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Abstract. Rough set theory is an important tool for data mining. Lower and upper approximation operators
are two important basic concepts in the rough set theory. The classical Pawlak rough approximation
operators are based on equivalence relations and have been extended to relation-based generalized rough
approximation operators. This paper presents topological properties of a pair of relation-based generalized
rough approximation operators. A topology is induced by the pair of generalized rough approximation
operators from an inverse serial relation. Then, connectedness, countability, separation property and
Lindelöf property of the topological space are discussed. The results are not only beneficial to obtain
more properties of the pair of approximation operators, but also have theoretical and actual significance to
general topology.

1. Introduction

Rough set theory was proposed by Pawlak to conceptualize, organize and analyze various types of
data in data mining. The rough set method is especially useful for dealing with vagueness and granularity
in information systems. It deals with the approximation of an arbitrary subset of a universe by two
definable subsets which are referred to as the lower and upper approximations. By using the lower and
upper approximations of decision classes, knowledge hidden in information systems may be unraveled
and expressed in the form of decision rules. The lower and upper approximation operators in the Pawlak’s
rough set model [15] are induced by equivalence relations or partitions. However, the requirement of an
equivalence relation or partition in the Pawlak’s rough set model may limit the applications of the rough set
model. Then, many authors have generalized the notion of approximation operators by using more general
binary relations [3, 23, 25, 30, 31], by employing coverings [1, 2, 32, 35], by utilizing adjoint operators [14],
or by considering the fuzzy environment [5, 12, 29].

Topology is a branch of mathematics. There exist near connections between topology and rough set
theory. Many authors investigated topological structures of rough sets [8–10, 16–22, 27, 28, 31, 33, 35].
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Skowron explored the topic of topology in information systems [22]. Wiweger extended the Pawlak rough
sets to topological rough sets [27]. Yao discussed the Pawlak’s rough sets through topological properties
of lower and upper approximation operations [31]. Lin and Liu investigated axioms for approximation
operators within the framework of topological spaces [10]. Wu and Mi examined topological structure of
generalized rough sets in infinite universes of discourse [28]. Polkowski defined the hit-or-miss topology on
rough sets and proposed a scheme to approximate mathematical morphology within the general paradigm
of soft computing [17, 18]. Kondo presented topological properties of a type of relation-based rough sets
[8]. Qin et al. [20], Zhang et al. [33] and Li et al. [9] presented a further investigation of the pair of
relation-based approximation operators studied in [8]. Pomykala studied topological properties of two
pairs of covering-based rough set approximation oprators [19]. Zhu explored a type of covering-based
rough sets by topological approach [35]. Zhang et al. presented topological properties of four pairs of
relation-based generalized approximation operators [34].

The purpose of this paper is to discuss topological properties of a pair of relation-based generalized
approximation operators. In Section 2, we present definitions and properties of the operators. In Section
3, we investigate connectedness, countability, separation property and Lindelöf property of the topological
space induced by the operators, and present relationships between the connectedness of topological space
and the existence of definable sets in rough sets to show an application of the results on topological structure
of the relation-based generalized rough approximation operators.

2. Definitions and Properties of Generalized Approximation Operators

Suppose U is a non-empty set called the universe, and P(U) is the power set of U. For X ⊆ U, −X is the
complement of X in U. We do not restrict the universe to be finite.

Let U be a nonempty set and R a binary relation on U. For any (x, y) ∈ U × U, if (x, y) ∈ R, then we
say x has relation R with y, and denote this relationship as xRy. For a binary relation R, {(y, x)|(x, y) ∈ R} is
denoted by R−1. For any x ∈ U, we call the set {y ∈ U|xRy} the successor neighborhood of x in R and denote
it as Rs(x), and the set {y ∈ U|yRx} the predecessor neighborhood of x in R and denote it as Rp(x). Let R be a
binary relation on U.

If for any x ∈ U, there exists a y ∈ U such that yRx, then R is referred to as an inverse serial relation. In
other words, if ∪{Rs(x)|x ∈ U} = U, then R is inverse serial.

If for any x ∈ U, xRx, then R is referred to as a reflexive relation. In other words, if for any x ∈ U,
x ∈ Rs(x), then R is reflexive.

