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Abstract. The paper aims to propose the fixed point property(FPP for short) of smallest open neighbor-
hoods of the n-dimensional Khalimsky space and further, the FPP of a Khalimsky (K-, for short) retract.
Let (X, κn

X) be an n-dimensional Khalimsky topological space induced by the n-dimensional Khalimsky
space denoted by (Zn, κn). Although not every connected Khalimsky topological space (X, κn

X) has the
FPP, we prove that for every point x ∈ Zn the smallest open K-topological neighborhood of x, denoted by
SNK(x) ⊂ (Zn, κn), has the FPP. Besides, the present paper also studies the almost fixed point property (AFPP,
for brevity) of a K-topological space. In this paper all spaces (X, κn

X) := X are assumed to be connected and
|X | ≥ 2.

1. Introduction

Let us recall that a non-empty topological space X has the fixed point property if every continuous self-
map of X has at least one fixed point x ∈ X. In particular, the Lefschetz number has strongly contributed to
the study of the fixed point property (FPP for brevity) of topological spaces [20, 21]. By using this number,
we can recognize the existence of a fixed point of a continuous self-map of a compact topological space
X in terms of traces of the induced mappings on the homology groups of X, which implies that the FPP
related to the Lefschetz number [21] and the Nielsen number [2] is a topological and a homotopy equivalent
invariant. In many areas of applied science, for given a space X it is important to find fixed points of a
certain self-map of X. In particular, given a digital topological space (X,T) the study of the FPP of (X,T) can
be very useful to applied science [11].

Digital topology has a focus on studying various properties of n-dimensional digital spaces, which has
contributed to the study of some areas of computer sciences such as computer graphics, image processing,
approximation theory, mathematical morphology, optimization theory and so forth. Since digital topology
is partially related to lattice theory, for complete lattices, Tarski [24] proposed an important results: “Let
L be a complete lattice and consider a self order-preserving function f of L. Then the set of fixed points
of f in L is also a complete lattice”. But, since almost of all digital topological spaces are not complete

2010 Mathematics Subject Classification. Primary 37C25; secondary 32F17, 58C30
Keywords. fixed point property, almost fixed point property, Alexandroff topology, Khalimsky topology, Khalimsky retract, digital

topology
Received: 15 December 2016; Accepted: 17 May 2017
Communicated by Ljubiša Kočinac
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lattices, there is some difficulty in using the theorem. Roughly saying, in digital topology there are several
approaches for studying digital spaces. First of all, we can consider the Rosenfeld model [22, 23], Alexan-
droff topology with T0-separation axiom such as Khalimsky topology, Marcus-Wyse topology, axiomatic
locally finite topology [19] and so forth. Meanwhile, in relation to fixed point theory for digital spaces, it
turns out that the Rosenfeld model [22, 23] is not suitable for studying the FPP of digital spaces because
a digital image (X, k), |X | ≥ 2, does not have the FPP [23] associated with digitally k-continuous maps(see
[23], for more details, see [5–7]). Thus we conclude that we need to study the FPP of digital spaces by using
T0 Alexandroff topological structure. In fixed point theory, we may assume that all topological spaces are
connected and in particular, it is clear that a singleton has the FPP.

In (Zn, κn), we say that two distinct points x and y are (Khalimsky) adjacent if y ∈ SNK(x) or x ∈ SNK(y) [16],
where SNK(x) is the smallest open set containing the given point x. We say that a non-empty K-topological
space (X, κn

X) has the almost fixed point property (AFPP, for brevity) if every continuous self-map f of (X, κn
X)

has a fixed point x ∈ X or f (x) is K-adjacent to x, where (X, κn
X) is a subspace of (Zn, κn).

The paper aims to study both the FPP and the AFPP for Khalimsky topological spaces. Up to now,
since there is no homotopy or homology associated with the Lefschetz number which can be suitable for
studying the FPP of K-topological spaces [8], we can study these properties by using general topological
tools. The present paper studies the FPP and the AFPP by using general topological tools and some T0
Alexandroff topological structures, in particular, a K-retract.

Then we may raise the following two questions:{
(?1) What about the FPP of a Khalimsky topological retract ?
(?2) What about the AFPP of a Khalimsky topological space ?

