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Abstract. Extending the notion of dimension of a hyperring, we introduce the concept of height of a prime
hyperideal of a hyperring, similarly as in ring theory, and we present some basic properties and relations
with the dimension notion. In the second part of the article we illustrate some results concerning the height
of prime hyperideals in Noetherian/Artinian hyperrings.

1. Introduction

Hyperrings, multirings or superrings are all hyperstructures endowed with two binary (hyper)operations,
namely the addition and the multiplication, satisfying similar properties. For the first time, hyperrings have
been introduced by Krasner [9] in connection with the theory of valued fields, like hypercompositional al-
gebraic structures with the addition being a hyperoperation, while the multiplication remains a binary
operation. The additive hyperstructure was defined like a canonical hypergroup and the multiplicative
structure as a semigroup. This is, till now, the most well known and studied type of hyperrings, called
Krasner hyperring. If the addition is a binary operation and the multiplication a binary hypercomposition,
then we talk about the multiplicative hyperrings defined by Rota [17], that lately attracted the attention of
several researchers (for example, see the papers published in 2014 [2, 5, 8]). Moreover, in 1973 Mittas [14]
introduced the superrings, where both, the addition and the multiplication, are hyperoperations, with the
additive hyperstructure being a canonical hypergroup. If we consider the additive hyperstructure as an
arbitrary hypergroup, we obtain a new kind of hyperring, the most general one, investigated by Spartalis
[18] in the context of P-hyperrings. In a multiring, introduced and studied for the first time by Marshall
[10], the additive part is a canonical hypergroup, the multiplicative one a commutative monoid with the
absorbing element 0, while just the left distributivity holds. Thus it is clear that a Krasner hyperring is
a multiring, where the right distributivity holds, too. But, as shown in [10], there are many interesting
examples of multirings that are not hyperrings. For a general overview of hyperring and hyperfield theory
till the 90’s, it is worth to read the expository paper of Nakassis [15], while a recent survey on the hyperring
theory, completed with a series of applications, is provided in the book [4] of Davvaz and Leoreanu-Fotea.

Like in the ring theory, one may define the hyperideals, as a natural generalizations of ideals (and
therefore, in particular, Jacobson radical and nilradical based on the notions of prime and maximal hyper-
ideals), Artinian and Noetherian hyperrings, as well as the dimension of a hyperring. All these concepts
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are well explained and described, together with suitable examples, in the PhD thesis recently defended by
N. Ramaruban [16] to the University of Cincinnati, and most of them are recalled in Section 2 of this note.
The central notion of this paper, the height of a prime hyperideal, is presented in Section 3, while Section 4
is dedicated for the study of it in Noetherian/Artinian hyperrings (see Theorem 4.10). The paper ends with
Section 5, including some conclusions and new lines of research.

2. Preliminaries

In this section, we gather some results and definitions related to hyperideals of hyperrings, which will
be used in the next sections. For more details regarding this theme, the readers are refereed to [4].

Throughtout this paper, unless otherwise stated, R denotes a Krasner hyperring, called by short hyper-
ring.

Definition 2.1. ([4]) A subhyperring I of a hyperring R is a left (respectively right) hyperideal of R, if r · a ∈ I
(respectively a · r ∈ I), for all r ∈ R and a ∈ I. It is called a hyperideal of R if it is both a left and a right
hyperideal of R.

A proper hyperideal M of R is called a maximal hyperideal of R, if the only hyperideals of R that contain
M are M itself and R.

A proper hyperideal P of a hyperring R is called a prime hyperideal of R if, for every pair of hyperideals
A and B of R such that AB ⊆ P, it follows that A ⊆ P or B ⊆ P.

It is well known that, in a commutative unitary hyperring, there exists a maximal hyperideal of R
containing I, for any proper hyperideal I of R. Moreover, in a such hyperring, each maximal hyperideal is
a prime hyperideal, thereby there exists at least one prime hyperideal in R.

The intersection of all maximal hyperideals of R is called the Jacobson radical of R and denoted by J(R),
while the intersection of all prime hyperideals of R is called the nilradical of R, denoted byN(R).