If for any x, y ∈ U, xRy ⇒ yRx, then R is referred to as symmetric. In other words, if for any x, y ∈ U,
y ∈ Rs(x)⇒ x ∈ Rs(y), then R is symmetric.

If for any x, y, z ∈ U, xRy and yRz ⇒ xRz, then R is referred to as transitive. In other words, if for any
x, y ∈ U, y ∈ Rs(x)⇒ Rs(y) ⊆ Rs(x), then R is transitive.

If R is reflexive, symmetric and transitive, then R is referred to as an equivalence relation on U.
Clearly, a binary relation R is inverse serial if and only if {Rs(x)|x ∈ U} is a cover of U. It is easy to see

that a reflexive relation is inverse serial, but the converse does not hold. Besides reflexive, symmetric and
transitive relations, inverse serial relation is ubiquitous in real life. We give two examples.

Example 2.1. An incomplete information system S = (U,AT) is presented in Table 1, where U = {x1, x2, · · · , x6},
AT = {a, b} is the conditional attribute set, a, b stand for systolic pressure, diastolic pressure, respectively.
Va = {H, N, L}, Vb = {H, N, L}, where H, N, and L stand for high, normal and low, respectively. For any
c ∈ AT, c : U→ Vc , i.e., c(x) ∈ Vc for all x ∈ U.
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Table 1: An information system.
U a b
x1 {H, N} {N}
x2 {H, N} {N}
x3 {L, N} {H, N}
x4 {L} {L}
x5 {H} {H,N}
x6 {H, N} {H}

Define a binary relation R1
A on U by x R1

A y if and only if (−c(x)) ⊆ c(y) for all c ∈ A (A ⊆ AT), which is
called strong left orthogonality. Define a binary relation R2

A on U by x R2
A y if and only if c(x) ∩ (−c(y)) , ∅

for all c ∈ A (A ⊆ AT), which is called weak right negative similarity [14].
In Table 1, we have R1

{a} = {(x1, x3), (x1, x4), (x2, x3), (x2, x4), (x3, x1), (x3, x2), (x3, x5), (x3, x6), (x4, x1), (x4, x2),
(x4, x6),(x5, x3), (x6, x3), (x6, x4)}. R2

{b} = {(x1, x4), (x1, x6), (x2, x4), (x2, x6), (x3, x1), (x3, x2), (x3, x4), (x3, x6), (x4, x1),
(x4, x2), (x4, x3), (x4, x5), (x5, x1), (x5, x2), (x5, x4), (x5, x6), (x6, x1), (x6, x2), (x6, x4)}. Hence R1

{a} is inverse serial and
symmetric, and R1

{a} is neither reflexive nor transitive. R2
{b} is inverse serial, and R2

{b} is not reflexive, symmetric
or transitive.

Example 2.2. Let U = {a, b, c, d, e, f , 1} be a small class of students. The class has elected its leader. Define a
binary relation on U by:

xRy if and only if x chooses y as the leader.
Suppose that the election result is R = {(a, a), (a, c), (b, a), (b, c), (c, b), (c, d), (d, e), (d, f ), (e, f ), (e, e), ( f , a), ( f , c),
(1, b), (1, 1)}. Then R is inverse serial, and R is not reflexive, symmetric or transitive.

Yao has generalized the Pawlak rough set model by using general binary relations [31], and presented
the pair of relation-based generalized approximation operators.

Definition 2.3. ([31]) Let R be a binary relation on U. Define a pair of approximation operators (apr′′, apr′′)
by: for any X ⊆ U,

apr′′(X) = −apr′′(−X) = {x|x ∈ Rs(y)⇒ Rs(y) ⊆ X} ∪ (− ∪ {Rs(x)|x ∈ U}),
apr′′(X) = ∪{Rs(x)|Rs(x) ∩ X , Ø}.

If R is an inverse serial relation, then apr′′(X) = {x|x ∈ Rs(y) ⇒ Rs(y) ⊆ X}. It is easy to obtain that the
approximation operators (apr′′, apr′′) are the classical Pawlak approximation operators if R is an equivalence
relation. We employ the next example to show that the approximation operators (apr′′, apr′′) have practical
applications.