}
To address these issues (?1) and (?2), we study the FPP of a retract in the category of Khalimsky

topological spaces.
The rest of the paper is organized as follows: Section 2 provides basic notions on K-topology. Section 3

studies the FPP of a K-topological retract. Section 4 investigates the AFPP of K-topological spaces. Section
5 concludes the paper with some remarks.

2. Preliminaries

As mentioned in Section 1, since almost of all studies of digital topologies are based on Alexandroff
topology and a digital space [13], let us recall basic notions of these structures. We say that a topological
space X is Alexandroff if for each point x ∈ X there is the smallest open set O(x) containing x [1]. We say
that a digital space is a pair (X,R) [13], where X is a nonempty set and R is a binary symmetric relation on X
such that X is R-connected. Here, we say that X is R-connected if for any two elements x and y of X there is
a finite sequence (xi)i∈[0,l]Z of elements in X such that x = x0, y = xl and (x j, x j+1) ∈ R for j ∈ [0, l − 1]Z. For
instance, it is clear that for two distinct points in an Alexandroff T0-space (X,T), we have an R-connected
relation between them induced by the connectedness of (X,T). Thus it is obvious that a K-topological space
is a digital space. Besides, we also have an R-connected relation for a digital space in terms of the digital
k-connectivity followed from the Rosenfeld model [22].
For a, b ∈ Z with a � b, the set [a, b]Z = {n ∈ Z | a ≤ n ≤ b}with 2-adjacency is called a digital interval [18].

To address the question (?1) in Section 1, we need to recall some notions on K-topology associated with
the FPP of K-topological spaces. To study fixed point theory from the viewpoint of Khalimsky topology,
we assume that every K-topological space is K-connected and in particular, it is obvious that a singleton
has the FPP. Unlike the study of the FPP for digital images in the graph theoretical approach in terms of
the Rosenfeld model [23], the FPP for K-topological spaces has its own feature which is quite different from
the FPP for digital images.

Motivated by the Alexandroff space [1], the Khalimsky line topology on Z is induced by the set {[2n −
1, 2n + 1]Z : n ∈ Z} as a subbase [1]. Furthermore, the product topology on Zn induced by (Z, κ) is called
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the Khalimsky product topology on Zn (or Khalimsky n-dimensional space) which is denoted by (Zn, κn) [15]. For
convenience, we say that a point x = (x1, x2, · · · , xn) ∈ Zn is pure open if all coordinates are odd; and it is pure
closed if each of the coordinates is even [16]. The other points in Zn are called mixed [16].

Furthermore, for a subset X ⊂ Zn we will consider (X, κn
X), n ≥ 1 [12] as a subspace of (Zn, κn), and it

is called a K-topological space. Besides, for a point p ∈ (Zn, κn), we denote by SNK(p) the smallest open
K-topological neighborhood of p [16]. For instance, for a point p := (p1, p2) in (Z2, κ2), its smallest open
neighborhood SNK(p) ⊂ Z2 is obtained [16], as follows (see Figure 1(1)-(3)):

SNK(p) :=



{p} if p is pure open,
{(p1 − 1, p2), p, (p1 + 1, p2)} if p is closed-open,
{(p1, p2 − 1), p, (p1, p2 + 1)} if p is open-closed,
[2m − 1, 2m + 1]Z × [2n − 1, 2n + 1]Z

if p = (2m, 2n),m,n ∈ Z,


(2.1)

where the point p := (p1, p2) is called closed-open (resp. open-closed) if p1 is even (resp. odd) and p2 is odd
(resp. even).

For a subset X ⊂ Zn and a point x ∈ (X, κn
X), we will use the notation SNK(x) ∩ X := SNK(x) in (X, κn

X)
again if there is no danger of the ambiguity.

(0, 0)

(1)

(0, 1) (1, 1)

(2) (3)

Figure 1: Configuration of SNK(p) depending on the given point p ∈ Z2. [16]

In (Zn, κn), let us now recall some properties of the K-continuity of maps between two K-topological
spaces [14–16] as follows: for two K-topological spaces (X, κn0

X ) := X and (Y, κn1
Y ) := Y, a function f : X → Y

is said to be K-continuous at a point x ∈ X if f is continuous at the point x from the viewpoint of Khalimsky
product topology as usual, i.e.

f (SNK(x)) ⊂ SNK( f (x)) (2.2)

because the spaces (X, κn0
X ) and (Y, κn1

Y ) are Alexandroff spaces. Furthermore, we say that a map f : X→ Y is
K-continuous if it is K-continuous at every point x ∈ X. In addition, we recall the notion of a K-homeomorphism
as follows: for two spaces (X, κn0

