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Abstract. In this paper, we introduce a condition (∆) on topological semigroups, and prove that every T1

topological semigroup satisfying condition (∆) has a bounded complete algebraic prequantale model. On
the basis of this result, we also show that every T0 topological semigroup satisfying condition (∆) can be
embedded into a compact and locally compact sober topological semigroup.

1. Introduction

Domain theory was originated from the work by Scott (see [17]) in order to provide the mathematical
foundation for denotational semantics of programming languages. Moreover, based on the work of Lawson,
Hofmann and Stralka (see [8, 9, 12]), domain theory possessed the background of pure mathematics. After
about 40 years of domain theory, one can recognize that topology and order theory have been beneficial to
each other.

As one of the most central problems in domain theoretic studies of topological spaces, the maximal point
space problem can be traced at least thirty years ago, to the work of Scott (see [18]), Kamimura and Tang
(see [10]) and Abramsky and Jung (see [1]). This problem requires the characterization of those T1 spaces
which are homeomorphic to the spaces of maximal elements of some special posets. More precisely, a poset
model of a topological space X is a poset P together with a homeomorphism φ: X −→ max(P) (max(P) is the
subspace of the Scott space Σ(P) consisting of maximal points of P). In [13], Lawson proved that a space has
an ω-continuous dcpo model satisfying Lawson condition iff the space is a Polish space. Liang and Keimel
(see [14]) proved that a space has a continuous poset model satisfying the Lawson condition iff the space
is Tychonoff. In [11], Kopperman, Künzi and Waszkiewicz proved that every complete metric space has a
bounded complete continuous dcpo model. In [2], Ali-Akbari, Honari and Pourmahdian showed that any
T1 space has a continuous poset model. In [20] (also in [5]), it was proved that every T1 space has a bounded
complete algebraic poset model. On the basis of the above result, Zhao and Xi (see [21]) proved that every
T1 space has a dcpo model. Furthermore, Xi and Zhao (see [19]) showed that a T1 space X is well-filtered
iff the dcpo model of X given in [21] is well-filtered.
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Motivated by considerations from the maximal point space problem, one may ask the following question:
whether every T1 topological semigroup has a similar model? We propose the notions of maximal point
topological semigroups and prequantale models of topological semigroups. A prequantale model of a
topological semigroup S is a prequantale P together with a topological isomorphism φ : S −→ max(P)
(max(P) is the maximal point topological semigroup of P). We prove that every T1 topological semigroup
satisfying condition (∆) has a bounded complete algebraic prequantale model. Hence the above question
is partly solved. As we know, compactness is a rather weak property in the case of non-Hausdorff
spaces. For example, every space having a least element in its specialization order is trivially compact.
Just as compactness plays an important role in the study of Hausdorff topological semigroups, it seems
appropriate to look for a stronger notion than that of compactness in the setting of the general topological
semigroups. In non-Hausdorff topology, compact and local compact sober spaces have been shown to
provide a proper language for the study of domain theory (see [7]). So the notion of compact and local
compact sober topological semigroups is a promising candidate for such a strengthened notion. On the
basis of prequantale models of topological semigroups, we show that every T0 topological semigroup
satisfying condition (∆) can be embedded into a compact and locally compact sober topological semigroup.
For notions and concepts concerned, but not explained, please refer to [3, 4, 6, 16].

2. Preliminaries

Let (L,≤) be a poset. We use max(L) to denote the set of all maximal elements of L. A subset D of L is
directed provided that it is nonempty and every finite subset of D has an upper bound in D. The poset L is
a directed complete partially ordered set (abbreviated: dcpo) if every directed subset of L has a supremum. It is
bounded complete if every upper bounded subset has a supremum.

Let (L,≤) be a poset. We say that x is way below y, in symbol x� y, if and only if for all directed subsets
D of L for which sup D exists, the relation y ≤

∨
D always implies the existence of a d ∈ D with x ≤ d. An

element satisfying x� x is said to be compact. K(L) denotes the set of all compact elements of L. The poset
L is called continuous if for every x ∈ L, the subset ⇓ x = {u ∈ L : u� x} is directed and x =

∨
{u ∈ L : u� x}.

It is algebraic if for every x ∈ L, the subset ↓ x ∩ K(L) is directed and x =
∨

(↓ x ∩ K(L)).

Definition 2.1. ([6]) Let L be a poset and U ⊆ L. Then U is called Scott open if and only if it satisfies:
(1) U is an upper set;
(2) For all directed subsets D of L with

∨
D existing,

∨
D ∈ U implies D ∩U , ∅.