Example 2.4. Continued from Example 2.2. For any z ∈ U, apr′′({z}) = ∪{Rs(x)|Rs(x) ∩ {z} , Ø}. Then, for
any y ∈ apr′({z})\{z}, there exists an x ∈ U such that y ∈ Rs(x) and Rs(x)∩ {z} , ∅. Hence {y, z} ⊆ Rs(x), which
implies that x chooses z and y in the meantime. Therefore, y is a competitor of z.

It is easy to obtain some properties of the pairs of approximation operators (apr′′, apr′′).

Proposition 2.5. [31] Let R be a binary relation on the universe U. Then, for any X,Y ⊆ U,
(1) apr′′(U) = U, apr′′(Ø) = Ø,
(2) if R is inverse serial, then apr′′(X) ⊆ X ⊆ apr′′(X),
(3) apr′′(X ∩ Y) = apr′′(X) ∩ apr′′(Y), apr′′(X ∪ Y) = apr′′(X) ∪ apr′′(Y),
(4) apr′′(apr′′(X)) ⊆ apr′′(X), apr′′(X) ⊆ apr′′(apr′′(X)),
(5) apr′′(X) = ∪x∈Xapr′′({x}) for all X , ∅.
(6) apr′′(X) = X⇔ apr′′(X) = X.
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The properties (∗∗) of a binary relation R was introduced in [34] as a necessary and sufficient condition
for apr′′ to be idempotent.

Definition 2.6. ([34]) R is said to have property (∗∗) if for any x, y ∈ U, whenever {u, v} ⊆ Rs(x) and
{v,w} ⊆ Rs(y), there exists a z ∈ U such that {u,w} ⊆ Rs(z).

Theorem 2.7. ([34]) Let R be a binary relation on the universe U. Then the following are equivalent:
(1) R satisfies (∗∗),
(2) apr′′(apr′′(X)) = apr′′(X) for all X ⊆ U,
(3) apr′′(apr′′(X)) = apr′′(X) for all X ⊆ U.

3. Topological Properties of the Generalized Upper (Lower) Approximation Operators

Topology is a theory with many applications not only in almost all branches of mathematics, but also in
many real life applications. Binary relation on a set is a simple mathematical model to which many real-life
data can be connected. There exist many results on the relationships between topological spaces and binary
relations. McCord and Stong presented that there is an isomorphism between partially ordered sets and
Alexandroff T0 topologies [11, 26]. Naturman extended the result to a duality between Alexandroff spaces
and preorders [13]. Skowron discussed topologies induced by binary relations in information systems
[22]. Šlapal represented ternary relations on a given set by topologies [24]. Girish and John discussed
the multiset topologies induced by multiset relations [7]. There are also some results on the topological
properties of the generalized approximation operators induced by binary relations. For example, Yao [30],
Kondo [8], Qin et al. [20], Zhang et al. [33] and Li et al. [9] discussed topological properties of the
type of approximation operators (apr, apr). Zhang et al. presented topological properties of four pairs of
relation-based generalized approximation operators [34], and gave necessary and sufficient conditions for
the relation-based generalized upper (lower) approximation operator to be a topological closure (interior)
operator. In this section, we will discuss topological properties of the pair of approximation operators
(apr′′, apr′′) induced by an inverse serial relation. For the basic topological concepts, we refer to [6].

Definition 3.1. ([4, 6]) Let U be a non-empty set and cl : P(U) → P(U). For any X,Y ⊆ U, consider the
following axioms:

(1) cl(Ø) = Ø,
(2) X ⊆ cl(X),
(3) cl(X ∪ Y) = cl(X) ∪ cl(Y),
(4) cl(cl(X)) = cl(X),
(5) cl(X) = ∪x∈Xcl({x}).

If cl satisfies (1)–(3), then cl is called a closure operator, and (U, cl) is called a closure space [4]. If cl satisfies
(1)–(4), that is, cl satisfies Kuratowski closure axiom, then cl is called a topological closure operator [6]. If a
closure operator cl satisfies (5), then cl is called a quasi-discrete closure operator [4].

In fact, in a closure space (U, cl), it is easy to prove that τ(cl) ={−X|cl(X) = X} is a topology. Similarly, the
topological interior operator can be defined by corresponding axioms.

Proposition 3.2. ([34]) Let R be a binary relation on U. Then the following are equivalent:
(1) τ(apr′′) = {X ⊆ U|apr′′(X) = X} = {−X|apr′′(X) = X} is a topology,
(2) R is inverse serial,
(3) apr′′ is a closure operator,
(4) apr′′ is a quasi-discrete closure operator.

