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Abstract. The present paper deals with invariant submanifolds of CR-integrable almost Kenmotsu man-
ifolds. Among others it is proved that every invariant submanifold of a CR-integrable (k, µ)′-almost
Kenmotsu manifold with k < −1 is totally geodesic. Finally, we construct an example of an invariant
submanifold of a CR-integrable (k, µ)′-almost Kenmotsu manifold which is totally geodesic.

1. Introduction

In modern analysis the geometry of submanifolds has become a subject of growing interest for its
significant applications in applied mathematics and theoretical physics [16]. For instance, the notion
of invariant submanifold is used to discuss properties of non-linear autonomous system. The study of
geometry of invariant submanifolds was initiated by Bejancu and Papaghuic [1]. In general the geometry
of an invariant submanifold inherits almost all properties of the ambient manifold. Invariant manifolds
has many applications in functional differential equations [11]. On the other hand one of the recent topics
in the theory of almost contact metric manifolds is the study of so-called nullity distributions. The notion
of k-nullity distribution (k ∈ R) was introduced by Gray [10] and Tanno [19] in the study of Riemannian
manifolds (M, 1), which is defined for any point p ∈M and k ∈ R as follows:

Np(k) = {Z ∈ TpM : R(X,Y)Z = k[1(Y,Z)X − 1(X,Z)Y]}, (1)

for any X,Y ∈ TpM, where TpM denotes the tangent vector space of M at any point p ∈M and R denotes the
Riemannian curvature tensor of type (1, 3).

Recently Blair, Koufogiorgos and Papantoniou [4] introduced a generalized notion of the k-nullity
distribution named the (k, µ)-nullity distribution on a contact metric manifold (M2n+1, φ, ξ, η, 1), which is
defined for any point p ∈M2n+1 and k, µ ∈ R as follows:

Np(k, µ) = {Z ∈ TpM2n+1 : R(X,Y)Z = k[1(Y,Z)X − 1(X,Z)Y] + µ[1(Y,Z)hX − 1(X,Z)hY]}, (2)
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where h = 1
2 £ξφ and £ denotes the Lie differentiation.

In [8], Dileo and Pastore introduced the notion of (k, µ)′-nullity distribution, another generalized notion
of the k-nullity distribution, on an almost Kenmotsu manifold (M2n+1, φ, ξ, η, 1), which is defined for any
point p ∈M2n+1 and k, µ ∈ R as follows:

Np(k, µ)′ = {Z ∈ TpM2n+1 : R(X,Y)Z = k[1(Y,Z)X − 1(X,Z)Y] + µ[1(Y,Z)h′X − 1(X,Z)h′Y]}, (3)

where h′ = h ◦ φ.
On the other hand, Kenmotsu [13] introduced a special class of almost contact metric manifolds named

Kenmotsu manifolds nowadays. Almost Kenmotsu manifolds satisfying some nullity conditions were
investigated by De and Mandal [6], Dileo and Pastore [7, 8], Wang and Liu [20–23] and many others.
We refer the reader to ([7],[23]) for more related results on (k, µ)′-nullity distribution on almost Kenmotsu
manifolds. A normal almost Kenmotsu manifold is said to be a Kenmotsu manifold [12], thus, it is of
interest to generalize some results on Kenmotsu manifolds to almost Kenmotsu manifolds.

An invariant submanifold of an almost contact manifold is a submanifold for which the structure
tensor field φ maps tangent vectors into tangent vectors. There is a well-known result of Kon [14] that
an invariant submanifold of a Sasakian manifold is totally geodesic, provided the second fundamental
form of the immersion is covariantly constant. Generally an invariant submanifold of a Sasakian manifold
needs not to be totally geodesic. In a recent paper De and Majhi [5] studied invariant submanifolds of
Kenmotsu manifolds and obtain a necessary condition for a three dimensional invariant submanifold of
a Kenmotsu manifold to be totally geodesic. Also in [15], Mangione studied invariant submanifolds of
Kenmotsu manifolds and some conditions that these submanifolds are totally geodesic. Besides these
invariant submanifolds of Lorentzian para-Sasakian manifolds were studied by Özgür and Murathan [18].
Moreover invariant submanifolds have been studied by Endo [9], Murathan et al. [17] and many others.

As far as we know, submanifolds of almost Kenmotsu manifolds have not yet been studied. In this
paper, we initiate the study of submanifolds of almost Kenmotsu manifolds. In fact, in this paper, we
classify invariant submanifolds of CR-integrable almost Kenmotsu manifolds:

Theorem 1.1. Any invariant submanifold of a CR-integrable almost Kenmotsu manifold is a minimal submanifold.