X ) and (Y, κn1
Y ), a map h : X → Y is called a K-homeomorphism if h is a

K-continuous bijection and further, h−1 : Y→ X is K-continuous [15].
By using the K-continuity of the map f , we obtain the K-topological category denoted by KTC [3], consist-

ing of the following two sets:
• the set of objects (X, κn

X), denoted by Ob(KTC);
• for every ordered pair of objects (X, κn0

X ) and (Y, κn1
Y ), the set of all K-continuous maps f : (X, κn0

X )→ (Y, κn1
Y )

as morphisms.

3. The fixed point property of a retract in the category of Khalimsky topological spaces

Let us now recall some basic notions and terminology for studying Khalimsky adjacency.
Let us recall the following terminology for studying the FPP of K-topological spaces.
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Definition 3.1. [12] Let (X, κn
X) := X be a K-topological space. Then we define the following: A simple K-path in X

is an injective and finite sequence [12] (xi)i∈[0,l]Z such that xi and x j are K-adjacent if and only if |i − j| = 1.
Furthermore, we say that a simple closed K-curve with l elements (xi)i∈[0,l−1]Z is a K-homeomorphic image of a
Khalimsky circle Z/lZ as a quotient topological space, where l is an even integer l ≥ 4 [17]. We denote it by
SCn,l

K := (xi)i∈[0,l−1]Z , l ≥ 4 [12] (see Figure 2(a)(1) and (2)).

In addition, for a point x ∈ (Z, κn) we use the notation AN(x) = {y ∈ Zn
| y is K-adjacent to x.} (see Figure

2(b)). Besides, we call AN(x) a Khalimsky adjacent neighborhood of x [12].

Remark 3.2. (1) Consider a simple K-path (X := (xi)i∈[0,m]Z ,m ≥ 3, κn
X). Then for a point xi ∈ X it is clear that

|SNK(xi)| = 3, |SNK(xi)| = 2, or |SNK(xi)| = 1 depending on i ∈ [0,m]Z.
(2) An unbounded simple K-path does not have the FPP because an unbounded simple K-path is K-homeomorphic

to the Khalimsky topological line (Z, κ) and in KTC the FPP is a K-topological invariant. To be specific, it is clear that
(Z, κ) does not have the FPP with the following map. Consider the self-map of (Z, κ) given by f (t) = t+2n,n ∈ Z\{0}.
While the map f is certainly a K-continuous map, we see that there is no point x ∈ Z such that f (x) = x.

(3) The n-dimensional Khalimsky topological space (Zn, κn) does not have the FPP.
(4) Any SCn,l

K does not have the FPP [8]. To be specific, consider a self-map of SCn,l
K := (xi)i∈[0,l−1]Z , l ≥ 4 given by

f (xi) = xi+2(mod l). While the map f is a K-continuous map, it has no fixed point.

To address the query (?1), we need to recall the notion of a retraction in KTC [4], as follows: we say that
a K-continuous map r : (X′, κn

X′ )→ (X, κn
X) is a K-retraction [4] if

(1) (X, κn
X) is a subspace of (X′, κn

X′ ), and
(2) r(a) = a for all a ∈ (X, κn

X).
Then we say that (X, κn

X) is a K-retract of (X′, κn
X′ ). Furthermore, we say that the point a ∈ X′ \ X is

K-retractable.
Hereafter, let us remind again that every K-topological space (X, κn

X) has the cardinality 1 � |X| � ∞ and
is K-connected. To address the issue (?1), we need the following:

Theorem 3.3. For every point x ∈ (Z2, κ2) SNK(x)(⊂ (Z2, κ2)) has the FPP.

Proof: Depending on the choice of the point x ∈ (Z2, κ2), SNK(x) is determined (see Figure 1(1)-(3) in
(Z2, κ2)), i.e. x can be a pure closed, a mixed or a pure open point. We prove combinatorially the FPP of
SNK(x) according to the point x as follows:

(Case 1) Let us consider any K-continuous self-map f of SNK(x), where x is a pure closed point.
(1-1) If x is mapped into x by the map f , then the proof is obviously completed.
(1-2) We may assume that x is mapped into x1 by the map f , where x1 is a mixed point in SNK(x).