To present a necessary and sufficiency condition for apr′′ (apr′′) being a topological closure (interior)
operator, we define a binary relation R′ from the binary relation R by:

xR′y if and only if there exists a z ∈ U such that {x, y} ⊆ Rs(z).
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Proposition 3.3. ([34]) Let R be a binary relation on U. Then the following are equivalent:
(1) R′ is an equivalence relation,
(2) R is inverse serial and satisfies (∗∗),
(3) apr′′ is a topological interior operator,

(4) apr′′ is a topological closure operator.

By Proposition 3.3, the inverse seriality and the property (∗∗) are necessary and sufficiency conditions
for apr′′ (apr′′) to be a topological closure (interior) operator. In order to present more properties of the
topological space (U, τ(apr′′)), we define another binary relation.

Definition 3.4. Let R be a binary relation on U. For any x, y ∈ U, x, y are said to be linked if there exist
a1, a2, · · · , an and b1, b2, · · · , bn−1 of U such that x = b0R−1a1, a1Rb1, b1R−1a2, a2Rb2, · · · , bn−1R−1an and anRy = bn.
In this case, we write xR̃y.

Proposition 3.5. Let R be a binary relation on U.
(1) If R is inverse serial, then R̃ is reflexive.
(2) R̃ is symmetric.
(3) R̃ is transitive.

Proof. (1) For any x ∈ U, since R is inverse serial, there exists a y ∈ U such that x ∈ Rs(y). Then xR−1y and
yRx. Hence xR̃x. It means that R̃ is reflexive.

(2) For any x, y ∈ U, if xR̃y, then there exist a1, a2, · · · , an and b1, b2, · · · , bn−1 of U such that x = b0R−1a1,
a1Rb1, b1R−1a2, a2Rb2, · · · , bn−1R−1an and anRy = bn. Then we have y = bnR−1an, anRbn−1, bn−1R−1an−1, · · · ,
b1R−1a1, a1Rx. It follows that yR̃x. Thus, R̃ is symmetric.

(3) For any x, y, z ∈ U, if xR̃y and yR̃z, then there exist a1, a2, · · · , an and b1, b2, · · · , bn−1 such that x =
b0R−1a1, a1Rb1, b1R−1a2, a2Rb2, · · · , bn−1R−1an and anRy = bn, and we can find c1, c2, · · · , cm and d1, d2, · · · , dm−1
of U such that yR−1c1, c1Rd1, d1R−1c2, c2Rd2, · · · , dn−1R−1cn and cnRz. Then we have x = b0R−1a1, a1Rb1, b1R−1a2,
a2Rb2, · · · , bn−1R−1an and anRy = bn, yR−1c1, c1Rd1, d1R−1c2, c2Rd2, · · · , dn−1R−1cn and cnRz. Consequently,
xR̃z.

From Proposition 3.5, we can obtain that if R is inverse serial, then R̃ is an equivalence relationship, i.e.,
U/R̃ , {R̃s(x)|x ∈ U} is a partition of U and [x]R̃ = R̃s(x) is an equivalence class.

Proposition 3.6. If R is inverse serial, then for any x ∈ U
(1) apr′′([x]R̃) = [x]R̃,

(2) [x]R̃ is an open and closed subset of (U, τ(apr′′)).

Proof. (1) According to Proposition 2.5(2), we obtain apr′′([x]R̃) ⊆ [x]R̃. For any y ∈ [x]R̃, there exist
a1, a2, · · · , an and b1, b2, · · · , bn−1 of U such that x = b0R−1a1, a1Rb1, b1R−1a2, a2Rb2, · · · , bn−1R−1an and anRy = bn.
For any z ∈ U with y ∈ Rs(z), we have Rs(z) ⊆ [x]R̃. Indeed, for any u ∈ Rs(z), we get yR−1z and zRu. Then,
there exist a1, a2, · · · , an and b1, b2, · · · , bn−1, y of U such that x = b0R−1a1, a1Rb1, b1R−1a2, a2Rb2, · · · , bn−1R−1an,
anRy, yR−1z and zRu. It implies that u ∈ [x]R̃. Hence we have y ∈ apr′′([x]R̃). Therefore, [x]R̃ ⊆ apr′′([x]R̃).