Theorem 1.2. Every invariant submanifold of a CR-integrable (k, µ)′-almost Kenmotsu manifold with k < −1 is
totally geodesic.

This paper is organized in the following way. In Section 2, we discuss about submanifolds. In the next
section we recall some well known basic formulas and properties of almost Kenmotsu manifolds. We
study invariant submanifolds of CR-integrable almost Kenmotsu manifolds in Section 4. Next, Section 5
is devoted for the detailed proof of Theorems 1.1 and 1.2 respectively. This paper ends with an example
of an invariant submanifold of a CR-integrable almost Kenmotsu manifold with (k, µ)′-nullity distribution
which is totally geodesic.

2. Basic Concepts

Let (M, 1) be an n-dimensional Riemannian submanifold of an (n+d)-dimensional Riemannian manifold
(M̃, 1̃). We denote by ∇̃ the operator of covariant differentiation on M̃. We write

∇̃XY = ∇XY + α(X,Y), (4)

where ∇XY is the tangential component of ∇̃XY and α(X,Y) is the normal component of ∇̃XY. Then it has
been proved that∇ is the operator of covariant differentiation with respect to the induced metric 1 on M. We
call∇ the induced connection and α the second fundamental form of M (or, of the corresponding immersion
i).

Now, let N be a normal vector field on M and X be a tangent vector field on M, we put

∇̃XN = −ANX + ∇⊥XN, (5)
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where ANX and ∇⊥XN are the tangential and normal components of ∇̃XN, respectively. A and α are related
by the equation

1(α(X,Y),N) = 1(ANX,Y),

for all X,Y ∈ TM and N ∈ T⊥M. A is called the associated second fundamental form to α, or, simply the
second fundamental form of M. It is known that ∇⊥ is a metric connection in T⊥M.

Equations (4) and (5) are called the Gauss and Weingarten formula respectively.

A submanifold M is called totally geodesic if α(X,Y) = 0, for all X,Y ∈ TM. It means that the geodesics
in M are also geodesic in M̃.

A submanifold M is called totally umbilical if α(X,Y) = 1(X,Y)H, where H is called the mean curvature
vector. If H = 0, we say the submanifold is minimal. From the definition it is clear that any totally geodesic
submanifold is obviously a minimal submanifold.

3. Almost Kenmotsu Manifolds

Let us consider M̃2n+1 be an almost contact metric manifold with almost contact structure (φ, ξ, η, 1)
given by a (1, 1)-tensor field φ, a characteristic vector field ξ, a 1-form η and a compatible metric 1 satisfying
the conditions [2, 3]

φ2 = −I + η ⊗ ξ, φ(ξ) = 0, η(ξ) = 1, η ◦ φ = 0,

1(φX, φY) = 1(X,Y) − η(X)η(Y),

for any vector fields X and Y of TM̃. The fundamental 2-form Φ is defined by Φ(X,Y) = 1(X, φY) for any
vector fields X and Y of TM̃2n+1. The condition for an almost contact metric manifold being normal is
equivalent to vanishing of the (1, 2)-type torsion tensor Nφ, defined by Nφ = [φ,φ] + 2dη ⊗ ξ, where [φ,φ]
is the Nijenhuis torsion of φ [2].

An almost contact metric manifold M̃2n+1 with almost contact structure (φ, ξ, η, 1) is said to be an almost
Kenmotsu manifold if the 1-form η is closed and dΦ = 2η ∧ Φ. Obviously, a normal almost Kenmotsu
manifold is a Kenmotsu manifold.
Let M̃2n+1 be an almost Kenmotsu manifold. Let in an almost Kenmotsu manifold the two tensor fields
h and l are defined by h = 1

2 £ξφ and l = R(·, ξ)ξ. The tensor fields l and h are symmetric and satisfy the
following relations [7]:

hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ + φh = 0, (6)

∇̃Xξ = X − η(X)ξ − φhX(⇒ ∇ξξ = 0), (7)

φlφ − l = 2(h2
− φ2), (8)

R̃(X,Y)ξ = η(X)(Y − φhY) − η(Y)(X − φhX) + (∇̃Yφh)X − (∇̃Xφh)Y, (9)

for any vector fields X,Y of TM̃ and R̃ is the curvature tensor of M̃. It is well known that a normal
almost contact manifold is a CR-manifold. Now considering an almost Kenmotsu manifold we have
[X,Y] − [φX, φY] ∈ D for any X,Y ∈ D, since dη = 0, where D is the contact distribution. Hence the
structure is CR-integrable if and only if [φX, φY]− [X,Y]−φ([φX,Y]+ [X, φY]) = 0 onD, which is equivalent
to the vanishing of Nφ on D, that is to the request that the integral manifolds of D are Kähler. Now we
present some properties of CR-integrable almost Kenmotsu manifolds as follows:

