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Abstract. In this paper, we characterize and classify all surfaces endowed with canonical principal direction
relative to a space-like and light-like, constant direction in the Minkowski 3-space.

1. Introduction

It is well known that, a helix is a curve whose tangent lines make a constant angle with a fixed vector.
After the question ‘Are there any surface making a constant angle with some fixed vector direction?’ was
introduced in [5], the concept of constant angle surfaces, called also as helix surfaces, have been studied
geometers. Specially, if one can take the position vector of the surface instead of the fixed vector, in that
case, the surface is called as constant slope surface studied in [11, 13, 20]. The applications of constant angle
surfaces in the theory of liquid crystals and of layered fluids were firstly considered in [1]. They used for
their study of surfaces the Hamilton-Jacobi equation, correlating the surface and the direction field. Further,
Munteanu and Nistor gave another approach to classify concerning surfaces in Euclidean spaces for which
the unit normal makes a constant angle with a fixed direction in [21]. Moreover, the study of constant angle
surfaces was extended in different ambient spaces, e.g. in S2

× R [5] and H2
× R [6], in E3

1 [9, 15, 17]. In
higher dimensional Euclidean space, hypersurfaces whose tangent space makes constant angle with a fixed
direction are studied and a local description of how these hypersurfaces are constructed is given. They are
called helix hypersurfaces, [3].

One of common geometrical properties of such surfaces is the following. If we denote the projection of
the fixed direction k on the tangent plane of the surface by UT, then UT is a principal direction of the surface
with the corresponding principal curvature 0. Because of this reason, a recent natural problem appearing in
the context of constant angle surfaces is to study those surfaces for which UT remains a principal direction
with the corresponding principal curvature being different from zero.

Let N,M and X be a (semi-)Riemannian manifold, a hypersurface of N and a vector field tangent to N,
respectively. M is said to have a canonical principal direction (CPD) relative to X if the tangential projection
of X to M gives a principal direction, [14]. One of the most common examples of hypersurfaces with CPD is
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rotational hypersurfaces in Euclidean spaces having canonical principal direction relative to a vector field
parallel to its rotation axis. We also want to note that a hypersurface in different ambient spaces with CPD
relative to its position vector is said to be a generalized constant ratio hypersurface, [8, 10, 12, 26].

The problem of classifying hypersurfaces with CPD relative to a fixed direction k has been studied by
some authors recently. For example, in [4], this problem was studied in S2

× R by Dillen et. al. Further,
surfaces with CPD in H2

× R was studied in [7]. In these two papers, the fixed direction k was chosen to
be a unit vector tangent to the second factor. On the other hand, classification of concerning surfaces in
semi-Euclidean spaces with CPD relative to a chosen direction was studied in [9, 22, 23]. Before we proceed,
we also would like to note that when the codimension of the submanifold is more than one, a generalization
of this notion was given by Tojeiro in [25] and a further study appear in [19].

In the present paper, we would like to move the study of CPD hypersurfaces in Euclidean spaces initiated
in [22] into semi-Euclidean spaces by obtaining partial classification of CPD surfaces in Minkowski 3-space
studied in [9, 23]. This paper is organized as follows. In Sect. 2, we introduce the notation that we will use
and give a brief summary of basic definitions in theory of submanifolds of semi-Euclidean spaces. In Sect.
3, we obtain some new characterizations and the complete classification of space-like and Lorentzian CPD
surfaces relative to a space-like and light-like, constant direction in the Minkowski 3-space.

2. CPD Hypersurfaces in Minkowski Spaces

In this section, we would like to give some basic equations and facts on hypersurfaces in Minkowski
spaces, before we consider on some geometrical properties of hypersurfaces in Minkowski 3-spaces, E3

1
endowed with a canonical principal direction.

2.1. Basic Facts and Definitions

First, we would like to give a brief summary of basic definitions, facts and equations in the theory of
submanifolds of pseudo-Euclidean space (see for detail, [2, 24]).

Let Em
1 denotes the Minkowski m-space with the canonical Lorentzian metric tensor given by

1̃ = 〈·, ·〉 =

m−1∑
i=1

dx2
i − dx2

m,

where x1, x2, . . . , xm are rectangular coordinates of the points of Em
1 . We denote the Levi-Civita connection

of Em
1 by ∇̃.

The causality of a vector in a Minkowski space is defined as following. A non-zero vector v inEm
1 is said

to be space-like, time-like and light-like (null) regarding to 〈v, v〉 > 0 , 〈v, v〉 < 0 and 〈v, v〉 = 0, respectively.
Note that v is said to be causal if it is not space-like.

Now, let M be an oriented hypersurface in En+1
1 by considering the case m = n + 1. We denote by N

and ∇, the unit normal vector field and Levi-Civita connection of M, respectively. Note that Gauss and
Weingarten formulas are given by

∇̃XY =∇XY + h (X,Y) ,

∇̃XN = − S(X),

respectively, whenever X,Y are tangent to M, where h and S are the second fundamental form and the
shape operator (or Weingarten map) of M. The surface M is said to be space-like (resp. time-like) if the
induced metric 1 = 1̃

∣∣∣
M of M is Riemannian (resp. Lorentzian). This is equivalent to being time-like (resp.

space-like) of N at each point of M.
The Codazzi equations is given by

(∇̄Xh)(Y,Z) = (∇̄Yh)(X,Z) (1)
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for any vector fields X,Y,Z tangent to M, where ∇̄h is defined by

(∇̄Xh)(Y,Z) = ∇⊥Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ).