(2) By (1), [x]R̃ is an open set. Then, according to Proposition 2.5(6), we deduce that [x]R̃ is a closed
set.

Proposition 3.7. If R is inverse serial, then
(1) for any X ∈ τ(apr′′) and x ∈ X, [x]R̃ ⊆ X,
(2) {[x]R̃} is an open neighborhood base of x ∈ U.
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Proof. (1) For any y ∈ [x]R̃, there exist a1, a2, · · · , an and b1, b2, · · · , bn−1 of U such that x = b0R−1a1, a1Rb1,
b1R−1a2, a2Rb2, · · · , bn−1R−1an and anRy = bn. Then {x, b1} ⊆ Rs(a1), {b1, b2} ⊆ Rs(a2), · · · , {bn−1, y} ⊆ Rs(an).
Since X ∈ τ(apr′′), we have apr′′(X) = X. Hence x ∈ apr′′(X). By Definition 2.3, we get Rs(a1) ⊆ X. Then
b1 ∈ X = apr′′(X), which implies Rs(a2) ⊆ X. Thus b2 ∈ X = apr′′(X). In the same way, we have y ∈ X. Hence,
we can conclude that [x]R̃ ⊆ X.

(2) By Proposition 3.6(2) and (1), it is easy to see that {[x]R̃} is an open neighborhood base of x.

Proposition 3.8. If R is inverse serial, then for any x ∈ U,
(1) {x} = [x]R̃.
(2) [x]R̃ is a connected component that contains x.

Proof. (1) According to Proposition 2.5(6), X ⊆ U is an open set in (U, τ(apr′′)), if and only if X is a closed
set. Then, by Proposition 3.7, we have

{x}= ∩{B|x ∈ B, and B is closed}
= ∩{B|x ∈ B, and B is open} = [x]R̃.

(2) Assume that Cx is a connected component containing x. Then Cx is closed. It follows that Cx is open.
By Proposition 3.7, we get that [x]R̃ ⊆ Cx. Then [x]R̃ = Cx. Otherwise, [x]R̃ , Cx. Hence [x]R̃ is an open
and closed proper subset of Cx, which contradicts that Cx is a connected component. Therefore, [x]R̃ is a
connected component that contains x.

Proposition 3.9. If R is inverse serial, then (U, τ(apr′′)) is a locally connected space.

Proof. For any x ∈ U and A ∈ τ(apr′′) with x ∈ A, we have [x]R̃ ⊆ A. By Proposition 3.8, [x]R̃ is a connected
set. Then (U, τ(apr′′) is a locally connected space.

Theorem 3.10. If R is an inverse serial relation on U, then (U, τ(apr′′)) is connected if and only if xR̃y for all x, y ∈ U.

Proof. “⇐”. Suppose U = X∪Y and X∩Y = ∅. Let x ∈ X and y ∈ Y. By the assumption, we have xR̃y. Then,
there exist a1, a2, · · · , an and b1, b2, · · · , bn−1 of U such that x = b0R−1a1, a1Rb1, b1R−1a2, a2Rb2, · · · , bn−1R−1an
and anRy = bn. Since x = b0 ∈ X and y = bn < X, there exists a greatest i for which bi ∈ X. Then bi+1 ∈ Y. By
Definition 7, ai+1Rbi+1 and biR−1ai+1. It follows that {bi+1} ⊆ Rs(ai+1) ∩ Y , ∅ and {bi} ⊆ Rs(ai+1) ∩X , ∅. Then
bi ∈ apr′′(Y) and bi < Y, bi+1 ∈ apr′′(X) and bi+1 < X. Hence apr′′(X) , X and apr′′(Y) , Y, which implies that
X and Y are not closed. Thus, U is not the union of two disjoint closed sets, that is, U is connected.

“⇒”. Suppose that there exist x, y ∈ U such that xR̃y does not hold. Let X = {z ∈ U|xR̃z}.
Then X is closed. In fact, for any u ∈ apr′′(X), there exists a v ∈ U such that u ∈ Rs(v) and Rs(v) ∩ X , ∅.

Let w ∈ Rs(v) ∩ X. Then wR−1v and vRu. Since w ∈ X, we get u ∈ X. Hence apr′′(X) ⊆ X. It follows that
apr′′(X) = X, which implies that X is closed.

