this, we can relate the two tensor fields Ã and C by

GR(ÃXξ,Y) = −GR(ξ,C(X,Y)), (18)

for any basic vector fields X,Y and the vertical vector field ξ. Moreover, since ∇̃ is a metrical connection
and ∇̃ξξ = 0, we get

GR(T̃ξX, ξ) = 0. (19)

By straightforward calculation, considering R′ the curvature tensor corresponding to the connection ∇′

of the base manifold M′, making use of (15), (16), (17) and (18), we obtain that R′ and R̃ are related by

R̃(X,Y,Z,W) = R′(X′,Y′,Z′,W′) − GR(C(X,Z),C(Y,W)) + GR(C(Y,Z),C(X,W)) (20)
−2GR(C(X,Y),C(Z,W)).

Using the same considerations, the Jacobi identity and (19), we also have

R̃(X,Y, ξ,Z) = −GR((∇̃ZC)(X,Y), ξ) −
∑

(X,Y,Z)

GR(C(X, [Y,Z]), ξ),

R̃(X, ξ,Y, ξ) = −GR(ÃÃXξξ,Y), (21)

R̃(X,Y, ξ, ξ) = 0,

where
∑

(X,Y,Z) denotes the cyclic sum over the basic vector fields X, Y, Z.
Further, we will find some relations between the second fundamental form h studied in the previous

Section and the bilinear map C. Since TR(IzM) = D ⊕ D⊥ and D⊥ = span{ξ}, we have the following
orthogonal decomposition of TR(T′zM)

TR(T′zM) = D⊕ span{ξ} ⊕ span{N}.

By (8) and (16), for basic vector fields X,Y, we get

∇XY = ∇̄′XY + C(X,Y) + h(X,Y).

Since φ∗ : Dη → Tφ(η)M′ preserves complex structure J, we have JY a basic vector field and if we apply J to
the above relation and we use ∇X(JY) = J∇XY, J(D) = D, considering that J interchangesD⊥ and T(IzM)⊥,
by comparing horizontal, vertical and normal parts, we obtain respectively

∇̄
′

X JY = J∇̄′XY, (22)
C(X, JY) = Jh(X,Y), (23)
h(X, JY) = JC(X,Y). (24)

From (22) we obtain that the almost complex structure of M′ is parallel and, hence M′ is Kähler. Thus, we
can state
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Theorem 3.3. Let φ : IzM→M′ be a CR-submersion of the indicatrix IzM of a complex Finsler space M, considered
in a fixed point z ∈M, on an almost Hermitian manifold M′. Then M′ is a Kähler manifold.

From (23), (24), Corollary 2.4, the skew-symmetric property of C, we get

h(JX, JY) = h(X,Y) and C(JX, JY) = C(X,Y), (25)

for any basic vector fields X,Y. Similarly, we get for basic vector fields

h(X, JY) = −h(JX,Y) and C(X, JY) = −C(JX,Y). (26)

Since D is not integrable, i.e. h(X, JY) , h(JX,Y), then h(X, JY) , 0. Thus, from (24), C(X,Y) , 0 and
∇̃XY < D, i.e. D is not parallel. Moreover, using Theorem 4.4, we have

Proposition 3.4. Let φ : IzM → M′ be a CR-submersion of the indicatrix IzM of a complex Finsler space M,
considered in a fixed point z ∈M, on an almost Hermitian manifold M′. SinceD is not integrable,D is not parallel.
Moreover, we can not express IzM as the product M1 ×M2, where M1 is a complex submanifold and M2 is a totally
real submanifold of T′zM.