If M is space-like, then its shape operator S is diagonalizable, i.e., there exists a local orthonormal frame
field {e1, e2} of the tangent bundle of M such that Sei = kiei, i = 1, 2, . . . ,n. In this case, the vector field ei
and the smooth function ki are called as a principal direction and a principal curvature of M, respectively.

On the other hand, if M is time-like, then by choosing an appropriated frame field of the tangent bundle
of M, the shape operator S can be assumed to have one of the following four matrix representations

Case I. S =


k1

. . .
kn

 , Case II. S =


k1 1
0 k1

k3
. . .

kn


,

Case III. S =


k1 ν
−ν k1

k3
. . .

kn


, Case IV. S =



k1 1 1
1 k1 1
1 1 k1

k4
. . .

kn



(2)

for some smooth functions k1, k2, . . . , kn, ν (see for example [18]). We would like to note that in Case I and
Case III of (2), the frame field {e1, e2} is orthonormal, i.e.

〈e1, e1〉 = −1, 〈e2, e2〉 = 1, 〈ei, e j〉 = 0 whenever i , j,

and it is pseudo-orthonormal in Case II and Case IV with

〈eA, eB〉 = δAB − 1, 〈e1, eA〉 = 〈e2, eA〉 = 0, .〈ei, e j〉 = δi j whenenver A,B = 1, 2, i, j > 2.

Now, let M be a surface in the Minkowski 3-space. Then, its mean curvature and Gaussian curvature
are defined by H = trace S and K = det S, respectively. M is said to be flat if K vanishes identically. On the
other hand, if H = 0 and the surface M is space-like, then it is called maximal while a time-like surface with
identically vanishing mean curvature is said to be a minimal surface.

Before we proceed to the next subsection, we would like to notice the notion of angle in the Minkowski
3-space (see for example, [8, 13]):

Definition 2.1. Let v and w be future pointing (past pointing) time-like vectors in E3
1. Then, there is a unique

non-negative real number θ such that

|〈v,w〉| = ‖v‖ ‖w‖ coshθ.

The real number θ is called the Lorentzian time-like angle between v and w.

Definition 2.2. Let v and w be a space-like vectors in E3
1 that span a space-like vector subspace. Then, we have

|〈v,w〉| ≤ ‖v‖ ‖w‖ and hence, there is a unique real number θ ∈ [0, π/2] such that

|〈v,w〉| = ‖v‖ ‖w‖ cosθ.

The real number θ is called the Lorentzian space-like angle between v and w.
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Definition 2.3. Let v and w be a space-like vectors in E3
1 that span a time-like vector subspace. Then, we have

|〈v,w〉| > ‖v‖ ‖w‖ and hence, there is a unique positive real number θ such that

|〈v,w〉| = ‖v‖ ‖w‖ coshθ.

The real number θ is called the Lorentzian time-like angle between v and w.

Definition 2.4. Let v be a space-like vectors and w a future pointing time-like vector in E3
1. Then, there is a unique

non-negative real number θ such that

|〈v,w〉| = ‖v‖ ‖w‖ sinhθ.

The real number θ is called the Lorentzian time-like angle between v and w.

2.2. A Characterization of CPD Hypersurfaces
First, we would like to recall the following definition (see for example, [9, 14, 23]).

Definition 2.5. Let M be a non-degenerated hypersurface in En+1
1 and ζ a vector field in En+1

1 . M is said to be
endowed with CPD relative to ζ if its tangential component is a principal direction, i.e., S(ζT) = k1ζT for a smooth
function k1, where ζT denotes the tangential component of ζ. In particular if X = k for a fixed direction k in En+1

t , we
will say that M is a CPD-hypersurface.

As we mentioned before, a surface M in E3 was said to be a constant angle surface (CAS), if its unit
normal vector field makes a constant angle with a fixed vector, [21] (see also [5, 6, 9]. Later, in [15, 17],
this definition is extended to surfaces in Minkowski spaces with obvious restrictions on the causality of
the fixed vector and the normal vector because of the definition of ‘angle’ in the Minkowski space (see,
Definition 2.1- Definition 2.4).

Remark 2.6. In fact, if the ambient space is pseudo-Euclidean, then a CAS surface is a CPD surface with corre-
sponding principal curvature k1 = 0 (see [15, 17, 21]). Thus, we will exclude this case. Therefore, after this point, we
will locally assume that the principal curvature k1 corresponding to the principal direction of tangential part of k is a
non-vanishing function.

Let M be a hypersurface and k be a fixed direction in a Minkowski space En+1
1 . The fixed vector k can be

expressed as

k = U + 〈N,N〉 〈k,N〉N (3)

for a tangent vector U. We would like to give the following new characterization of CPD surfaces which is
a generalization of [23, Theorem 2.1] and [9, Theorem 3.7 and Theorem 4.5] into hypersurfaces of arbitrary
dimensional Minkowsk spaces.

Proposition 2.7. Let M be an oriented hypersurface in the Minkowski space En+1
1 and k be a fixed vector on the

tangent plane to the surface. Consider a unit tangent vector field e1 along U. Then, M is a CPD hypersurface if and
only if a curve α is a geodesic of M whenever it is an integral curve of e1.