A nonzero hyperring R having a unique maximal hyperideal is called a local hyperring.
The radical of a hyperideal I of a hyperring R, denoted by r(I), is defined as r(I) = {x | xn

∈ I, for some n ∈
N}. It can be proved that, the radical of I is the intersection of all prime hyperideals of R containing I.

Definition 2.2. A prime hyperideal P of R is said to be minimal prime hyperideal over a hyperideal I of R if it is
minimal among all prime hyperideals of R containing I. A prime hyperideal P is said to be minimal prime
hyperideal if it is a minimal prime hyperideal over the zero hyperideal of R.

Theorem 2.3. ([4]) Let R be a Krasner hyperring, a ∈ R and X ⊂ R.

(i) The principal hyperideal < a > generated by a is equal to the set

{t | t ∈ ra + as + na + k(a − a) +

m∑
i=1

riasi, r, s, ri, si ∈ R,m ∈ Z+ and n, k ∈ Z}.

(ii) If R has a unit element, then

< a >= {t | t ∈ k(a − a) +

m∑
i=1

riasi, ri, si ∈ R,m, k ∈ Z+
}.

(iii) If a is in the center of R, then

< a >= {t | t ∈ ra + na + k(a − a), r ∈ R,n ∈ Z+
},

where the center of R is the set {x ∈ R | xy = yx, f or all y ∈ R}.

(iv) Ra = {ra | r ∈ R} is a left hyperideal in R and aR = {ar | r ∈ R} is a right hyperideal in R. If R has a unit
element, then a ∈ aR ∩ Ra.
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(v) If R has a unit element and a is in the center of R, then Ra =< a >= aR.

(vi) If R has a unit element and X is included in the center of R, then

< X >= {t | t ∈
m∑

i=1

rixi, ri ∈ R, xi ∈ X,m ∈ Z+
}.

In the following we recall the concepts of extension and contraction of hyperideals and some of their
properties.

Definition 2.4. ([16]) Let f : R → S be a hyperring homomorphism, I be a hyperideal of R and J be a
hyperideal of S.

(i) The hyperideal < f (I) > of S generated by the set f (I) is called the extension of I and it is denoted by
Ie. Explicitly, we have

< f (I) >= {x ∈ S | x ∈
n∑

i=1

f (ai)bi, where ai ∈ I; bi ∈ S; n ∈N}.

(ii) The hyperideal f−1(J) = {a ∈ R | f (a) ∈ J} is called the contraction of J and it is denoted by Jc. It is
known that, if J is a prime hyperideal in S, then Jc is a prime hyperideal in R.

Proposition 2.5. ([16]) Let f : R→ S be a hyperring homomorphism, I and J be hyperideals of R and S, respectively.
Then it follows that:

(i) I ⊆ Iec and J ⊇ Jce.

(ii) Jc = Jcec and Ie = Iece.

(iii) If I is a prime hyperideal of R, then it is the contraction of a prime hyperideal of S if and only if Iec = I.

Starting with a hyperring R and defining an external operation, one gets a new hyperstructure, called
R-hypermodule.

Definition 2.6. ([16]) Let R be a hyperring. A left R-hypermodule M is a commutative hypergroup with
respect to addition, together with a map R ×M → M, given by (r,m) 7→ r · m = rm ∈ M, such that for all
a, b ∈ R and m1,m2 ∈M we have:

i) (a + b)m1 = am1 + bm1;

ii) a(m1 + m2) = am1 + am2;

iii) (ab)m1 = a(bm1);

iv) a0M = 0Rm1 = 0M, where 0M, 0R are the zero elements of M, R respectively;

v) 1m1 = m1, where 1 is the multiplicative identity in R.

If R is a hyperfield, then M is called a hypervectorspace.

Definition 2.7. ([16]) A left R-hypermodule M is called finitely generated, if there exists a finite subset
{x1, x2, . . . , xn} of M such that M = {z | ∃r1, . . . , rn ∈ R,n ∈ N such that z ∈

∑n
i=1 rixi}. The set {x1, x2, . . . , xn} is

called the generating set.