In order to compare the holomorphic bisectional curvature

κ(X,Y) =
R(X, JX,Y, JY)

‖X‖2 ‖Y‖2
, ∀X,Y , 0

of the Kähler manifold T′zM with that of M′, where ‖X‖2 := GR(X,X), we set Y = JX, U = Y and Z = JY in
(11’) and we have

R(X, JX,Y, JY) = R̃(X, JX,Y, JY) + GR(h(X, JY), h(JX,Y)) − GR(h(JX, JY), h(X,Y))

for any basic vector fields X,Y. Using (25), (26), it can be rewriten as

R(X, JX,Y, JY) = R̃(X, JX,Y, JY) − ‖h(X, JY)‖2 − ‖h(X,Y)‖2 . (27)

Now, if we set in (20) Y = JX, Z = Y and W = JY, for any basic vector fields X and Y we have

R̃(X, JX,Y, JY) = R′(X′, JX′,Y′, JY′) − GR(C(X,Y),C(JX, JY)) + GR(C(JX,Y),C(X, JY))
−2GR(C(X, JX),C(Y, JY))

and using again relations (25), (26), we get

R̃(X, JX,Y, JY) = R′(X′, JX′,Y′, JY′) − ‖C(X,Y)‖2 − ‖C(X, JY)‖2 − 2GR(C(X, JX),C(Y, JY)). (28)

Now, using (23) and (24), we combine (27) and (28) to obtain

R(X, JX,Y, JY) = R′(X′, JX′,Y′, JY′) − 2 ‖C(X,Y)‖2 − 2 ‖C(X, JY)‖2 − 2GR(C(X, JX),C(Y, JY)).

Considering now the formula of the sectional holomorphic curvature of a Kähler manifold K(X) =
R(X, JX,X, JX), for any basic unit vector X, we set in the above relation Y = X and we use C(X,X) = 0.
Thus, we obtain

R(X, JX,X, JX) = R′(X′, JX′,X′, JX′) − 4 ‖C(X, JX)‖2 ,

or equivalently,

R(X, JX,X, JX) = R′(X′, JX′,X′, JX′) − 4 ‖h(X,X)‖2 .

Now, using the totally umbilicality condition h(X,Y) = HGR(X,Y) of IzM, with H given in Theorem 2.6 and
condition F = 1 on IzM, we can state
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Theorem 3.5. Let φ : IzM→M′ be a CR-submersion of the indicatrix IzM of a complex Finsler space M, considered
in a fixed point z ∈ M, on an almost Hermitian manifold M′. If we denote by K and K′ the holomorphic sectional
curvature of the Kähler manifolds T′zM and M′, then, for any basic vector field X of IzM, we have

K(X) = K′(X′) − 4 ‖X‖2 , where X′ = φ∗X.

Next, we will study the properties of the submersions from the complex indicatrix, in the case when
the holomorphic tangent bundle considered in a fixed point, T′zM, is a Kähler-Einstein manifold (as in

[15]), i.e. the Ricci tensor Ric(X,Y) =
2n∑
i=1

R(Ei,X,Y,Ei) is proportional to GR(X,Y), where {E1,E2, ...,En} is a

local orthonormal frame on T′zM and X,Y are vector fields tangent to T′zM. Using the totally umbilicality
condition of IzM we obtain the several lemmas:

Lemma 3.6. For any basic vector fields X and Y on IzM, with respect to the CR-submersion φ : IzM→M′, we have

GR(ÃXξ, ÃYξ) = GR(X,Y).

Proof. From (8) applied for any basic vector field X and ξ, which are tangent to IzM, from the umbilicality
of IzM, h(X, ξ) = −GR(X, ξ)N from Theorem 2.6 (with F = 1), and GR(X, ξ) = 0, we get ∇Xξ = ∇̃Xξ. Then, we
have

GR(∇X JN,Y) = GR(∇̃Xξ,Y) = GR(P(∇̃Xξ),Y) = GR(ÃXξ,Y).

On the other hand, T′zM is a Kähler manifold, so that ∇ commute with the complex structure J and thus,
using the Weingarten equation (8’), (10) and umbilicality relation, we get

GR(∇X JN,Y) = GR(J∇XN,Y) = −GR(∇XN, JY) = GR(ANX, JY) = GR(h(X, JY),N) = GR(−GR(X, JY)N,N)
= −GR(X, JY).