Proof. We will consider three cases seperately subject to causality of U.
Case I. Let e1 is time-like. Thus, we have

k = −〈k, e1〉e1 + 〈k,N〉N.

Since ∇̃e1 k = 0, this equation yields

0 = −〈k, ∇̃e1 e1〉e1 − 〈k, e1〉 ∇̃e1 e1 − 〈k,Se1〉N − 〈k,N〉Se1.
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The tangential part of this equation yields Se1 = k1e1 if and only if ∇e1 e1 = 0 which is equivalent to being
geodesic of all integral curves of e1.

Case II. Let e1 is space-like. Thus, we have

k = 〈k, e1〉e1 + ε〈k,N〉N, (4)

where ε is either 1 or -1 regarding to being time-like or space-like of M, respectively.
Similar to Case I, we obtain Se1 = k1e1 if and only if ∇e1 e1 = 0.
Case III. Let e1 is light-like. In this case, k can be decompose as

k = φ(e1 −N), (5)

for a non-constant function φ.
Similar to the other case, we obtain Se1 = k1e1 if and only if ∇e1 e1 = 0.

3. New Classifications of CPD Surfaces in E3
1

In this section, we want to complete classification of CPD surfaces in E3
1. We would like to note that

the complete classification of surfaces endowed with canonical principal direction relative to a time-like
constant direction k = (0, 0, 1) was obtained in [9, 23].

3.1. CPD Surfaces Relative to a Space-like, Constant Direction.

In this subsection, we consider surfaces endowed with CPD relative to a space-like, constant direction
k. In this case, up to a linear isometry of E3

1, we may assume that k = (1, 0, 0).
First, we will assume that M is a space-like surface endowed with CPD relative to k = (1, 0, 0). In this

case, N is time-like and (3) becomes

k = coshθe1 + sinhθN (6)

where θ is a smooth function. Let e2 be a unit tangent vector field satisfying 〈e1, e2〉 = 0. Considering (6),
we obtain the following lemma by a simple computation.

Lemma 3.1. The Levi-Civita connection ∇ of M is given by

∇e1 e1 = ∇e1 e2 = 0, (7a)
∇e2 e1 = tanhθk2e2, ∇e2 e2 = − tanhθk2e1, (7b)

and the matrix representation shape operator S of M with respect to {e1, e2} is

S =

(
e1(θ) 0

0 k2

)
(8)

for a function k2 satisfying

e1(k2) = tanhθk2(e1(θ) − k2). (9)

Furthermore, θ satisfies

e2(θ) = 0. (10)

Proof. By considering (6), one can get

0 = X(coshθ)e1 + coshθ∇Xe1 + coshθh(e1,X) − sinhθSX + X(sinhθ)N (11)
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whenever X is tangent to M. (11) for X = e1 gives

∇e1 e1 = 0,
e1(θ) = k1, (12)

while (11) for X = e2 is giving

∇e2 e1 = tanhθk2e2,

where e2 is the other principal direction of M with the corresponding principal curvature k2. Thus, we have
(7), (8) and (10) and so the second fundamental form of M becomes

h(e1, e1) = −k1N, h(e1, e2) = 0, h(e2, e2) = −k2N.

By considering the Codazzi equation, we obtain (9).

Remark 3.2. Because of (12), if e1(θ) ≡ 0 implies k1 = 0. We will not consider this case because of Remark 2.6.

Now, we consider a point p ∈ M at which e1(θ) does not vanish. First, we would like to prove the
following lemma.

Lemma 3.3. There exists a local coordinate system (s, t) defined in a neighborhood Np of p such that the induced
metric of M is

1 = ds2 + m2dt2 (13)

for a function m satisfying

e1(m) − tanhθk2m = 0. (14)

Furthermore, the vector fields e1, e2 described as above become e1 = ∂s, e2 =
1
m
∂t inNp.

Proof. Because of (7), we have [e1, e2] = − tanhθk2e2. Thus, if m is a non-vanishing smooth function on M
satisfying (14), then we have [e1,me2] = 0. Therefore, there exists a local coordinate system (s, t) such that

e1 = ∂s and e2 =
1
m
∂t. Thus, the induced metric of M is as given in (13).

Now, we are ready to obtain the classification theorem.

Theorem 3.4. Let M be an oriented space-like surface inE3
1. Then, M is a surface endowed with a canonical principal

direction relative to a space-like constant direction if and only if it is congruent to the surface given by one of the
followings:

1. A surface given by

x(s, t) =

∫ s

coshθ(τ)dτ
(
1, 0, 0

)
+

∫ s

sinhθ(τ)dτ
(
0, sinh t, cosh t

)
+ γ(t) (15a)

where γ is the E3
1-valued function given by

γ(t) =

(
0,

∫ t

Ψ(τ) cosh τdτ,
∫ t

Ψ(τ) sinh τdτ
)
. (15b)

for a function Ψ ∈ C∞(M);
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2. A flat surface given by

x(s, t) =

∫ s

coshθ(τ)dτ
(
1, 0, 0

)
+

∫ s

sinhθ(τ)dτ
(
0, sinh t0, cosh t0

)
+

(
0, t cosh t0, t sinh t0

)
.