The next result has been investigated for the first time in the framework of hyperrings by Zahedi et al.
[22].
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Theorem 2.8. ([16, 22]; Nakayama’s Lemma) Let M be a finitely generated R-hypermodule and I a hyperideal of
R contained by the Jacobson radical of R. Then M = IM implies that M = {0}.

Corollary 2.9. ([16]) Let M be a finitely generated R-hypermodule, N a subhypermodule of M, and I a hyperideal
contained by the Jacobson radical of R. Then M = IM + N implies that M = N.

In the following we recall the construction of the hyperring of fractions [3]. Let R be any hyperring and
let S be any multiplicatively closed subset of R with 1 ∈ S. Define a relation ≡ on R×S by (a, s) ≡ (b, t) if and
only if 0 ∈ (at− bs)u, for some u ∈ S. Denote the equivalence class of (a, s) with a

s and let S−1R denote the set
of all equivalence classes. We endow the set S−1R with a hyperring structure, by defining the addition and
the multiplication between fractions as follows:

a
s

+
b
t

=
at + bs

st
and

a
s
·

b
t

=
ab
st
.

We know that S−1R forms a hyperring under these operations.

Remark 2.10. If P is a prime hyperideal of a hyperring R, then S = R \ P is a multiplicatively closed subset
of R. In this case, we denote S−1R = RP. As proved in [16], the elements a

s , with a ∈ P, form a hyperideal M
in RP, that is the only maximal hyperideal of RP; therefore RP is a local hyperring.

The main properties of the hyperring of fractions S−1R are grouped in the following result.

Proposition 2.11. ([16]) Let S be a multiplicatively closed subset of a hyperring R.

i) Every hyperideal in S−1R is an extended hyperideal.

ii) If I is a hyperideal in R, then Ie = S−1R if and only if I ∩ S = ∅.

iii) A hyperideal I is a contracted hyperideal of R if and only if no element of S is a zero divisor in R/I.

iv) The prime hyperideals of S−1R are in one-to-one correspondence with the prime hyperideals of R that don’t meet
S, with the correspondence given by P↔ S−1P.

Similarly, one constructs the hypermodule of fractions. Let M be an R-hypermodule and S be a multi-
plicatively closed subset of R. Define a relation ≡ on M × S by (m, s) ≡ (m1, s1) if and only if there exists
t ∈ S such that 0 ∈ t(ms1 − m1s), that is ms1t = m1st. This is clearly an equivalence relation. Let m

s denote
the equivalence class of the pair (m, s), and let S−1M denote the set of all such fractions. Then S−1M is an
S−1R-hypermodule.

If P is a prime hyperideal of R and M is an R-hypermodule, then the RP-hypermodule (R \ P)−1M is
simply denoted by MP.

We conclude this section with some definitions regarding the primary hyperideals and the primary
decompositions of hyperideals.

Definition 2.12. ([16]) A hyperideal Q in a hyperring R is called primary if Q , R and if whenever xy ∈ Q
either x ∈ Q or yn

∈ Q, for some n ∈N. If P = r(Q), then Q is said to be a P-primary hyperideal of R.

It is clear that every prime hyperideal is also primary.

Definition 2.13. ([16]) A primary decomposition of a hyperideal I in the hyperring R is an expression of I as
a finite intersection of primary hyperideals, say I =

⋂n
i=1 Qi, where each Qi is primary. If, moreover

i) the radicals r(Qi) are all distinct, and

ii) Qi +
⋂

j,i Q j, 1 ≤ i ≤ n,

then the primary decomposition is called minimal. We say that any hyperideal I of R is decomposable, if it
has a primary decomposition.
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Theorem 2.14. ([16]; First Uniqueness Theorem) Let I be a decomposable hyperideal of R and let I =
⋂n

i=1 Qi be
a minimal primary decomposition of I. Let Pi = r(Qi), 1 ≤ i ≤ n. Then Pi are precisely the prime hyperideals which
occur in the set of hyperideals r(I : x), x ∈ R, and hence are independent of the particular decomposition of I. The
notation (I : x) means the quotient hyperideal {a ∈ R | ax ⊂ I}.