For convenience, we may assume x := (0, 0) and x1 := (0, 1) (see Figure 2(b)(2)). Owing to the K-topological
structures of SNK(x) and SNK(x1), it is clear that f (SNK(x)) ⊂ SNK(x1) = {(−1, 1), x1, (1, 1)}. Then we need to
investigate the mapping of the element of SNK(x1) under f , as follows:
In case f (x1) = x1, the proof is completed.
In case f (x1) = i ∈ {(−1, 1), (1, 1)}, we should get f (i) = i because SNK(i) = {i}, which completes the proof.

(1-3) Assume that x is mapped into x2 by the map f , where x2 is a pure open point in SNK(x). Then,
owing to the K-topological structure of SNK(x2), it is clear f (SNK(x)) ⊂ SNK(x2) = {x2}. Hence we have the
point x2 as a fixed point of f .

Based on these cases (1-1)∼(1-3) and the property (2.2), we have the following:

(1-4) Assume a mixed point in SNK(x) is mapped into a pure closed point x by the map f . Then, according
to the cases (1-1)∼(1-3), the proof is completed.

(1-5) In case a mixed point in SNK(x) is mapped into a mixed point in terms of f . Then, according to the
cases (1-1)∼(1-3), the proof is completed.
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(1-6) In case a mixed point in SNK(x) is mapped into a pure open point under f . Then, according to the
cases (1-1)∼(1-3), the proof is completed.

(1-7) Assume a pure open point in SNK(x) is mapped into a pure closed point x by the map f . Then,
according to the cases (1-1)∼(1-3), the proof is completed.

(1-8) Assume a pure open point in SNK(x) is mapped into a mixed point under f . Then, according to the
cases (1-1)∼(1-3), the proof is completed.

(1-9) Assume a pure open point in SNK(x) is mapped into a pure open point in SNK(x) in terms of f .
Then, according to the cases (1-1)∼(1-3), the proof is completed.

(Case 2) Let us consider any K-continuous self-map f of SNK(x), where x is a mixed point (see Figure 1(2)).

(2-1) In case x is mapped into x by the map f , the proof is obviously completed.

(2-2) We may assume that x is mapped into a pure open point in SNK(x) by the map f .
For convenience, put x := (0, 1) and x2 := (1, 1) (see Figure 2(b)(2)). Owing to the K-topological structures
of SNK(x) and SNK(x2), it is clear that f (SNK(x)) ⊂ SNK(x2) = {x2}. Since we have f (x2) = x2, the proof is
completed.

Based on these cases (2-1)∼(2-2) and the property (2.2), we have the following:

(2-3) Assume a pure open point in SNK(x) is mapped into a mixed point x by the map f . Then the given
mixed point x should be a fixed point of f owing to the property (2.2).

(2-4) In case a pure open point in SNK(x) is mapped into a pure open in SNK(x) by the map f , according
to (2-1)∼(2-2), the proof is completed.

(Case 3) Let us consider any K-continuous self-map f of SNK(x), where x is a pure open point. Then the
proof is trivial owing to the K-continuity of the given map. �

By the method similar to the proof of Theorem 3.3, it is clear that in (Z, κ), SNK(x)(⊂ (Z, κ)) has the FPP.
As a generalization of Theorem 3.3, we obtain the following:

Corollary 3.4. For every point x ∈ (Zn, κn), SNK(x)(⊂ (Zn, κn)) has the FPP, n ∈ N.

In KTC we have the following property of which the study of the FPP of a K-retract [4] contributes to
fixed point theory in KTC.

Theorem 3.5. In KTC, let (A, κn
A) be a K-retract of (X, κn

X). If (X, κn
X) has the FPP, then (A, κn

A) also has the FPP,
where A need not be a singleton.

Proof: Consider the inclusion map i : (A, κn
A) → (X, κn

X) and the retraction r : (X, κn
X) → (A, κn

A). Under
the hypothesis, to prove the FPP of (A, κn

A), take any K-continuous self-map f of (A, κn
A). Then consider

the composition i ◦ f ◦ r := h which is a K-continuous self-map of (X, κn
X) because K-continuity supports

the composite. By the hypothesis, we should have a point x ∈ X such that h(x) = x. Then it is clear that
h(x) ∈ A. Owing to the K-retraction from (X, κn

X) to (A, κn
A), the point x should be an element of A. Based on

this approach, we can take a point x in (A, κn
A) such that h(x) = i ◦ f ◦ r(x) = i ◦ f (x) = f (x) because of the

property of the inclusion map i. �
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Figure 2: (a) SC2,4
K and SC2,8

K ; (b) ANK(x) in (Z2, κ2), where x can be a pure open, a pure closed and a mixed point; (c) some examples
for the FPP in KTC; (d-e) explanation of the FPP of K-retracts.