(16)

for a constant t0.

Proof. In order to proof the necessary condition, we assume that M is a space-like surface endowed with a
CPD relative to k = (1, 0, 0) with the isometric immersion x : M→ E3

1. Let {e1, e2; N} be the local orthonormal
frame field described before Lemma 3.1, k1, k2 be the principal curvatures of M and (s, t) be a local coordinate
system given in Lemma 3.3.

Note that (14) and (9) becomes

ms −m tanhθk2 = 0, (17)
(k2)s = (θ′ − k2) tanhθk2, (18)

respectively and e2(θ) = 0 implies θ = θ(s). Thus, we have

e1 = xs. (19)

By combining (17) with (8), the shape operator S of M become

S =

(
θ′ 0
0 cothθms

m

)
. (20)

Here ′ denotes ordinary differentiation with respect to the appropriated variable.
By combining (17) and (18) we obtain

mss − θ
′ cothθms = 0,

whose general solution is

m(s, t) = Ψ1(t)
∫ s

sinhθ(τ)dτ + Ψ2(t), ,

for some smooth functions Ψ1,Ψ2. Therefore, by re-defining t properly, we may assume either

m(s, t) =

∫ s

sinhθ(τ)dτ + Ψ(t),Ψ ∈ C∞(M), (21a)

or

m(s, t) = 1. (21b)

Case 1. m satisfies (21a). In this case, by considering the equation (7) with m given in (21a), we get the
Levi-Civita connection of M satisfies

∇∂s∂s = 0.

By combining this equation with (20) and using Gauss formula, we obtain

xss = −θ′N. (22)

On the other hand, from the decomposition (6), we have 〈xs, k〉 = coshθ and 〈xt, k〉 = 0. By considering
these equations, we can assume that x has the form of

x(s, t) =

(∫ s

coshθ(τ)dτ, x2(s, t), x3(s, t)
)

+ γ(t) (23)
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for a E3
1-valued smooth function γ =

(
0, γ2, γ3

)
. On the other hand, by combining (19) and (22) with (6), we

yield

(1, 0, 0) = coshθxs −
sinhθ
θ′

xss. (24)

By solving (24) and considering 〈xs, xs〉 = 1 in (23), we obtain

x(s, t) =

∫ s

coshθ(τ)dτ
(
1, 0, 0

)
+

∫ s

sinhθ(τ)dτ
(
0, sinhϕ(t), coshϕ(t)

)
+ γ(t) (25)

for a smooth function ϕ = ϕ(t). Note that (25) implies

xs = coshθ(s)
(
1, 0, 0

)
+

∫ s

sinhθ(τ)dτ
(
0, sinhϕ(t), coshϕ(t)

)
,

xt = ϕ′(t)
∫ s

sinhθ(τ)dτ
(
0, coshϕ(t), sinhϕ(t)

)
+

(
0, γ′2(t), γ′3(t)

)
. (26)

Because of 〈xs, xt〉 = 0, we have (0, γ′2, γ
′

3) = h(t)(0, coshϕ, sinhϕ) for a smooth function h = h(t). Therefore,
(26) turns into

xt =
(
ϕ′(t)

∫ s

sinhθ(τ)dτ + h(t)
)(

0, coshϕ(t), sinhϕ(t)
)
.

By combining this equation with 〈xt, xt〉 = m2 and using (21a), we obtain ϕ(t) = t and h(t) = Ψ(t) which
gives (15b). Thus, we have the Case (1) of the theorem.

Case 2. m is given as (21b). In this case, the induced metric of M becomes 1 = ds2 + dt2, the Levi Civita
connection of M satisfies

∇∂s∂s = 0, ∇∂s∂t = 0, ∇∂t∂t = 0 (27)

and (20) becomes

S =

(
θ′ 0
0 0

)
. (28)

Therefore, x and N satisfies

xss = −θ′N, xst = 0, xtt = 0.
Ns = −θ′xs, Nt = 0.

A straightforward computation yields that M is congruent to the surface given in Case (2) of the theorem.
Hence, the proof for the necessary condition is obtained.

The proof of sufficient condition follows from a direct computation.

As a direct result of Theorem 3.4, we obtain the following classification of maximal CPD surfaces.

Proposition 3.5. A maximal surface in E3
1 endowed with CPD relative to a constant, space-like direction is either

an open part of a plane or congruents to the surface given by

x(s, t) =
1
c

(
sin−1(cs),

√

1 − c2s2 sinh t,
√

1 − c2s2 cosh t
)

(29)

for a non-zero constant c.
In this case, the angle function θ is

θ(s) = tanh−1 (−cs) . (30)
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Proof. Let M be a space-like CPD surface and assume that it is not an open part of a plane. If M is maximal,
then Theorem 3.4 yields that M is congruent to the surface given by (15). Note that the shape operator S
of M is (20) for the function m satisfying (21a). Considering the maximality condition tr S = 0 and (20), we
have

θ′ + cothθ
ms

m
= 0.

Solving this equation, we get

θ(s) = cosh−1
( 1

cm

)
(31)

for a non-zero constant c. Furthermore, one can conclude from (31) that the function m depends only on s.
So (21a) implies Ψ(t) = 0 which yields m(s) =

∫ s
sinhθ(τ)dτ and γ(t) = (0, 0, 0). Therefore, (31) becomes

θ′ = −
1
c

cosh2 θ.