Definition 2.15. ([16]) The prime hyperideals Pi in Theorem 2.14 are said to belong to I. The minimal
elements of the set {P1,P2, . . . ,Pn} are called the minimal or isolated prime hyperideals of I. The others are
called embedded prime hyperideals.

3. Height of a Prime Hyperideal

In this section, we define the height of a prime hyperideal of a hyperring, presenting connections with
the notion of dimension of a hyperring.

Definition 3.1. Let R be a non-trivial commutative hyperring.

(i) An expression of the type
P0 ⊂ P1 ⊂ . . . ⊂ Pn

(note the strict inclusion), where P0, . . . ,Pn are prime hyperideals of R, is called a chain of prime
hyperideals of R; the length of such a chain is the number of the ”links” between the terms of the
chain, that is, 1 less than the number of prime hyperideals in the sequence. Thus the above displayed
chain has length n. Note that, for a prime hyperideal P, we consider P to be a chain, with just one
prime hyperideal of R, of length 0. Since R is non-trivial, it contains at least one prime hyperideal, so
there certainly exists at least one chain of prime hyperideals of R of length 0.
The supremum of the lengths of all chains of prime hyperideals of R is called the dimension of R,
denoted by dim(R).

(ii) A chain of the type
P0 ⊂ P1 ⊂ . . . ⊂ Pn

of prime hyperideals of R is said to be saturated precisely when, for every i ∈ N, with 1 ≤ i ≤ n, there
is no prime hyperideal P such that Pi−1 ⊂ P ⊂ Pi, that is, if and only if we cannot make a chain of
length n + 1 by inserting an additional prime hyperideal of R between two terms in the chain.

(iii) A chain of the type
P0 ⊂ P1 ⊂ . . . ⊂ Pn

of prime hyperideals of R is said to be maximal, when it is saturated, Pn is a maximal prime hyperideal
of R and P0 is a minimal prime hyperideal of the zero hyperideal 0 of R.

Example 3.2. The dimension of a hyperfield is 0. Indeed, let R be a non-trivial hyperring. It is known that,
R is a hyperfield if and only if the only hyperideals of R are 0 and R itself, so it contains just one chain of
prime hyperideals of length 0.

Example 3.3. The dimension of a non-trivial Artinian hyperring is 0, since in a such hyperring each prime
hyperideal is also maximal.

In the following example, we first recall Krasner’s construction of hyperrings and hyperfields from rings
and fields, respectively, and then, based on it, we get a hyperring of dimension 1.

Example 3.4. ([16]) If (R,+, ·) is a ring and G a subset of R such that (G, ·) is a group, then we can define
an equivalence relation � on R as follows: r � s if and only if rG = sG. The equivalence class represented
by r is P(r) = {s ∈ R | sG = rG} = rG. Define now a hyperoperation ⊕ on the set of all equivalence classes
R/G as follows: P(r) ⊕ P(s) = {P(t) | P(t) ∩ (P(r) + P(s)) , ∅} = {tG | ∃11, 12 ∈ G such that t = r11 + s12} =
{tG | tG ⊆ rG + sG}, and define a binary operation on R/G as rG · sG = rsG(P(r) ·P(s) = P(rs)). Then (R/G,⊕, ·)
forms a hyperring. Moreover, if we choose R to be a field, then we get that (R/G,⊕, ·) is a hyperfield.
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Now, consider the set of integersZ and its multiplicative subgroup G = {−1, 1}. The Krasner construction
Z
G is a principal hyperideal hyperdomain, i.e. it is a hyperring with no zero divisors and whose hyperideals
are generated by a single element. Also, the prime (also maximal) hyperideals of ZG are of the form < pG >,
where p is a prime number. In Z

G , we have < 0Z >⊂< 2Z >, a chain of prime hyperideals of length 1. Since
every nonzero prime hyperideal of ZG is maximal, there does not exist a chain of prime hyperideals of ZG of
length 2, therefore dimZG = 1.

Definition 3.5. Let P be a prime hyperideal of a non-trivial commutative hyperring R. The height of P,
denoted by htRP, is defined to be the supremum of the lengths of all chains

P0 ⊂ P1 ⊂ . . . ⊂ Pn

of prime hyperideals of R, for which Pn = P, if this supremum exists, and it is∞, otherwise.