We are going to prove that −X is closed. If not, apr′′(−X) * −X. Then there exists a u ∈ U such that
u ∈ apr′′(−X) and u < −X. Hence there exists a v ∈ U such that u ∈ Rs(v) and Rs(v) ∩ (−X) , ∅. Let
w ∈ Rs(v) ∩ (−X). It follows that uR−1v and vRw. Since u ∈ X, we have w ∈ X, which contradicts the fact
w ∈ −X.

Since x ∈ X and y ∈ −X, U is the union of two disjoint non-empty closed sets, that is, U is not
connected.

Definition 3.11. ([6]) Let (U, τ) be a topological space. If A ⊆ U is open in U if and only if A is closed in
U, then (U, τ) is called a pseudo-discrete space. If the intersection of arbitrarily many open sets in U is still
open, then τ is called an Alexandrov topology, and (U, τ) is said to be an Alexandrov space.

Proposition 3.12. If R is an inverse serial relation on U, then
(1) (U, τ(apr′′) is pseudo-discrete,
(2) (U, τ(apr′′) is an Alexandrov space.
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Proof. (1) It is easy to prove that apr′′(X) = X⇔ apr′′(X) = X for all X ⊆ U. Then (U, τ(apr′′) is quasi-discrete.
(2) Since each open set in U is closed, the intersection of arbitrarily many open sets in U is still open.

Hence (U, τ(apr′′) is an Alexandrov space.

If R is inverse serial, by Proposition 3.12, for any X ⊆ U,
X ⊆ U is definable by apr′′ and apr′′

⇔ apr′′(X) = X = apr′′(X)
⇔ X is an open and closed set in (U, τ(apr′′))
⇔ X ∈ τ(apr′′).

Then the family of all definable subsets of U is τ(apr′′). On the other hand,
(U, τ(apr′′)) is not connected

⇔ (U, τ(apr′′)) has non-empty open and closed proper subsets
⇔ (U, τ(apr′′)) has other definable sets besides Ø and U.

(U, τ(apr′′)) is connected
⇔ (U, τ(apr′′)) do not have non-empty open and closed proper subsets
⇔ the definable sets by apr′′ and apr′′ are no other than Ø and U.

Hence we can note that (U, τ(apr′′)) is connected, if and only if the definable sets by apr′′ and apr′′ are no
other than Ø and U. (U, τ(apr′′)) is not connected, if and only if (U, τ(apr′′)) has other definable sets besides
Ø and U. Thus, there exist relationships between the connectedness of topological spaces and the existence
of definable sets in approximation spaces.

Proposition 3.13. Let R be an inverse serial relation on U. Then
(1) (U, τ(apr′′)) is a first countable space.
(2) (U, τ(apr′′)) is a locally separable space.

Proof. (1) By Proposition 3.7(2), we have that {[x]R̃} is an open neighborhood base of x. Then (U, τ(apr′′)) is
first countable.

(2) According to Proposition 3.8(1), {x} is a dense subset of [x]R̃, then [x]R̃ is separable. Hence, by
Proposition 3.7(1), each neighborhood of x has separable subset [x]R̃. It implies that (U, τ(apr′′)) is locally
separable.

Proposition 3.14. Let R be an inverse serial relation on U. Then
(1) (U, τ(apr′′)) is a regular space,
(2) (U, τ(apr′′)) is a normal space.

Proof. (1) For any x ∈ U and closed set B with x < B, by Proposition 3.12, we have that B is open. Then there
exist two disjoint open sets U\B and B such that x ∈ U\B and B ⊆ B. Hence (U, τ(apr′′)) is regular.

(2) For each pair A, B of disjoint closed subsets of U, by Proposition 3.12, we have that A and B are open
sets. Then there exist disjoint open sets A and B such that A ⊆ A and B ⊆ B. It follows that (U, τ(apr′′)) is
normal.

Proposition 3.15. Let R be an inverse serial relation on U. Then the following are equivalent:
(1) U/R̃ is countable,
(2) (U, τ(apr′′)) is second-countable,
(3) (U, τ(apr′′)) is separable,
(4) (U, τ(apr′′)) is a Lindelöf space.