By solving this equation, we get the expression (30). By a further computation, we obtain (29). Thus, we
complete the proof of theorem.

In the remaining part of this section, we will assume that M is a Lorentzian surface in the Minkowski
3-space endowed with CPD relative to k = (1, 0, 0).

As we mentioned in the previous subsection, the shape operator S of M can be non-diagonalizable. In
this case, we can choose a pseudo-orthonormal frame field {e1, e2} of the tangent bundle such that S has the
matrix representation,

S =

(
k1 µ
0 k1

)
. (32)

In this case, (3) becomes

k = e1 + N. (33)

By a simple computation we obtain k1 = 0. Thus M is a flat, minimal B-scroll. It is well known that it must
be congruent to the surface given by

x(s, t) =

(
s2

2
+ t,

(2s − 1)3/2

3
,

s2

2
− s + t

)
(34)

(see for example, [16]). Hence, we have the following result.

Proposition 3.6. Let M be an oriented Lorentzian surface in E3
1 with non-diagonalizable shape operator. If M is a

surface endowed with a canonical principal direction relative to a space-like constant direction, then it is congruent to
the surface given by (34).

Now, assume that M is a Lorentzian surface and its shape operator S can be diagonalizable. Let {e1, e2}

be a local orthonormal frame field of the tangent bundle of M and e1 be proportional to U. Since the unit
normal vector N is a space-like vector, then we have two cases for subject to casuality of e1.

Case A. e1 is a space-like vector. In this case, (3) implies

k = sinθe1 + cosθN. (35)

Case B. e1 is a time-like vector. In this case, (3) implies

k = sinhθe1 + coshθN. (36)

We have the following lemma which is the analogous of Lemma 3.1.
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Lemma 3.7. Let M be a Lorentzian surface endowed with CPD relative to k = (1, 0, 0) and {e1, e2} its principal
directions such that 〈k, e2〉 = 0. Then, we have the following statements.

1. If e1 is space-like, then the Levi-Civita connection ∇ of M is given by

∇e1 e1 = ∇e1 e2 = 0, (37a)
∇e2 e1 = cotθk2e2, ∇e2 e2 = cotθk2e1 (37b)

for a function k2 satisfying

e1(k2) = cotθk2(e1(θ) − k2). (38)
2. If e1 is time-like, then the Levi-Civita connection ∇ of M is given by

∇e1 e1 = ∇e1 e2 = 0, (39a)
∇e2 e1 = cothθk2e2, ∇e2 e2 = cothθk2e1, (39b)

and for a function k2 satisfying

e1(k2) = cothθk2(e1(θ) − k2). (40)
3. In both cases, θ satisfies (10) and the matrix representation shape operator S is

S =

(
e1(θ) 0

0 k2

)
. (41)

Proof. If we consider the decompositions (35) and (36), respectively and follow exactly same way using to
prove of Lemma 3.1, then we can get the statement (1) and (2) of the lemma, respectively and in both cases
the equations (10) and (41) are satisfied.

The proof of the following lemma is similar the proof of Lemma 3.3.

Lemma 3.8. Let M be a Lorentzian surface endowed with CPD relative to k = (1, 0, 0) and {e1, e2} its principal

directions such that 〈k, e2〉 = 0. Then there exists a neighborhoodNp of p on which e1 = ∂s and e2 =
1
m
∂t for a smooth

function m. Moreover, if e1 is space-like then the induced metric ofNp becomes

1 = ds2
−m2dt2 (42)

and m satisfies

e1(m) − cotθk2m = 0. (43)

On the other hand, if if e1 is time-like then the induced metric ofNm becomes

1 = −ds2 + m2dt2 (44)

and m satisfies

e1(m) − cothθk2m = 0. (45)

Theorem 3.9. Let M be an oriented Lorentzian surface inE3
1 with diagonalizable shape operator. Then, M is endowed

with a canonical principal direction relative to a space-like, constant direction if and only if it is congruent to the
surface given by one of the followings

1. A surface given by

x(s, t) =

∫ s

sinθ(τ)dτ
(
1, 0, 0

)
+

∫ s

cosθ(τ)dτ
(
0, cosh t, sinh t

)
+ γ(t), (46a)

where γ is

γ(t) = (0,
∫ t

Ψ(τ) sinh(τ)dτ,
∫ t

Ψ(τ) cosh(τ)dτ) (46b)

for a function Ψ ∈ C∞(M);
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2. A surface given by

x(s, t) =

∫ s

sinθ(τ)dτ
(
1, 0, 0

)
+

∫ s

cosθ(τ)dτ
(
0, cosh t0, sinh t0

)
+

(
0, t sinh(t0), t cosh(t0)

) (47)

for a constant t0;
3. A surface given by

x(s, t) =

∫ s

sinhθ(τ)dτ
(
− 1, 0, 0

)
+

∫ s

coshθ(τ)dτ
(
0, sinh t, cosh t

)
+ γ(t), (48a)

where γ is

γ(t) = (0,
∫ t

Ψ(τ) cosh(τ)dτ,
∫ t

Ψ(τ) sinh(τ)dτ) (48b)

for a function Ψ ∈ C∞(M);
4. A surface given by

x(s, t) =

∫ s

sinhθ(τ)dτ
(
− 1, 0, 0

)
+

∫ s

coshθ(τ)dτ
(
0, sinh t0, cosh t0

)
+

(
0, t cosh t0, t sinh t0

)
,

(49)

for a constant t0.