Example 3.6. Suppose thatR[x, y] is the ring of polynomials of two variables over the field of real numbers
and G = {−1, 1} the set of constant polynomials −1 and 1. Let R = R[x, y]/G be the hyperring obtained with
Krasner’s construction in Example 3.4. Since < x > /G and < x, y > /G are prime hyperideals of R and
< x > /G ⊆< x, y > /G, it follows that htR(< x, y > /G) = 1. Similarly, in the hyperring R = R[x1, x2, . . . , xn]/G,
since < x1 > /G, < x1, x2 > /G,. . . , < x1, x2, . . . , xn > /G are all prime hyperideals of R with

(< x1 > /G) ⊆ (< x1, x2 > /G) ⊆ (< x1, x2, ..., xn > /G),

we conclude that htR(< x1, x2, ..., xn > /G) = n − 1, for any positive integer n.

Lemma 3.7. Let P be a prime hyperideal of the commutative hyperring R and I be a hyperideal of R such that I ⊆ P.
Then the set

Θ = {P′ | P′is a prime hyperideal and I ⊆ P′ ⊆ P}

has a minimal element with respect to the inclusion.

Proof. Using Zorn’s lemma, the proof is straightforward.

Note that a minimal element of Θ is a minimal prime hyperideal over I, and so we deduce that there
exists a minimal prime hyperideal P′′ over I, with P′′ ⊆ P.

Remark 3.8. Let R be a non-trivial commutative hyperring. By Corollary 3.9 [16], every prime hyperideal
of R is contained in a maximal hyperideal of R (and every maximal hyperideal is prime). Moreover, every
prime hyperideal of R contains a minimal prime hyperideal. It follows that dimR is equal to the supremum
of lengths of chains P0 ⊂ P1 ⊂ . . . ⊂ Pn of prime hyperideals of R, with Pn maximal and P0 a minimal
prime hyperideal. Indeed, if we have an arbitrary chain of prime hyperideals of R with length h, like:
P′0 ⊂ P′1 ⊂ . . . ⊂ P′h, then it is bounded above by the length of a special chain as it follows. If P′0 is not a
minimal prime hyperideal, then another prime hyperideal can be inserted before it. On the other hand, if
P′h is not a maximal hyperideal of R, then another prime hyperideal can be inserted above it. Thus, if dimR
is finite, then

dimR = sup{htRM | M is a maximal hyperideal o f R}

= sup{htRP | P is a prime hyperideal o f R}

From Remark 3.8 it clearly follows the following assertion.

Corollary 3.9. If R is a local commutative hyperring with the maximal hyperideal M, then dimR = htRM.

Theorem 3.10. Let S be a multiplicatively closed subset of R and P be a prime hyperideal of R such that P ∩ S = ∅.
Then htRP = htS−1RS−1P.
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Proof. By Proposition 2.11, it follows that S−1P is a prime hyperideal of S−1R. Let

P0 ⊂ P1 ⊂ . . . ⊂ Pn = P

be a chain of prime hyperideals of R. Again by Proposition 2.11, it follows that

Pe
0 ⊂ Pe

1 ⊂ . . . ⊂ Pe
n

is a chain of prime hyperideals of S−1R with Pe
n = Pe = S−1P, and therefore htRP ≤ htS−1RS−1P. On the other

side, if
Q0 ⊂ Q1 ⊂ . . . ⊂ Qn

is a chain of prime hyperideals of S−1R with Qn = Pe, then using Propositions 2.11 and 2.5, we get that

Qc
0 ⊂ Qc

1 ⊂ . . . ⊂ Qc
n

is a chain of prime hyperideals of R with Qc
n = Pec = P. So we have htS−1RS−1P ≤ htRP. Therefore, it follows

that htRP = htS−1RS−1P.

Combining the previous results, we get now the following important consequence.

Corollary 3.11. For a prime hyperideal P of a commutative hyperring R, it follows that

htRP = htRP S−1P = dim(RP).

Proof. According to Remark 2.10, we know that RP = S−1R is a local hyperring with the maximal hyperideal
S−1P. Hence, by Corollary 3.9 and Theorem 3.10, it follows that htRP = htRP S−1P = dim(RP).