Example 3.6. (1) Consider the space (T1, κ2
T1

) in Figure 2(d)(2), T1 := {1, 2, 3, 4, 5}. Then we prove that (T1, κ2
T1

) has
the FPP. Owing to the K-topological structure of (T1, κ2

T1
), we have roughly several kinds of K-continuous self-maps

f of T1 as follows:
(Case 1) In case f (1) = 1, the proof is completed.
(Case 2) In case f (1) = j ∈ {2, 3, 4, 5}, since SNK(1) = T1 in (T1, κ2

T1
) and SNK( j) = { j}, j ∈ {2, 3, 4, 5}, it is clear that

the point j should be a fixed point of f .
(Case 3) In case f ( j) = 1, j ∈ {2, 3, 4, 5}, depending on the map f , according to Case (1)∼(2), the proof is completed.
(Case 4) The other cases such as the case that a pure open point is mapped into a pure open point by f are also proved
by using the methods similar to the Cases (1)∼(3).

As another proof by using Theorems 3.3 and 3.5, for x = (0, 0) in Figure 2(d)(1) we can consider a map
r : SNK(x)→ T1 given by r({(−1, 0), (0,−1), (1, 0), (0, 1)}) = {x} and r(i) = i, i ∈ {1, 2, 3, 4, 5} (see Figure 2(d)(1) and
(2)), where x = (0, 0) = 1 in Figure 2(d)(2). Then it is clear that r is a K-retraction. By Theorems 3.3 and 3.5, the
proof is completed.

(2) Consider the space (T2, κ2
T2

) in Figure 2(c), T2 := {1, 2, 3, 4, 5, 6}. Then we prove that (T2, κ2
T2

) does not have
the FPP as follows: Owing to K-topological structure of (T2, κ2

T2
), consider the self-maps 1 of T2 as follows:
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1({1, 5, 6}) = {3}, 1(3) = 5, 1(2) = 4, 1(4) = 2.

While 1 is a K-continuous map, it cannot have any fixed point.
Indeed, we can observe that the space in Figure 2(c) is not a K-retract of ([0, 3]Z × [0, 2]Z, κ2

[0,3]Z×[0,2]Z
).

(3) Consider the space (T3, κ2
T3

) in Figure 2(d)(2), T3 := {1, 2, 3, 4}. Then we prove that (T3, κ2
T3

) has the FPP as
follows: Owing to K-topological structure of (T3, κ2

T3
), we prove that (T3, κ2

T3
) is a K-retract of (SNK(02), κ2

SNK(02))
by mapping both all mixed points and the point (−1, 1) in SNK(02) into to the point 02 and the other points remain,
where 02 := (0, 0). Then it is clear that the map r is a K-retraction. By Theorem 3.3, since (SNK(02), κ2

SNK(02)) has the
FPP, by Theorem 3.5, the proof is completed.

Remark 3.7. While the K-topological space (T4 := {1, 2, 3}, κ2
T4

) in Figure 2(e) is not a simple K-path, it has the FPP.

Proof: We see that (T4 := {1, 2, 3}, κ2
T4

) is a K-retract of ([0, 1]Z × [0, 1]Z := Y, κ2
Y) in terms of the map

r : (Y, κ2
Y)→ (T4, κ2

T4
) given by

r(i) = i, i ∈ {1, 2, 3} and r(4) ∈ {1, 2, 3}.

Then it is clear that r is a K-retraction. By using the method similar to the assertion of Example 3.6(3), since
(Y, κ2

Y) has the FPP, by Theorem 3.5, the proof is completed.
Meanwhile, we can also prove the FPP of (T4 := {1, 2, 3}, κ2

T4
) without using Theorem 3.5, as follows: let us

consider any K-continuous self-maps h of (T4, κ2
T4

) in such a way:
In case h(1) = 1, the proof is completed.
In case h(1) = 2, we should take h({2, 3}) ⊂ {2, 3}.
Then if h(2) = 2, the proof is completed and if h(2) = 3, then we should take h(3) = 3 because of the
K-continuity of h at the point 3. �

4. The AFPP of K-topological spaces

This section studies the AFPP of a K-topological space and addresses the issue (?2) posed in Section 1.