Proof. In order to prove the necessary condition, we assume that M is a Lorentzian surface endowed with
CPD relative to k = (1, 0, 0). Let x : M → E3

1 be an isometric immersion, {e1, e2; N} the local orthonormal
frame field described before Lemma 3.7, k1, k2 principal curvatures of M and (s, t) a local coordinate system
given in Lemma 3.8. We will consider two cases described above seperately.

Case A. e1 is a space-like vector. In this case, we have (37),(38), (42) and (43). Note that (43) and (38)
turns into, respectively

ms − cotθk2m = 0, (50a)
(k2)s = cotθk2(θ′ − k2). (50b)

By considering (50a), we obtain k2 = tanθms
m . Thus, (41) becomes

S =

(
θ′ 0
0 tanθms

m

)
. (51)

Furthermore, by differentiating (50a) with respect to s and using (50), we obtain

mss + θ′ tanθms = 0.

Therefore, m satisfies either

m(s, t) =

∫ s

cosθ(ξ)dξ + Ψ(t) (52a)

for a smooth function Ψ or

m(s, t) = 1 (52b)
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Case A1. m satisfies (52a). In this case, similar to the Case (1) in the proof of Theorem 3.4, we consider
(37) and (51) to get

xss = θ′N, (53a)

xst =
ms

m
xt, (53b)

xtt = mmsxs +
mt

m
xt −mms tanθN. (53c)

Furthermore, considering (35) we have 〈e1, k〉 = 〈xs, k〉 = sinθ and 〈xt, k〉 = 0. So we get

x(s, t) =

(∫ s

sinθ(τ)dτ, x2(s, t), x3(s, t)
)

+ γ(t) (54)

for a E3
1-valued smooth function γ =

(
0, γ2, γ3

)
. Also (35) and (53a) imply

(1, 0, 0) = sinθxs +
cosθ
θ′

xss. (55)

By considering (54) and 〈xs, xs〉 = 1, we solve (55) and obtain

x(s, t) =

∫ s

sinθ(τ)dτ
(
1, 0, 0

)
+

∫ s

cosθ(τ)dτ
(
0, coshϕ(t), sinhϕ(t)

)
+ γ(t), (56)

for a smooth function ϕ. By a similar way in the Case (1) in the proof of Theorem 3.4, we could get ϕ(t) = t
and (46b) by considering (42) and (56). Furthermore, considering ϕ(t) = t and (46b) in (56) we get (46a).
Hence, we get the classification of surface in the case (1) of the Theorem 3.9.

Case A2. m satisfies (52b). In this case, (42) turns into 1 = ds2
− dt2. Therefore, by considering (37) and

(51), we get

xss = θ′N, xst = 0, xtt = 0.
Ns = −θ′xs, Nt = 0.

A straightforward computation yields that M is congruent to the surface given in Case (2) of the Theorem
3.9. Hence, the proof for the necessary condition is obtained.

Now, we would like to get the case (3) and the case (4) of the Theorem 3.9.
Case B. e1 is a time-like vector. In this case, we have (39),(40), (44) and (45). By a similar way to Case A,

we obtain

S =

(
θ′ 0
0 tanhθms

m

)
. (57)

Similar to the Case A, we obtain
mss + θ′ tanhθms = 0,

which yields that m satisfies either

m(s, t) =

∫ s

coshθ(ξ)dξ + Ψ(t), (58)

for a smooth function Ψ or (52b).
If m satisfies (58), we use exactly the same way that we did in the Case A1 and obtain the Case (3) of the

theorem. On the other hand, if m(s, t) = 1, then we get the Case (4) of the theorem. Hence, the proof of the
necessary condition is completed.

The proof of sufficient condition can be obtained by following from a direct computation.
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Proposition 3.10. A minimal surface in E3
1 endowed with CPD relative to a constant, space-like direction is either

an open part of a plane or congruents to one of following two surface given below

1. A surface given by

x(s, t) =
1
c

(
sinh−1(cs),

√

c2s2 + 1 cosh t,
√

c2s2 + 1 sinh t
)
, (59)

for a non-zero constant c. In this case, the angle function θ is

θ(s) = cot−1(cs). (60)

2. A surface given by

x(s, t) =
1
c

(
− ln

(√
c2s2 − 1 + cs

)
,
√

c2s2 − 1 sinh t,
√

c2s2 − 1 cosh t
)
, (61)

for a non-zero constant c. In this case, the angle function θ is

θ(s) = coth−1(cs). (62)

Proof. Let M be a Lorentzian CPD surface and assume that it is not an open part of a plane. If M is minimal,
then Theorem 3.9 yields that M is congruent to the one of surfaces given by (46) and (48).

Case 1. M is congruent to the surface given by (46). Note that the shape operator S of M satisfies (51)
for the function m satisfying (52a). Considering the minimality condition trS = 0 and (51) yield

θ′ + tanθ
ms

m
= 0

which implies

θ(s) = sin−1
( 1

cm

)
, (63)

for a non-zero constant c and m = m(s). Therefore, (52a) give Ψ = 0. So,

m(s, t) =

∫ s

cosθ(ξ)dξ.