The collection of all Scott open subsets of L forms a topology σ which is called the Scott topology.

Definition 2.2. A triple (X,≤, ·) is called a prequantale if it satisfies:
(1) (X,≤) is a poset;
(2) (X, ·) is a semigroup;
(3) For all directed subsets D of X with

∨
D existing, a ·

∨
D =

∨
(a · D) and (

∨
D) · a =

∨
(D · a), where

a ·D = {a · d : d ∈ D} and D · a = {d · a : d ∈ D}.

Remark 2.3. Note that a prequantale defined in [15] must be a dcpo, but in Definition 2.2, we do not ask
that a prequantale is a dcpo.

A prequantale (X,≤, ·) is called continuous (algebraic), if (X,≤) is continuous (algebraic).

Remark 2.4. Obviously, an algebraic prequantale must be continuous. Conversely, it is not true. For
example, ((0, 1],≤,×) is a continuous prequantale but not algebraic, where × is the usual multiplication.
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3. Prequantale Models of Topological Semigroups

A topological semigroup consists of a semigroup S and a topology τ on the set S such that the multiplication
· in S, as a mapping of S × S to S, is continuous when S × S is endowed with the product topology, or
equivalently, for each x and y in S and each open neighborhood W of x · y, there exist open neighborhoods
U of x and V of y such that U ·V ⊆W, where U ·V = {u ·v : u ∈ U, v ∈ V}. Let (S, τ1, ·), (T, τ2, •) be topological
semigroups. A mapping f : S −→ T is called a topological (embedding) isomorphism, if it is both a topological
(embedding) homeomorphism and a semigroup homomorphism.

Definition 3.1. Let (P,≤, ∗) be an ordered semigroup. A triple (max(P), σ|max(P), ∗) is called a maximal point
topological semigroup of P, if it satisfies:

(1) (max(P), ∗) is a subsemigroup of P;
(2) (max(P), σ|max(P), ∗) is a topological semigroup.

Remark 3.2. Let (P,≤, ∗) be an ordered semigroup. If (P, σ, ∗) is a topological semigroup and (max(P), ∗) is a
subsemigroup of P, then (max(P), σ|max(P), ∗) is a topological semigroup.

Definition 3.3. Let (S, τ, ·) be a topological semigroup. A prequantale model is a prequantale P together with
a topological isomorphism φ: (S, τ, ·) −→ (max(P), σ|max(P), ∗), where (max(P), σ|max(P), ∗) is the maximal
point topological semigroup of P. We shall use (P, φ) to denote a prequantale model of S.

Similarly, we can define bounded complete (continuous, algebraic) prequantale models of topological semi-
groups.

Lemma 3.4. ([20]) Every T1 space has a bounded complete algebraic poset model.

Condition (∆) Let (S, τ, ·) be a topological semigroup and U,V ∈ τ. Then U · V ∈ τ.

Example 3.5. (1) Clearly, every topological group satisfies condition (∆).
(2) ([0, 1], τ|[0,1],×) is a topological semigroup satisfying condition (∆), but not a topological group, where

τ and × are the usual topology and multiplication on the set of real numbers R, respectively.
(3) Let L = {⊥, a,>} be a chain with ⊥ < a < >. Define a binary operation ∗ on L as follows:

∗ a⊥ >

⊥ ⊥ ⊥ ⊥

a ⊥ a a
> ⊥ > >

Then (L, ∗) is a semigroup. One can see that (L, τ, ∗) is a topological semigroup, where τ is the Alexandroff
topology on L. Clearly, {>} and {⊥, a,>} are open sets, but {>} ∗ {⊥, a,>} = {⊥,>} is not an open set. Thus
(L, τ, ∗) does not satisfy condition (∆).

Theorem 3.6. Every T1 topological semigroup satisfying condition (∆) has a bounded complete algebraic prequantale
model.