Definition 4.1. We say that a space (X, κn
X) := X in KTC has the AFPP if every K-continuous self-map f of X has a

point x ∈ X such that f (x) = x or f (x) is K-adjacent to x.

Let us prove the K-homeomorphic invariant of the AFPP.

Proposition 4.2. The AFPP in KTC is a K-homeomorphic invariant.

Proof: Suppose that (X, κn
X) has the AFPP and there exists a K-homeomorphism h : (X, κn

X) → (Y, κn
Y).

Then we prove that (Y, κn
Y) has the AFPP. Assume that 1 is any K-continuous self-map of (Y, κn

Y). Then
consider the composition h ◦ f ◦ h−1 := 1 : (Y, κn

Y) → (Y, κn
Y), where f is a K-continuous self-map of (X, κn

X).
Owing to the hypothesis, assume that x ∈ X is an almost fixed point for a K-continuous self-map f of (X, κn

X).
Since h is a K-homeomorphism, there is a point y ∈ Y such that h(x) = y. Let us consider the mapping

f (x) = h−1
◦ 1 ◦ h(x) = h−1(1(h(x))) = h−1(1(y)). (4.1)

Thus, from (4.1) we see h( f (x)) = 1(y) and further, owing to the hypothesis of the AFPP of (X, κn
X) and the

K-homeomorphism between (X, κn
X) and (Y, κn

Y), (i.e. the preservation of the K-connectedness by h)

1(y) = h( f (x)) ∈ h(AN(x)) = AN(h(x)) = AN(y), (4.2)

which implies that the point h(x) is an almost fixed point of the map 1, which implies that (Y, κn
Y) has the

AFPP. �
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Theorem 4.3. In KTC, let (A, κn
A) be a K-retract of (X, κn

X). If (X, κn
X) has the AFPP, then (A, κn

A) has also the AFPP,
where A need not be a singleton.

Proof: Consider the inclusion map i : (A, κn
A) → (X, κn

X) and the retraction r : (X, κn
X) → (A, κn

A). Under
the hypothesis, to prove the AFPP of (A, κn

A), take any K-continuous self-map f of (A, κn
A). Then consider

the composition i ◦ f ◦ r := h which is a K-continuous self-map of (X, κn
X) because the K-continuity supports

the composite. Under the hypothesis, we have a point x ∈ X such that h(x) ∈ AN(x). Then it is clear that
h(x) ∈ A. Owing to the K-retraction from (X, κn

X) to (A, κn
A), the point x should be an element of A. Based on

this approach, take a point x in (A, κn
A) such that

h(x) = i ◦ f ◦ r(x) = i ◦ f (x) = f (x)

because of the property of the inclusion map i. Thus we have f (x) ∈ AN(x). �

Remark 4.4. Every SCn,l
K does not have the AFPP.

In view of Theorem 4.3 and Remark 4.4, we obtain the following:

Corollary 4.5. Not every compact and connected K-topological space has the AFPP.

5. Summary and further work

We have studied the FPP of a K-retract in KTC, which can be helpful to study FPP for digital spaces.
Furthermore, in n-dimensional Khalimsky space we proved that SNK(x) ⊂ (X, κn

X) has the FPP, where SNK(x)
is the smallest open K-topological neighborhood of x. Besides, we have proved that not every compact
K-topological space has the FPP and the AFPP.
The recent paper [9] developed a new type of locally finite space motivated by the ALF-space in [19].
However, the notion of a boundary of a given element was missing in Definition 2.5 of [9]. Thus we need
to add it as follows:
[Definition of a boundary of a given element of an SST(a Space Set Topological space)]: Let C := (X,N, dim)
be an AC complex, where X := {ci

j |i ∈ M, j ∈ M′i }. For each m-cell cm in X its boundary, denoted by ∂({cm
})

(or ∂cm), is defined as follows:
∂cm := {ci

j | c
i
j is adjacent to (or joins) cm, i � m}.

As a further work, we can study the FPP for category of topological graphs based on KTC and the product
property of the FPP of Khalimsky topological spaces. Besides, by using the several types of continuities in
[4], we can investigate the FPP of the given categories in [4, 10].
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