Thus, we have

GR(ÃXξ,Y) = −GR(X, JY). (29)

Consequently, by comparing these results, it is obtained

GR(ÃXξ, ÃYξ) = −GR(X, JÃYξ) = GR(JX, ÃYξ) = −GR(Y, J2X) = GR(X,Y).

If we replace (29) into (21), we obtain R̃(X, ξ,Y, ξ) = GR(X,Y).

Lemma 3.7. For any basic vector fields X, Y, Z and W on IzM, with respect to the CR-submersion φ : IzM → M′,
we have

GR(C(X,Y),C(Z,W)) = GR(X, JY)GR(Z, JW).

Proof. Since C(X,Y) = Q(∇̃XY) is a vertical vector field, it can be written

C(X,Y) = GR(C(X,Y), ξ)ξ.

Moreover, considering that ∇ is Kählerian, the Gauss formula (8) with h(X,Y) normal to IzM and the
umbilicality condition of IzM, we have

GR(C(X,Y), ξ) = GR(∇̃XY, ξ) = GR(∇XY, JN) = −GR(∇X JY,N) = −GR(h(X, JY),N) = GR(X, JY).

Then, considering that ξ is a unit vector field, we obtain

GR(C(X,Y),C(Z,W)) = GR(C(X,Y), ξ)GR(C(Z,W), ξ)GR(ξ, ξ) = GR(X, JY)GR(Z, JW).
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Now, considering relations (11’’), with L = 1 on IzM, (20) and the above Lemma, it results

R̃(X,Y,Z,W) = R′(X′,Y′,Z′,W′) − [GR(X, JZ)GR(Y, JW) − GR(Y, JZ)GR(X, JW)) + 2GR(X, JY)GR(Z, JW)
−GR(X,W)GR(Y,Z) + GR(Y,W)GR(X,Z))] ,

for any basic vector fields X, Y, Z and W. If we consider {E1, ...,Ep, JE1, ..., JEp} a local J-orthonormal
frame of basic vector fields for the horizontal distribution D of the complex indicatrix, then we get
{E′1, ...,E

′

p, JE
′

1, ..., JE
′

p} a local J-orthonormal frame, by taking φ∗Ei = E′i on the Kähler manifold M′. Us-
ing the above lemmas, we can state

Theorem 3.8. Let IzM the indicatrix of a complex Finsler space M and we consider the holomorphic tangent bundle
in a fixed point T′zM to be an Einstein manifold. If φ : IzM→M′ is a CR-submersion of IzM on an almost Hermitian
manifold M′, then M′ is a Kähler-Einstein manifold.

Submersion on the complex projective bundle PzM

As an application we make an approach for the submersion from complex indicatrix to the complex
projective bundle PzM, considered in a fixed point z ∈ M. Thus, it provides an isometry between the
holomorphic distribution of the indicatrix and the tangent bundle of PzM, and, using this, can be obtained a
link between the volume of the projective tangent bundle and the volume of any almost Hermitian manifold
of n − 1 dimension submersed from the complex indicatrix (as it can be seen in [21]).

Let M be an n dimensional complex manifold, TM the real tangent bundle and TCM its complexified,
TCM = T′M⊕T′′M. For each z ∈M, we take G = 1i j̄dηi

⊗ dηk̄ the Hermitian metric on T′zM. Since C∗ = C\{0}

acts on T̃′M by scalar multiplication, we get the projective holomorphic tangent bundle PM of M, defined
by

PM = T′M/C∗ ,

where (z, η) is identified with (z′, η′) iff z = z′ and η = λη′, for some λ ∈ C∗. For each (z, η) ∈ T̃′M, we denote
its equivalence class under the C∗ action by (z, [η]) ∈ PM and regard the fibre coordinates (η1, ..., ηn) of η as
the homogeneous coordinates of [η]. Geometrically, a point (z, [η]) in PM represents a complex line through
η in the holomorphic tangent space T′zM of M in z ∈M.