Proof. Let (S, τ, ·) be a T1 topological semigroup satisfying condition (∆) and Filtl(τ∗) be the set of all filters
of nonempty open sets of S that has a nonempty intersection, that is, Filtl(τ∗) = {A ∈ Filt(τ∗) :

⋂
A , ∅},

where τ∗ = τ\{∅}. Then K(Filtl(τ∗)) = {L(U) : U ∈ τ∗} and max(Filtl(τ∗)) = {N(x) : x ∈ S}, where L(U) = {V ∈
τ∗ : U ⊆ V} and N(x) = {U ∈ τ∗ : x ∈ U} is the open neighborhood filter of x ∈ S. The binary operation ⊗
on Filtl(τ∗) is defined byA⊗B =↑ {U · V : U ∈ A,V ∈ B}, where U · V = {u · v : u ∈ U, v ∈ V}. Since (S, τ, ·)
satisfies condition (∆), A⊗ B is a filter of τ∗. As

⋂
A , ∅ and

⋂
B , ∅, we have that

⋂
(A⊗ B) , ∅. Then

the binary operation ⊗ is well defined.
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Define a mapping φ : (S, τ, ·) −→ (max(Filtl(τ∗)), σ|max(Filtl(τ∗)),⊗) as follows:

∀ x ∈ S, φ(x) = N(x).

It follows from Lemma 3.4 that (Filtl(τ∗), φ) is a bounded complete algebraic poset model of (S, τ). Next, we
shall prove that (Filtl(τ∗), φ) is a bounded complete algebraic prequantale model of (S, τ, ·).

Step 1. One can easily see that(Filtl(τ∗),⊗) is a semigroup. For each directed family {Di}i∈I ⊆ Filtl(τ∗) with∨
i∈IDi existing andA ∈ Filtl(τ∗), since

∨
i∈IDi =

⋃
i∈IDi, one can verify that A⊗ (

∨
i∈IDi) =

∨
i∈I(A⊗Di)

and (
∨

i∈IDi) ⊗A =
∨

i∈I(Di ⊗A).
Step 2. It follows from Lemma 3.4 that φ is a topological homeomorphism. We shall prove that φ is a

semigroup homomorphism. Clearly, N(x)⊗N(y) ⊆ N(x · y). Let x, y ∈ S. For all U ∈ N(x · y), there exist open
neighborhoods A of x and B of y such that A ·B ⊆ U. Then U ∈ N(x)⊗N(y) and hence N(x · y) = N(x)⊗N(y),
that is, φ(x · y) = φ(x) ⊗ φ(y). Moreover, (max(Filtl(τ∗)),⊗) is a semigroup. Therefore, φ is a semigroup
homomorphism.

Proposition 3.7. Let (S, τ, ·) be a topological semigroup with condition (∆). Then (Filtl(τ∗), σ,⊗) is a topological
semigroup.

Proof. By the proof of Theorem 3.6, (Filtl(τ∗),⊗) is a semigroup and the subsets of Filtl(τ∗) of the form
{↑ L(U) : U ∈ τ∗} form a basis of the Scott topology on Filtl(τ∗). For all A,B ∈ Filtl(τ∗) and A ⊗ B ∈↑ L(U),
we have that

L(U) ⊆ A ⊗B =
⋃

W∈A

L(W) ⊗
⋃
V∈B

L(V) =
⋃

W∈A,V∈B

L(W) ⊗ L(V).

Since L(U) is a compact element of Filtl(τ∗), there exist L(W1) ⊆ A and L(V1) ⊆ B such that L(U) ⊆ L(W1) ⊗
L(V1). We claim that ↑ L(W1)⊗ ↑ L(V1) ⊆↑ L(U), where ↑ L(W1)⊗ ↑ L(V1) = {C⊗D : C ∈↑ L(W1),D ∈↑ L(V1)}.
For all F ∈ Filtl(τ∗), F ∈↑ L(W1)⊗ ↑ L(V1), there exist C1, D1 ∈ Filtl(τ∗)) such that L(W1) ⊆ C1, L(V1) ⊆ D1
and F = C1 ⊗D1. Since L(U) ⊆ L(W1) ⊗ L(V1) ⊆ C1 ⊗D1 = F , we have that F ∈↑ L(U). One can conclude
that ↑ L(W1)⊗ ↑ L(V1) ⊆↑ L(U). Since ↑ L(W1) and ↑ L(V1) are Scott open sets of Filtl(τ∗), (Filtl(τ∗), σ,⊗) is a
topological semigroup.

Lemma 3.8. Let (S, τ, ·) be a T0 topological semigroup satisfying condition (∆). Then we can obtain a topological
embedding φ : (S, τ, ·) −→ (Filtl(τ∗), σ,⊗) defined by φ(x) = N(x).

4. Embeddings of T0 Topological Semigroups into Compact and Locally Compact Sober Topological
Semigroups

Following the results of section 3, in this section we shall investigate embeddings of T0 topological
semigroups into compact and locally compact sober topological semigroups.