Theorem 3.12. Let R be a commutative hyperring and I be a hyperideal of R. Then the dimension dim(R/I) of the
quotient hyperring R/I is equal to the supremum of the lengths of chains P0 ⊂ P1 ⊂ . . . ⊂ Pn of prime hyperideals of
R, where all Pi, 0 ≤ i ≤ n, contain I, if this supremum exists, and it is∞, otherwise.

Proof. It is well known that there exists a biunivocal correspondence between chains of prime hyperideals
in a quotient hyperring of R and chains of prime hyperideals of R. In particular, there is a biunivocal
correspondence between chains of prime hyperideals of the quotient hyperring R/I, where I is a proper
hyperideal of R, and chains of prime hyperideals of R containing I. It means that a chain of prime hyperideals
of R/I has the form

P0/I ⊂ P1/I ⊂ . . . ⊂ Pn/I,

where P0 ⊂ P1 ⊂ . . . ⊂ Pn is a chain of prime hyperideals of R, with I ⊆ P0.
Now we can conclude that, dim(R/I) is equal to the supremum of lengths of chains P0 ⊂ P1 ⊂ . . . ⊂ Pn of
prime hyperideals of R, where all Pi, 0 ≤ i ≤ n, contain I.

Theorem 3.13. Let R be a commutative hyperring and P be a prime hyperideal of R. Then

htRP + dim(R/P) ≤ dimR.

Proof. First, we notice that, if P0 ⊂ P1 ⊂ . . . ⊂ Pn is a chain of prime hyperideals of R, with Pn = P, and
P′0 ⊂ P′1 ⊂ . . . ⊂ P′h is another chain of prime hyperideals of R, with P′0 = P, then

P0 ⊂ P1 ⊂ . . . ⊂ Pn ⊂ P′1 ⊂ P′2 ⊂ . . . ⊂ P′h

is a chain of prime hyperideals of R of length n + h. Based on this note and on Theorem 3.12, it follows that
htRP + dim(R/P) ≤ dimR.
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4. Height of Prime Hyperideals in Noetherian/Artinian Hyperrings

After recalling some fundamental results concerning Noetherian/Artinian hyperrings, we present some
auxiliary results regarding the prime hyperideal and we conclude with one theorem that gives some
information about the height of a minimal prime hyperideal over a principal hyperideal in a Noetherian
hyperring.

Definition 4.1. ([16]) A hyperring R is said to be Noetherian if it satisfies the ascending chain condition on
hyperideals of R: for every ascending chain of hyperideals I1 ⊆ I2 ⊆ I3 ⊆ . . . there is N ∈N such that In = IN,
for every natural number n ≥ N (this is equivalent with saying that, every ascending chain of hyperideals
has a maximal element).

Definition 4.2. ([16]) A hyperring R is said to be Artinian if it satisfies the descending chain condition on
hyperideals of R: for every descending chain of hyperideals I1 ⊇ I2 ⊇ I3 ⊇ . . . there is N ∈ N such that
In = IN, for every natural number n ≥ N (this is equivalent with saying that, every descending chain of
hyperideals has a minimal element).

Corollary 4.3. ([16]) Let R be a hyperring in which the zero hyperideal is a product M1M2 . . .Mn of (not necessarily
distinct) maximal hyperideals. Then R is Noetherian if and only if it is Artinian.

Proposition 4.4. ([16]) In a Noetherian hyperring R, the following assertions hold.

i) Every hyperideal has a primary decomposition.

ii) Every hyperideal contains a power of its radical.

iii) The nilradical is nilpotent.

Proposition 4.5. ([16]) Let R be an Artinian hyperring.

i) Every prime hyperideal of R is maximal.

ii) R has only a finite number of maximal hyperideals.

A connection between Noetherian and Artinian hyperrings is expressed in the following result.

Theorem 4.6. ([16]) A hyperring R is Artinian if and only if it is Noetherian and dim(R) = 0.