Lemma 3.1. ([7]) An almost Kenmotsu manifold (M̃2n+1, φ, ξ, η, 1) is a Kenmotsu manifold if and only if h = 0 and
the integral submanifolds of the contact distributionD are Kählerian manifolds.
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Lemma 3.2. ([8]) In an almost Kenmotsu manifold (M̃2n+1, φ, ξ, η, 1) the distribution D has Kähler leaves if and
only if

(∇̃Xφ)(Y) = 1(φX + hX,Y)ξ − η(Y)(φX + hX), (10)

for any X,Y ∈ TM̃.

From Lemma 3.1 it follows that an almost Kenmotsu manifold with CR-integrable structure is a Kenmotsu
manifold if and only if h = 0. That is, a Kenmotsu manifold is an almost Kenmotsu manifold with
CR-integrable structure, but the converse is not necessary true.

An almost Kenmotsu manifold with ξ belonging to the (k, µ)′-nullity distribution is called (k, µ)′-almost
Kenmotsu manifold. In a (k, µ)′-almost Kenmotsu manifold we have [8]

R̃(X,Y)ξ = k[η(Y)X − η(X)Y] − 2[η(Y)h′X − η(X)h′Y], (11)

where k ∈ R. The (1, 1)-type symmetric tensor field h′ = h ◦ φ is anticommuting with φ and h′ξ = 0. Also it
is clear that

h = 0⇔ h′ = 0, h′2 = (k + 1)φ2(⇔ h2 = (k + 1)φ2) (12)

and the tensor field h maps tangent vectors into tangent vectors. Let X ∈ D be the eigen vector of h′

corresponding to the eigen value λ. Then from (12) it is clear that λ2 = −(k+1), a constant. Hence k ≤ −1 and
λ = ±

√
−k − 1. Let us denote the distribution orthogonal to ξ byD and defined byD = Ker(η) = Im(φ). In

an almost Kenmotsu manifold, since η is closed,D is an integrable distribution. We denote the eigenspaces
associated with h′ by [λ]′ and [−λ]′ corresponding to the non-zero eigen values λ and −λ of h′ respectively.

4. Invariant Submanifolds of CR-Integrable Almost Kenmotsu Manifolds

A submanifold M of a CR-integrable almost Kenmotsu manifold M̃ is invariant if φ(TM) ⊂ TM. Let us
assume that M be an invariant submanifold of a CR-integrable almost Kenmotsu manifold M̃. From (4) we
obtain

∇̃XY = ∇XY + α(X,Y). (13)

Putting Y = ξ and using (7) we have

X − η(X)ξ − φhX = ∇Xξ + α(X, ξ). (14)

Comparing tangential part and normal part we get

∇Xξ = X − η(X)ξ − φhX (15)

and

α(X, ξ) = 0. (16)

Making use of (13) we obtain

∇̃XφY − φ(∇̃XY) = ∇XφY − φ(∇XY) + α(X, φY) − φα(X,Y), (17)

which implies that

(∇̃Xφ)Y = (∇Xφ)Y + α(X, φY) − φα(X,Y). (18)

Using (10) we obtain

1(φX + hX,Y)ξ − η(Y)(φX + hX) = (∇Xφ)Y + α(X, φY) − φα(X,Y). (19)
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Comparing tangential part and normal part we have

(∇Xφ)Y = 1(φX + hX,Y)ξ − η(Y)(φX + hX) (20)

and

α(X, φY) − φα(X,Y) = 0. (21)

By the above discussions we can state the following:

Proposition 4.1. Let M be an invariant submanifold of a CR-integrable almost Kenmotsu manifold M̃ such that ξ
is tangent to M. Then the following equations hold on M

α(X, ξ) = 0, (22)

∇Xξ = X − η(X)ξ − φhX, (23)

(∇Xφ)Y = 1(φX + hX,Y)ξ − η(Y)(φX + hX), (24)

α(X, φY) = φα(X,Y), (25)

for X,Y ∈ TM.

Proposition 4.2. An invariant submanifold of a CR-integrable almost Kenmotsu manifold is an almost Kenmotsu
manifold.