Definition 4.1. ([6]) A binary relation ≺ on a poset (P,≤) is called an auxiliary relation if it satisfies the
following conditions for all p, q, x, y ∈ P:

(1) x ≺ y implies x ≤ y;
(2) p ≤ x ≺ y ≤ q implies p ≺ q;
(3) If F is a finite subset of P, F ≺ y implies that there exists r ∈ P such that F ≺ r ≺ y, where we write

F ≺ r if a ≺ r for all a ∈ F.

For convenience, we denote by ⇑ p the set {x ∈ P : p ≺ x} and denote by ⇓ p the set {x ∈ P : x ≺ p}.
Let (P,≤) be a poset with an auxiliary relation ≺. A directed lower subset I of P is called a round ideal

provided that for each p ∈ I, there exists q ∈ I such that p ≺ q. We use I(P) to denote the family of all round
ideals of P. Then I(P) is a dcpo under the order of inclusion.

We call an auxiliary relation ≺ on a poset P approximating if for all p, q ∈ P, ⇓ p ⊆⇓ q implies p ≤ q. One
can easily see that the way-below relation in every continuous poset is an approximating auxiliary relation.
We call the topology generated by the set {⇑ p : p ∈ P} pseudo-Scott topology and denote it by Pσ.
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Definition 4.2. Let (S,≤, ·) be an ordered semigroup. The auxiliary relation ≺ on S is called stable, if it
satisfies the following conditions for all x1, x2, y1, y2 ∈ S:

(1) x1 ≺ y1 and x2 ≺ y2 imply x1 · x2 ≺ y1 · y2;
(2) x ≺ y1 · y2 implies that there exist x1 ≺ y1, x2 ≺ y2 such that x ≤ x1 · x2.
If the auxiliary relation ≺ on S is stable, we call the quadruple (S,≤, ·,≺) a stable ordered semigroup.

Example 4.3. If (S,≤, ·) is an ordered semigroup, then D(S) is an algebraic quantale and the way-below
relation on D(S) is stable, where D(S) is the family of all lower sets of S.

Proposition 4.4. The stable ordered semigroup (S,≤, ·,≺) endowed with pseudo-Scott topology Pσ is a topological
semigroup.

Proof. For all x, y1, y2 ∈ S and y1 · y2 ∈⇑ x, we shall show that there exist y1 ∈⇑ x1 and y2 ∈⇑ x2 such that
⇑ x1· ⇑ x2 ⊆⇑ x. Since S is a stable ordered semigroup, there exist x1 ≺ y1, x2 ≺ y2 such that x ≤ x1 · x2. For
all t ∈⇑ x1· ⇑ x2, there exist x1 ≺ a, x2 ≺ b such that t = a · b. As S is a stable ordered semigroup, we have that
x1 · x2 ≺ a · b = t. Then t ∈⇑ x and ⇑ x1· ⇑ x2 ⊆⇑ x. Therefore, (S,Pσ, ·) is a topological semigroup.

The round completion I(P) of a poset P with an auxiliary relation ≺ is a continuous dcpo and for all
I, J ∈ I(P), I � J if and only if there exists j ∈ J such that I ⊆⇓ j (see [11]).

Proposition 4.5. Let (P,≤, ·,≺) be a stable ordered semigroup. Then the following statements hold.
(1) If the binary operation � on I(P) is defined by A� B =↓ (A · B) for all A,B ∈ I(P), then I(P) is a continuous

prequantale, where A · B = {a · b : a ∈ A, b ∈ B}.
(2) (I(P), σ,�) is a topological semigroup.

Proof. (1) Obviously, the binary operation � on I(P) is well defined and (I(P),�) is a semigroup. For
every directed subsetD ⊆ I(P), we have that

∨
D =

⋃
D. One can easily verify that I(P) is a continuous

prequantale.
(2) Since I(P) is a continuous dcpo, one can see that the way-below relation � on I(P) is an ap-

proximating auxiliary relation. For I1, I2, J1, J2 ∈ I(P), if I1 � J1, I2 � J2, there exist j1 ∈ J1, j2 ∈ J2
such that I1 ⊆⇓ j1 and I2 ⊆⇓ j2, which imply I1 � I2 ⊆⇓ j1� ⇓ j2 =⇓ ( j1 · j2). Since j1 ∈ J1 and j2 ∈ J2,
we have that j1 · j2 ∈ J1 � J2 and I1 � I2 � J1 � J2. Let J � I1 � I2. Since I(P) is a continuous dcpo,
I1 � I2 =

⋃
{C ∈ I(P) : C � I1} �

⋃
{D ∈ I(P) : D � I2} =

⋃
{C � D : C � I1,D � I2}. Then there exist

C1 � I1,D1 � I2 such that J ⊆ C1 � D1. So, the way-below relation � on I(P) is a stable approximating
auxiliary relation. It follows from Proposition 4.4 that (I(P), σ,�) is a topological semigroup.