Lemma 4.7. Let R be a commutative Noetherian hyperring and let P be a minimal prime hyperideal over a proper
hyperideal I of R. Let S be a multiplicatively closed subset of R such that P ∩ S = ∅. Then S−1P is a minimal prime
hyperideal over the hyperideal S−1I of S−1R.

Proof. We use the extension and contraction notations together with the natural hyperring homomorphism
R→ S−1R. By Proposition 2.11, we know that S−1P is a prime hyperideal of S−1R and S−1I ⊆ S−1P.

Suppose that S−1P is not a minimal prime hyperideal over S−1I. Then, by Lemma 3.7, there exists a
prime hyperideal Q′ of S−1R such that S−1I ⊆ Q′ ⊆ S−1P. Again, according with Proposition 2.11, there
exists a prime hyperideal Q of R such that Q ∩ S = ∅ and S−1Q = Qe = Q′. Now using Proposition 2.5, we
obtain that

I ⊆ Iec
⊆ (Q′)c = Qec = Q ⊂ Pec = P,

meaning that there exists another prime hyperideal Q of R over I, contrary to the fact that P is a minimal
prime hyperideal over I. Thus, the supposition is false.

Lemma 4.8. Let I be a decomposable hyperideal of a commutative hyperring R and P be a prime hyperideal of R.
Then I ⊆ P and P is a prime hyperideal, which is a minimal (with respect to inclusion) prime hyperideal containing I
among all prime hyperideals of R if and only if P is a minimal prime hyperideal over I.
In particular, the minimal prime hyperideal P, which contains I, belongs to I.
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Proof. Let
I = Q1 ∩Q2 ∩ . . . ∩Qn, with r(Qi) = Pi, i = 1, 2, . . . ,n

be a minimal primary decomposition of I, where all hyperideals Pi belong to I. Hence I ⊆ P if and only if
P = r(P) ⊇ r(I) = ∩n

i=1r(Qi) = ∩n
i=1Pi, equivalently with P j ⊆ P, for some j, 1 ≤ j ≤ n.

Now suppose that P is minimal among all prime hyperideals that contain I. Then by the above argument,
P′ ⊆ P, for some P′ that belongs to I. But P is minimal with respect to inclusion, thus P = P′.

Conversely, suppose that P is a minimal prime hyperideal over I. Then there exists a minimal (with
respect to inclusion) prime hyperideal P′ containing I and P′ ⊆ P. Again, by the above argument, there
exists P′′ that belongs to I such that P′′ ⊆ P′. Then P′′ ⊆ P′ ⊆ P. Since P is a minimal prime hyperideal over
I, we must have P = P′ = P′′. Therefore P = P′ is a minimal prime hyperideal containing I.

Theorem 4.9. Let R be a commutative Noetherian hyperring in which every prime hyperideal is maximal. Then

i) R contains a finite number of maximal hyperideals.

ii) R is an Artinian hyperring.

Proof. i) Let M be a maximal hyperideal of R. Since every prime hyperideal of R is maximal, M must be a
minimal prime hyperideal containing 0 and based on Lemma 4.8, M belongs to 0. Hence

{prime hyperideals o f R} ⊆ {prime hyperideals belon1in1 to 0} ⊆ {prime hyperideals o f R}.

Therefore {prime hyperideals belon1in1 to 0} = {prime hyperideals o f R} and it is a finite set, because R is a
Noetherian hyperring.

ii) Let M1,M2, . . . ,Mn be all maximal hyperideals of R (that are also minimal prime hyperideals of R). It
follows that r(0) =

⋂n
i=1 Mi. By Proposition 4.4, the zero hyperideal contains a power of its radical, so there

exists t ∈N such that r(0)t = 0. Hence

Mt
1Mt

2 . . .M
t
n ⊆ (

n⋂
i=1

Mi)t = r(0)t = 0,

meaning that Mt
1Mt

2 . . .M
t
nR = 0. Since R is a Noetherian hyperring, according with Corollary 4.3, we

deduce that R is also an Artinian hyperring.

Based on all these auxiliary results, we are now in the position to prove main theorem of this section,
similarly to the Krull’s principal ideal theorem in rings theory.

Theorem 4.10. Let R be a commutative Noetherian hyperring and let a ∈ R be a non-unit element. Let P be a
minimal prime hyperideal over the principal hyperideal < a > of R. Then htRP ≤ 1.