5. Proof of the Main Theorems

Proof of Theorem 1.1. Let M be an invariant submanifold of a CR-integrable almost Kenmotsu manifold
M̃ and {e1, e2, ..., en, φe1, φe2, ..., φen, ξ} be a φ-basis of TM.
Now we get

trace α =

n∑
i=1

[α(ei, ei) + α(φei, φei)] + α(ξ, ξ). (26)

By Proposition 4.1 we obtain

α(X, ξ) = 0, which implies α(ξ, ξ) = 0, (27)

and

α(φei, φei) = φα(φei, ei) = φ2α(ei, ei) = −α(ei, ei). (28)

Substituting (27) and (28) in (26) yields

trace α =

n∑
i=1

[α(ei, ei) + α(φei, φei)] = 0. (29)

Therefore M is a minimal submanifold. This completes the proof.

Proof of Theorem 1.2. Let M be an invariant submanifold of a CR-integrable (k, µ)′-almost Kenmotsu
manifold M̃. Let X,Y ∈ TM. Since the tensor field h′ maps tangent vectors into tangent vectors, by (11) it
follows that R̃(X,Y)ξ is a vector field tangent to the submanifold. Then we have from the equation of Gauss
([24], pp. 70)

(∇Xα)(Y, ξ) = (∇Yα)(X, ξ), (30)
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which implies

∇
⊥

Xα(Y, ξ) − α(∇XY, ξ) − α(Y,∇Xξ) = ∇⊥Yα(X, ξ) − α(∇YX, ξ) − α(X,∇Yξ). (31)

Using (22) we get

α(Y,∇Xξ) = α(X,∇Yξ). (32)

Taking account of (23) we obtain

α(X,Y) − η(X)α(Y, ξ) + α(Y, h′X) = α(X,Y) − η(Y)α(X, ξ) + α(X, h′Y), (33)

which implies that

α(h′X,Y) = α(h′Y,X). (34)

Case 1: Let us consider that X ∈ [λ]′ and Y ∈ [−λ]′. Then

α(h′X,Y) = λα(X,Y) and α(X, h′Y) = −λα(X,Y). (35)

Making use of (34) and (35) we have

λα(X,Y) = −λα(Y,X), (36)

that is,
2λα(X,Y) = 0.

Since λ , 0, α(X,Y) = 0, which implies that M is totally geodesic.
Case 2: Let us consider that X ∈ [−λ]′ and Y ∈ [λ]′. Similarly, we can conclude that M is totally geodesic.
Case 3: Let us consider that X,Y ∈ [λ]′. Since [λ]′ = φ[−λ]′, we can state Y = φZ with Z ∈ [−λ]. Then
α(X,Y) = α(X, φZ) = φα(X,Z) = 0, because of Case 1, which implies that M is totally geodesic. This
completes the proof.

6. Example

In this section, we construct an example of an invariant submanifold of an almost Kenmotsu manifold
such that ξ belongs to the (k, µ)′-nullity distribution and h′ , 0. We consider 5-dimensional manifold
M̃ = {(x, y, z,u, v) ∈ R5

}, where (x, y, z,u, v) are the standard coordinates in R5. Let ξ, e2, e3, e4, e5 are five
vector fields in R5 which satisfies [8]

[ξ, e2] = −2e2, [ξ, e3] = −2e3, [ξ, e4] = 0, [ξ, e5] = 0,
[ei, e j] = 0, where i, j = 2, 3, 4, 5.

Let 1 be the Riemannian metric defined by

1(ξ, ξ) = 1(e2, e2) = 1(e3, e3) = 1(e4, e4) = 1(e5, e5) = 1
and 1(ξ, ei) = 1(ei, e j) = 0 for i , j; i, j = 2, 3, 4, 5.

Let η be the 1-form defined by η(Z) = 1(Z, ξ), for any Z ∈ TM̃. Let φ be the (1, 1)-tensor field defined by

φ(ξ) = 0, φ(e2) = e4, φ(e3) = e5, φ(e4) = −e2, φ(e5) = −e3.

Using the linearity of φ and 1we have

η(ξ) = 1, φ2Z = −Z + η(Z)ξ and 1(φZ, φU) = 1(Z,U) − η(Z)η(U),
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for any Z,U ∈ TM̃. Moreover we obtain,

h′ξ = 0, h′e2 = e2, h′e3 = e3, h′e4 = −e4, h′e5 = −e5 and hξ = 0, he2 = e4, he3 = e5, he4 = e2, he5 = e3.