The natural projection p : PM → M is given by p(z, [η]) = z and it pulls back the bundle T′M to an
n-dimensional vector bundle p−1T′M over the complex manifold PM, dimC PM = 2n − 1. The elements of
p−1T′M will be denoted by ([η], v), where v = vi ∂

∂zi ∈ T′zM. In other words, to each complex ”ray” [η] we
assign the vector v ∈ p−1T′M, which is invariant under η 7→ λη rescaling. Keeping the notation { ∂∂zi }, {dzi

} for
the local bases for p−1T′M and its dual p−1T∗M and considering that the 1i j̄ is 0-homogeneous, we produce
an inner product on p−1T′M by 1i j̄(z, [η])dzi

⊗ dz̄ j on the fibre over the point [η] ∈ PM, where η ∈ T′zM.
Considering that T′(T′M) splits into the direct sum between the horizontal distribution H(T′M) =

span{δk} and the vertical subbundle V(T′M) = span{∂̇k}, the dual adapted base is spanned by {dzk, δηk
} (as in

Section 1). Then, we define a metric on T̃′M by

h = 1i j̄dzi
⊗ dz̄ j + 1i j̄δη

i
⊗ δη̄ j.

This metric descends to the metric

h = 1i j̄dzi
⊗ dz̄ j + (log L)i j̄δη

i
⊗ δη̄ j

on the total space PM. Note that the first factor defines an Hermitian inner product on the horizontal
subspaces, while the second term defines a Kähler metric on the projectivization of the fibre T′zM, [23].
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So, we can state that the Hermitian metric on T′zM given byG descends to the metric G = (log L)i j̄dηi
⊗dη̄ j

on PM, which is equivalent to

G = (
1
L
1i j̄ −

1
L2 ηiη j̄)dη

i
⊗ dη̄ j,

and we establish the following result:

Theorem 3.9. The canonical map φ : IzM→ PzM, given by φ(η/F) := [η], is a submersion.

Proof. In order to show that the canonical map φ : IzM → PzM is a submersion, we consider a tangential
map φ∗ : TR(IzM) → TR(PzM) such that φ∗(ξ) = 0 and φ∗ : Dη → T[η](PzM) is a complex isometry for every
η ∈ IzM, i.e. G(φ∗(X), φ∗(Y)) = GR(X,Y), ∀X,Y ∈ D.

Following these ideas, we take

vα =
1
F

(vi
α∂̇i + vı̄α∂̇ı̄)

with vi
α and vı̄α 1-homogeneous functions in η variables, α ∈ {1, .., 2n−1}, such that TR(IzM) = span{vα}. Then,

by direct calculus, we obtain that GR(vα, vβ) = 1
L Re{vi

αv ̄β1i j̄}. Further, we take ξ = v2n−1 and so v j
2n−1 = iη j

and v ̄2n−1 = iη ̄. Since D = span{va}, a ∈ {1, .., 2n − 2}, D⊥ = span{ξ}, we have GR(va, ξ) = GR(va,N) = 0 and
thus vi

αηi = 0 and vı̄ηı̄ = 0.
Then, we consider the tangential map between the tangential vector bundles of IzM and PzM will be

φ∗ : TR(IzM) → TR(PzM)
vα 7→ eα := Re{(v j

α −
i
√

2
2 η

j)∂̇ j}.

The vector fields eα are invariant under complex rescaling η 7→ λη so they are well-defined objects living
on PzM. Moreover, by direct calculus we can easily verify that φ∗(ξ) = 0 and G(ea, eb) = 1

L Re{vi
αv ̄β1i j̄}, so that

G(φ∗(va), φ∗(vb)) = GR(va, vb), ∀a, b ∈ {1, .., 2n − 2}, i.e. φ∗ is an isometry.
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