Proposition 4.6. Let (P,≤, · ≺) be a stable ordered semigroup. Then the following statements hold.
(1) The mapping j : P → I(P) defined by j(p) =⇓ p satisfies p ≤ q ⇒ j(p) ⊆ j(q), p ≺ q ⇒ j(p) � j(q) and

j(p · q) = j(p) � j(q) for all p, q ∈ P.
(2) If ≺ is approximating, then j is a topological semigroup embedding of (P,Pσ, ·) into (I(P), σ,�) such that for

all p, q ∈ P, p ≤ q⇔ j(p) ⊆ j(q), p ≺ q⇔ j(p)� j(q).

Proof. (1) Obviously, p ≤ q ⇒ j(p) ⊆ j(q) and p ≺ q ⇒ j(p) � j(q). We shall prove that j(p · q) = j(p) � j(q)
for all p, q ∈ P. For all t ∈ j(p) � j(q), there exist x ≺ p, y ≺ q such that t ≤ x · y ≺ p · q. Then t ∈ j(p · q) and
j(p) � j(q) ⊆ j(p · q). For all t ∈ j(p · q), there exist x ≺ p and y ≺ q such that t ≤ x · y. Then t ∈ j(p) � j(q) and
j(p · q) ⊆ j(p) � j(q). Hence j(p · q) = j(p) � j(q).

(2) Immediate by Theorem 2.3(b) in [11] and (1).

Lemma 4.7. ([6]) If P is a continuous dcpo with a bottom element, then (P, σ) is a compact and locally compact sober
space.

Theorem 4.8. Every T0 topological semigroup satisfying condition (∆) can be embedded into a compact and locally
compact sober topological semigroup.
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Proof. Let (S, τ, ·) be a T0 topological semigroup satisfying condition (∆), and let A1,A2,B1,B2 ∈ Filtl(τ∗)
with A1 � B1 and A2 � B2. Since Filtl(τ∗) is algebraic, there exist compact elements L(U), L(V) of
Filtl(τ∗) such that A1 ⊆ L(U) ⊆ B1 and A2 ⊆ L(V) ⊆ B2. Then A1 ⊗ A2 ⊆ L(U) ⊗ L(V) ⊆ B1 ⊗ B2. Since
L(U) ⊗ L(V) = L(U · V), we have that L(U) ⊗ L(V) is a compact element of Filtl(τ∗) andA1 ⊗A2 � B1 ⊗ B2.
LetA,B,C ∈ Filtl(τ∗) withA� B⊗ C. Since

B ⊗ C =
⋃
W∈B

L(W) ⊗
⋃
V∈C

L(V) =
⋃

W∈B,V∈C

L(W) ⊗ L(V),

there exist W1 ∈ B, V1 ∈ C such that L(W1) ⊆ B,L(V1) ⊆ C and A ⊆ L(W1) ⊗ L(V1). Therefore, (Filtl(τ∗),⊆
,⊗,�) is a stable algebraic prequantale. By Proposition 4.5, we have that (I(Filtl(τ∗)), σ,�) is a topological
semigroup. Since Filtl(τ∗) has the bottom element {S}, we conclude that {{S}} is the bottom element of
I(Filtl(τ∗)). So I(Filtl(τ∗)) is a continuous dcpo with the bottom element {{S}}. By Lemma 4.7, (I(Filtl(τ∗)), σ)
is a compact and locally compact sober space. Thus (I(Filtl(τ∗)), σ,�) is a compact and locally compact
sober topological semigroup. By Propositions 3.7 and 4.6, the topological semigroup (Filtl(τ∗), σ,⊗) can
be embedded into a topological semigroup (I(Filtl(τ∗)), σ,�). It follows from Remark 3.8 that every T0
topological semigroup satisfying condition (∆) can be embedded into a compact and locally compact sober
topological semigroup.
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