The Levi-Civita connection ∇̃ of the metric tensor 1 is given by Koszul’s formula which is given by

21(∇̃XY,Z) = X1(Y,Z) + Y1(Z,X) − Z1(X,Y) − 1(X, [Y,Z]) − 1(Y, [X,Z]) + 1(Z, [X,Y]).

Using Koszul’s formula we get the following:

∇̃ξξ = 0, ∇̃ξe2 = 0, ∇̃ξe3 = 0, ∇̃ξe4 = 0, ∇̃ξe5 = ξ,

∇̃e2ξ = 2e2, ∇̃e2 e2 = −2ξ, ∇̃e2 e3 = 0, ∇̃e2 e4 = 0, ∇̃e2 e5 = 0,
∇̃e3ξ = 2e3, ∇̃e3 e2 = 0, ∇̃e3 e3 = −2ξ, ∇̃e3 e4 = 0, ∇̃e3 e5 = 0,
∇̃e4ξ = 0, ∇̃e4 e2 = 0, ∇̃e4 e3 = 0, ∇̃e4 e4 = 0, ∇̃e4 e5 = 0,
∇̃e5ξ = 0, ∇̃e5 e2 = 0, ∇̃e5 e3 = 0, ∇̃e5 e4 = 0, ∇̃e5 e5 = 0.

In view of the above relations we have

∇̃Xξ = −φ2X + h′X and (∇̃Xφ)Y = 1(φX + hX,Y)ξ − η(Y)(φX + hX),

for any X,Y ∈ TM̃.
Therefore, the structure (φ, ξ, η, 1) is an almost contact metric structure such that dη = 0 and dΦ = 2η∧Φ,

so that M̃ is a CR-integrable almost Kenmotsu manifold.
Let f be an isometric immersion from M to M̃ defined by f (x, y, z) = (x, y, z, 0, 0).
Let M = {(x, y, z) ∈ R3 : (x, y, z) , (0, 0, 0)} where (x, y, z) are the standard coordinates in R3. The vector
fields in R3 which satisfies

[ξ, e2] = −2e2, [ξ, e3] = −2e3, [ei, e j] = 0, where i, j = 2, 3.

Let 1 be the Riemannian metric defined by

1(ξ, ξ) = 1(e2, e2) = 1(e3, e3) = 1 and 1(ξ, ei) = 1(ei, e j) = 0 for i , j; i, j = 2, 3.

Let η be the 1-form defined by η(Z) = 1(Z, ξ), for any Z ∈ TM. Let φ be the (1, 1)-tensor field defined by

φ(ξ) = 0, φ(e2) = −e3, φ(e3) = e2.

Using the linearity of φ and 1we have

η(ξ) = 1, φ2Z = −Z + η(Z)ξ and 1(φZ, φU) = 1(Z,U) − η(Z)η(U),

for any Z,U ∈ TM. Moreover we obtain,

h′ξ = 0, h′e2 = e2, h′e3 = e3 and hξ = 0, he2 = e3, he3 = −e2.

The Levi-Civita connection ∇ of the metric tensor 1 is given by Koszul’s formula which is given by

21(∇XY,Z) = X1(Y,Z) + Y1(Z,X) − Z1(X,Y) − 1(X, [Y,Z]) − 1(Y, [X,Z]) + 1(Z, [X,Y]).

Using Koszul’s formula we get the following:

∇ξξ = 0, ∇ξe2 = 0, ∇ξe3 = 0,
∇e2ξ = 2e2, ∇e2 e2 = −2ξ, ∇e2 e3 = 0,
∇e3ξ = 2e3, ∇e3 e2 = 0, ∇e3 e3 = −2ξ.

In view of the above relations we have

∇Xξ = −φ2X + h′X and (∇Xφ)Y = 1(φX + hX,Y)ξ − η(Y)(φX + hX),
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for any X,Y ∈ TM.
Therefore, the structure (φ, ξ, η, 1) is an almost contact metric structure such that dη = 0 and dΦ =

2η ∧ Φ, so that M is a CR-integrable almost Kenmotsu manifold. It is obvious that the manifold M under
consideration is a submanifold of the manifold M̃.

Again M is invariant.
Let U = λ1e1 + λ2e2 + λ3e3 ∈ TM and V = µ1e1 + µ2e2 + µ3e3 ∈ TM where λi and µi are scalars, i = 1, 2, 3 and
ξ = e1.

Then

α(U,V) =
∑

λiµ jα(ei, e j)

=
∑

λiµ j(∇̃ei e j − ∇ei e j)

= 0.

Hence the submanifold is totally geodesic.
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