By combining this equation with (63) we obtain (60). By a further computation, we obtain (59).
Case 2. M is congruent to the surface given by (48). Note that the shape operator S of M satisfies (57)

for the function m satisfying (58). In this case, from the minimality condition trS = 0 and (51), we obtain

θ′ + tanhθ
ms

m
= 0.

By a similar way to Case 1, we obtain (61) and (62).

3.2. CPD surfaces relative to a light-like, constant direction.
In this subsection we will consider surfaces endowed with CPD relative to the fixed vector k = (1, 0, 1)

which is light-like.

Theorem 3.11. Let M be an oriented surface in E3
1 with diagonalizable shape operator. Then, M is endowed with

a canonical principal direction relative to a light-like, constant direction if and only if it is congruent to the surface
given by

x(s, t) =

(∫ s

s0

1
2φ(ξ)2 dξ

) (
1, 0, 1

)
+ s

(
γ0(t),

√
−2εγ0(t) + 1, γ0(t) − ε

)
+

∫ t

t0

b(ξ)
(√
−2εγ0(ξ) + 1,−ε,

√
−2εγ0(ξ) + 1

)
dξ

(64)
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for some smooth functions b, γ0, some constants s0, t0 and ε ∈ {−1, 1} and a non-vanishing functionφwhose derivative

does not vanish. Moreover, the tangential vector field e1 =
(1, 0, 1)T

‖(1, 0, 1)T‖
is a principal direction of the surfaces given by

(64).

Proof. Let N be the unit normal vector field of M associated with its orientation and x : M→ E3
1 an isometric

immersion. In order to prove necessary condition, assume that M is endowed with a canonical principal
direction relative to a light-like, constant direction k. Up to isometries of E3

1, we may assume k = (1, 0, 1).
We put ε = −〈N,N〉 and

e1 =
(1, 0, 1)T

‖(1, 0, 1)T‖
.

Then, we have

(1, 0, 1) = φ(e1 −N) (65)

for a smooth function φ. Note that we have 〈e1, e1〉 = ε.
Because of the assumption, e1 is a principal direction of M with corresponding principal curvature k1.

By a simple computation considering (65) we obtain

0 = X(φ)(e1 −N) + φ∇Xe1 + φh(e1,X) + φSX, (66)

whenever X is tangent to M. Note that (66) for X = e1 gives

∇e1 e1 = 0, (67a)
∇e1 e2 = 0, (67b)
e1(φ) = −φk1, (67c)

while (66) for X = e2 is giving

∇e2 e1 = −k2e2, (67d)
∇e2 e2 = −k2e1, (67e)
e2(φ) = 0, (67f)

where e2 is the other principal direction of M with corresponding principal curvature k2 and 〈e2, e2〉 = 1. In
addition, the second fundamental form of M becomes

h(e1, e1) = −k1N, h(e1, e2) = 0, h(e2, e2) = −εk2N. (68)

Therefore, the Codazzi equation gives

e1(k2) = k2
2 − k1k2 and e2(k1) = 0. (69)

Note that, because of Remark 2.6, (67c) implies that e1(φ) does not vanish on M.
Let p ∈M. First, we would like to prove the following claim.

Claim 3.11.1. There exists a neighborhoodNp of p on which the induced metric of M becomes

1 =
ε

φ(s)2 ds2 + (a(t)s + b(t))2dt2 (70)

for some smooth functions a, b such that e1 = φ∂s, e2 =
1

a(t)s + b(t)
∂t and

k1(s) = −φ′(s) (71)
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Proof of Claim 3.11.1. Note that we have [e1, e2] = k2e2 because of (67a) and (67d). Therefore, (67f) implies[
1
φ

e1,Ge2

]
= 0 for any function G satisfying

e1(G) = −k2G. (72)

Therefore, there exists a local coordinate system (s, t) such that e1 = φ∂s and e2 =
1
G
∂t. Thus, the induced

metric of M is

1 =
ε

φ2 ds2 + G2dt2. (73)

Note that we have k1 = k1(s) and (71) because of (67c), (67f) and (69). In addition, the first equation in (69)
and (72) give

φ(k2)s = k2(k2 − k1) (74)

and

φ(s)Gs = −k2G (75)

respectively. Now, getting derivative of (72) implies

φ′Gs + φGss = −(k2)sG − k2Gs. (76)

By combining (75), (71) and (74) with (76), we obtain φGss = 0 which yields G = a(t)s + b(t) for some smooth
functions a, b. Therefore, (73) becomes (70).

Hence, the proof of the Claim 3.11.1 is completed. �
Now, let s, t be local coordinates described in the Claim 3.11.1. Note that we have

e1 = φxs. (77)

Moreover, (67a) and (68) imply
∇̃φ∂s (φ∂s) = −k1N

from which we get

N =
1
φ′

(
φφ′xs + φ2xss

)
. (78)

By combining (77) and (78) with (65) we get

(1, 0, 1) = φ

(
φxs −

1
φ′

(
φφ′xs + φ2xss

))
which yields

xss = −
φ′

φ3 (1, 0, 1).