Proof. Take S = R \ P as a multiplicatively closed subset of R. Then by Remark 2.10, RP = S−1R is a local
hyperring with the maximal hyperideal S−1P. Since P is a minimal prime hyperideal over < a >, it follows
that S−1P is a minimal prime hyperideal of < a > RP = S−1 < a >. On the other hand, we know by Corollary
3.11 that htRP S−1P = htRP.

It is therefore enough to prove this theorem, assuming the additional hypotheses that R is a local
hyperring, having M as the unique maximal hyperideal, and P = M.

Suppose, by absurd, that htRM > 1. Thereby there exists a chain Q′ ⊂ Q ⊂ M of prime hyperideals of R
of length 2. Since M is a minimal prime hyperideal over < a > and also the unique maximal hyperideal of
R, it follows that M/ < a > is the unique prime hyperideal of R/ < a >. Therefore, by Theorem 4.9 part ii),
the hyperring R/ < a > is an Artinian local hyperring.

By using the extension and contraction notations together with the natural hyperring homomorphism
R → S−1Q = RQ, it is easy to see that (Qn)ec is a Q-primary hyperideal of R and, for each n ∈ N, we have
(Qn+1)ec

⊆ (Qn)ec. Hence

(Q1)ec+ < a > / < a >⊇ (Q2)ec+ < a > / < a >⊇ . . . ⊇ (Qn)ec+ < a > / < a >⊇ . . .
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is a descending chain of hyperideals in the Artinian hyperring R/ < a >. Thus there exists m ∈N such that
(Qm)ec+ < a >= (Qm+1)ec+ < a >.

Now set r ∈ (Qm)ec; using Theorem 2.3, we have r = s + ac, for some s ∈ (Qm+1)ec and c ∈ R. Then
ac = r− s ∈ (Qm)ec, which is a Q-primary hyperideal of R. Since a < Q and M is a minimal prime hyperideal
over < a >, it follows that c ∈ (Qm)ec. We get then that

(Qm)ec = (Qm+1)ec + a(Qm)ec.

Hence, by Corollary 2.9, we have (Qm)ec = (Qm+1)ec. Now if we turn back to the hyperring RQ and use
Proposition 2.5 and the property of the extension saying that (I1I2)e = Ie

1Ie
2, we obtain that

(Qe)m = (Qm)e = (Qm)ece = ((Qm)ec)e = (Qm+1)ec)e = (Qe)m+1.

Using now Nakayama’s Lemma, we conclude that (Qe)m = 0.
Thus, in the local hyperring RQ, the maximal hyperideal Qe is nilpotent, so it is clear that Qe is contained

in every prime hyperideal of RQ. But this contradicts the fact that Q′e ⊂ Qe is a chain of prime hyperideals
of RQ. So the assumption is faulse, meaning that htRP ≤ 1.

5. Conclusions and Future Works

Theory of hyperrings has its origin in the years 50’s, when the French mathematician Mark Krasner
[9] used them as a tool in the theory of approximation of valued fields. Later on, the Greek school
represented by Stratigopoulos [20] and Mittas [13, 14] have initiated the general study of these algebraic
hyperstructures, investigated later on and nowadays also by Massouros [11], Spartalis [18, 19], Vougiouklis
[21], Jančić-Rašović [1, 6, 7], Mirvakili et al. [12], etc.

As for the corresponding algebraic structures-the rings, in this paper we define and present several
properties of the height of a prime hyperideal in a Krasner hyperring. The height of a proper prime
hyperideal P of a hyperring R is the maximum (or ∞ if a such number does not exist) of the lengths of
the chains of distinct prime hyperideals contained in P. After presenting some results connecting the
notions of dimension of a hyperring and the height of a prime hyperideal, our study has foccused on prime
hyperideals in Noetherian (Artinian) hyperrings, concluded with a generalization of the Krull’s principal
ideal theorem in rings theory.

Our future work will include new results regarding the height of a hyperideal, besides them an extension
of Theorem 4.10 in the case of a finitely generated hyperideal with more than one generator.

References
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