Proof. (1)⇒(2). By Proposition 3.7, {[x]R̃|x ∈ U} is a base of (U, τ(apr′′)). Since U/R̃ = {[x]R̃|x ∈ U} is countable,
we obtain that (U, τ(apr′′)) is second-countable.

(2)⇒(3). It is clear.
(3)⇒(4). Let C be an open cover of U, and D be a countable dense subset of U. For any x ∈ D, there

exists Kx ∈ C such that x ∈ Kx. Let C0 = {Kx|x ∈ D}. Then C0 is countable. Now we prove that C0 is a cover
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of U. For any y ∈ U, there exists K ∈ C such that y ∈ K. Hence [y]R̃ ⊆ K. Since D is a dense subset of U, we
get [y]R̃ ∩ D , ∅. Let x ∈ [y]R̃ ∩ D. Then there exists a Kx ∈ C0 such that x ∈ Kx. It follows that [x]R̃ ⊆ Kx.
Since x ∈ [y]R̃ and R̃ is an equivalence relation, we obtain [x]R̃ = [y]R̃. Then y ∈ [y]R̃ = [x]R̃ ⊆ Kx. Therefore,
we can conclude that (U, τ(apr′′)) is a Lindelöf space.

(4)⇒(1). U/R̃ = {[x]R̃|x ∈ U} is an open cover of U. Since R̃ is an equivalence relation, U/R̃ is the only
subcover of U/R̃. Since (U, τ(apr′′)) is a Lindelöf space, we obtain that U/R̃ is countable.

Example 3.16. Continued from Example 2.2. We have
τ(apr′′) = {∅, {a, c}, {e, f }, {b, d, 1}, {a, c, e, f }, {a, c, b, d, 1}, {e, f , b, d, 1},U},
R̃ = {(a, a), (a, c), (c, c), (c, a), (b, b), (b, d), (d, b), (d, d), (b, 1), (1, b), (1, 1), (1, d), (d, 1), (e, e), ( f , f ),

(e, f ), ( f , e)}.
Then R̃ is an equivalence relation, and

U/R̃ = {{a, c}, {e, f }, {b, d, 1}}.
We obtain that (U, τ(apr′′)) is quasi-discrete, regular, normal and non-connected. τ(apr′′) is the family of

definable sets by apr′′ and apr′′.

4. Conclusion

In this paper, we have investigated topological properties of a pairs of relation-based generalized
approximation operators. We have discussed connectedness, countability, separation property and Lindelöf
property of the topological space induced by the approximation operators. We have described relationships
between the connectedness of topological space and the existence of definable sets in rough sets to show an
application of the discussion of topological structure of the relation-based generalized rough approximation
operators.
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[24] J. Šlapal, Relations and topologies, Czechoslovak Math. J. 43 (1993) 41–150.
[25] R. Slowinski, D. Vanderpooten, A generalized definition of rough approximations based on similarity, IEEE Trans. Knowledge

Data Eng. 12 (2000) 331–336.
[26] R.E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966) 325–340.
[27] A. Wiweger, On topological rough sets, Bull. Polish Acad. Sci. 37 (1989) 89–93.
[28] W.-Z. Wu, J.-S. Mi, Some mathematical structures of generalized rough sets in infinite universes of discourse, Transactions on

Rough Sets XIII, Lecture Notes in Computer Science 6499 (2011) 175–206.
[29] W.-Z. Wu, J.-S. Mi, W.-X. Zhang, Generalized fuzzy rough sets, Inform. Sci. 151 (2003) 263–282.
[30] Y.Y. Yao, Constructive and algebraic methods of theory of rough sets, Inform. Sci. 109 (1998) 21–47.
[31] Y.Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inform. Sci. 111(1-4) (1998)

239–259.
[32] W. Zakowski, Approximations in the space (U,Π), Demonstratio Math. 16 (1983) 761–769.
[33] H. Zhang, Y. Ouyang, Z. Wang, Note on “Generalized rough sets based on reflexive and transitive relations”, Inform. Sci. 179

(2009) 471–473.
[34] Y.L. Zhang, J.J. Li, C.Q. Li, Topological structure of relation-based generalized rough sets, Fund. Inform. 147 (2016) 477–491.
[35] W. Zhu, Topological approaches to covering rough sets, Inform. Sci. 177 (2007) 1499–1508.