By integrating this equation and considering (77), we get

xs =
1

2φ2 (1, 0, 1) + γ(t) (79)

for an E3
1-valued smooth function γ. As 〈xs, xs〉 = ε

φ2 , we have

〈(1, 0, 1), γ(t)〉 − ε
φ(s)2 + 〈γ(t), γ(t)〉 = 0.
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Since φ is not constant, the above equation implies 〈(1, 0, 1), γ(t)〉 = ε and 〈γ(t), γ(t)〉 = 0. By considering
these equations, we obtain

γ(t) =
(
γ0(t),

√
−2εγ0(t) + 1, γ0(t) − ε

)
for a smooth function γ0. Therefore (79) becomes

xs =
1

2φ2 (1, 0, 1) +
(
γ0(t),

√
−2εγ0(t) + 1, γ0(t) − ε

)
. (80)

(77) and (78) imply

e1 = φxs =
1

2φ(s)
(1, 0, 1) + φ(s)

(
γ0(t),

√
−2εγ0(t) + 1, γ0(t) − ε

)
, (81a)

N = −
1

2φ(s)
(1, 0, 1) + φ(s)

(
γ0(t),

√
−2εγ0(t) + 1, γ0(t) − ε

)
. (81b)

Since e2 is a unit vector satisfying 〈e1, e2〉 = 〈N, e2〉 = 0, we may assume

e2 =
1

a(t)s + b(t)
xt =

(√
−2εγ0(t) + 1,−ε,

√
−2εγ0(t) + 1

)
. (81c)

By integrating (80), we obtain

x(s, t) =

∫ s

s0

1

2φ(ξ)2 dξ

 (1, 0, 1) + s
(
γ0(t),

√
−2εγ0(t) + 1, γ0(t) − ε

)
+ Γ(t) (82)

for a smooth E3
1-valued function Γ. By combining (82) and (81c), we get

Γ′(t) =

a(t) −
γ′0(t)√

−2εγ0(t) + 1

 s + b(t)

 (√−2εγ0(t) + 1,−ε,
√
−2εγ0(t) + 1

)
from which we conclude

a(t) =
γ′0(t)√

−2εγ0(t) + 1

and
Γ′(t) = b(t)

(√
−2εγ0(t) + 1,−ε,

√
−2εγ0(t) + 1

)
.

By combining the last equation with (82), we obtain (64). Hence, the proof of the necessary condition is
completed.

Conversely, consider the surface M given by (64) whose derivative does not vanish. A direct computation
yields that unit normal of M is

N =

(
ε

2φ(s)
− εφ(s)γ0(t),−εφ(s)

√
1 − 2εγ0(t), ε(−φ(s))γ0(t) +

ε
2φ(s)

+ φ(s)
)

and the principa l curvatures of M are

e1 = φ(s)
∂
∂s

and e2 =

√
−2εγ0(t) + 1

sγ′0(t) + b(t)
√
−2εγ0(t) + 1

∂
∂t
. (83)

Moreover, we have 〈e2, (1, 0, 1)〉 = 0 which yields that (1, 0, 1)T is a principal direction. Hence the proof of
sufficient condition is completed.
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Remark 3.12. As stated in Theorem 3.11, the surface M given by (64) is endowed with a canonical principal direction
relative to the light-like vector (1, 0, 1). Now, consider an arbitrary light-like vector k̃ in E3

1. Let l1, l2 vectors in E3
1

satisfying
〈l1, l1〉 = 〈l1, l2〉 = 〈k̃, l2〉 = 0, 〈k̃, l1〉 = −1, 〈l2, l2〉 = 1.

Consider the surface M̃ in E3
1 given by x̃(s, t) = Lx(s, t), where x(s, t) is the position vector of M and L is the linear

isometry given by

L(1, 0, 1) = k̃, L
(
−

1
2
, 0,

1
2

)
= l1, L(0, 1, 0) = l2.

It is straightforward to show that M̃ is endowed with a canonical principal direction relative to the light-like vector k̃.

By considering the proof of Theorem 3.11, we obtain the following proposition.

Proposition 3.13. Let M be the surface given by (64). Then, the matrix representation of the shape operator S of M
with respect to {e1, e2} is

S =

 εφ′(s) 0
0

εφ(s)γ′0(t)
√

1−2εγ0(t)b(t)+sγ′0(t)

 , (84)

where e1, e2 are vector fields given by (83)

From Proposition 3.13 we conclude the following characterization results.

Corollary 3.14. A flat surface with diagonalizable shape operator in E3
1 endowed with CPD relative to a light-like

direction is congruent to the surface given by

x(s, t) =

(
cs +

√

1 − 2cεt +

∫ s

s0

1
2φ(ξ)2 dξ,−εt + s

√

1 − 2cε,

s(c − ε) +
√

1 − 2cεt +

∫ s

s0

1
2φ(ξ)2 dξ

) (85)

for some constants s0, ε ∈ {−1, 1} and a non-vanishing function φ whose derivative does not vanish.

Corollary 3.15. A minimal (resp. maximal) surface with diagonalizable shape operator in E3
1 endowed with CPD

relative to a light-like direction is congruent to the surface given by

x(s, t) =

(
(c1 + s)3

c2
+ c1t, (s − c1)

√

1 − 2tε,
(c1 + s)3

c2
+ c1t + s(t − ε)

)
(86)

for some constants c2 > 0, c1 with ε = −1 (resp. ε = 1).
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