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Abstract. This paper studies two linear methods for linear and non-linear stochastic optimal control of
partially observable problem (SOCPP). At first, it introduces the general form of a SOCPP and states it as
a functional matrix. A SOCPP has a payoff function which should be minimized. It also has two dynamic
processes: state and observation. In this study, it is presented a deterministic method to find the control
factor which has named feedback control and stated a modified complete proof of control optimality in a
general SOCPP. After finding the optimal control factor, it should be substituted in the state process to make
the partially observable system. Next, it introduces a linear filtering method to solve the related partially
observable system with complete details. Finally, it is presented a heuristic method in discrete form for
estimating non-linear SOCPPs and it is stated some examples to evaluate the performance of introducing
methods.

1. Introduction

The optimal control theory had a great interest in the 1951s. This significant science has found many
applications in various fields [1]. As an example of this issue we can see its applications in finance, physics,
engineering and other sciences [2]. Today, this science plays an efficient role in many sciences. Due to the
importance of this science, it has developed into the stochastic branches.
Everybody knows that everything in the universe has a random scheme. For example, we are unaware of
the next minute of our life. It is the reason for randomness of all the events. After identifying the optimal
control and understanding the importance of random comment in the various sciences, the stochastic
optimal control has been interested in [3] and [4].
After a while by identifying capital markets and other fields, stochastic optimal control of jump diffusion
has been raised. In this issue we can see jumps in the system [5] and [6]. Therefore, the optimal control is
developed by understanding the needs of the world.
Nowadays by recognizing the practical courses in science and having partial information in most cases,
stochastic optimal control of partially observable systems has become an important topic. A lot of researches
have been done on this subject [7], [8] and [9]. In [10], Wang has used maximum principle to find the optimal
control in a partially observable control problem. Tang has also found a way to obtain the control factor in
a SOCPP.
He has found the relations between adjoint processes and the maximum principle rule to establish this
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method [11]. In [12], Stockbridge has presented a technique to find the optimal control by characterizing
linear programming formula. Cimen surveys a method by Kalman-Busy filter to obtain the optimal control
for non-linear SOCPP [13]. In [14], a SOCPP is solved explicitly. In this method it does not use Hamilton-
Jacobi-Bellman equation or a stochastic maximum principle. There are several researches as the above ones
are in the field of partially observable stochastic optimal control (See [15], [16] and [17]).
In this paper, we are extended the study of Bensoussan [18] to a discrete method, where the SOCPP is
presented there. In fact, we are modified studies [18] to obtain a discrete method. A SOCPP has a payoff
function that should be minimized. It also has two dynamic differential equations. The first one is state
process and the second one is observation process. State process is an equation with own variable, but the
observation process is an equation of state process. There is this kind of Problems to minimize the cost
function by using the information about state and observation processes. They have two parts, the first
part finds control factor and the second one obtains a solution for state process which is according to the
observation process. After finding the optimal control factor, it should be substituted in the state process
to have a partially observable system. Enough information about the proof of control optimality and the
uniqueness of linear filtering for evaluating the related partially observable systems are stated in the paper.
Finally, it is introduced two methods for estimation. All methods have a discrete form. But the second
method is used for non-linear cases in witch obtianing control factors is difficult to estimate or the analytical
solutions of control parameters do not exist.

2. Preliminaries

In this section all needed assumptions are introduced. So assume that (Ω,A,P) is a probability space
and all processes and variables are chosen in it. A SOCPP in general form is described as follows.
The state process x , with the control factor ν has the bellow system,

dx = (Fx + f + Gν)dt + σ0dw, x(0) = ξ, (1)

and the observation dynamic z is as follows,

dz = (Hx + h)dt + σ1db, z(0) = 0, (2)

where ξ , is a vector of random variable with Gaussian probability law, with mean value x0 and covariance
matrix P0 . The processes w(·) and b(·) are Wiener processes with the corresponding noise covariance
matrices Q(·) and R(·) respectively. The matrix R(·) is uniformly positive definite. It should be mentioned
that the variable ξ and processes w(·), b(·) are mutually independent [18].
The matrix functions F, f ,G, ν, σ0, z,H, h, σ1,w(·), b(·), ξ are n × n,n × 1,n × n,n × 1,n × d, k × 1, k × n, k × 1, k ×
k, d × 1, k × 1,n × 1 dimensional respectively.
At time t the controller knows the observations z(r) for 0 ≤ r ≤ t, where 0 is the start time. In fact, all
the researches are in the space of observable information. The corresponding noise covariance matrices
of processes w(·) and b(·) in equations (1) and (2) are defined by Q = (σ0 × σ0

∗)n×n and R = (σ1 × σ1
∗)k×k

respectively [2].
Let introduce the stochastic optimal control problem with partial observation systems. The system is
described by the dynamics (1) and (2) where the control ν(·) ∈ L2(0,T; Rn), x(·) ∈ L2(0,T; Rn) and z(·) ∈
L2(0,T; Rk). There is a minimum payoff function in all control problems. In this paper the suitable payoff
function in general form is as follows,

J(ν(·)) = E
{∫ T

0
(x∗Mx + ν∗Nν + 2mx + 2nν)dt + x∗(T)MTx(T) + 2mTx(T)

}
. (3)

where M(·) is symmetric non negative, N(·) is symmetric uniformly positive definite and all functions of
time F,G, f ,M,N,m,n are bounded [2] and [18].
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2.1. Framework
In this subsection the dynamic systems (1) and (2) are seperated in to two systems. The first one is the

’without control’ system and the other one is ’difference’ system. These processes help us to evaluate and
explore the optimal control factor.
Consider the state process (1) and observable dynamic (2). Define the without control processes α(·) and
β(·) from processes (1) and (2) as follows [18].

dα = [F(t)α + f (t)]dt + σ0dw, α(0) = ξ. (4)

dβ = [H(t)α + h(t)]dt + σ1db, β(0) = 0. (5)

The processes α(·) and β(·) are corresponding to the dynamics (1) and (2) respectively.
Assume that ν(t) ∈ L2(0,T×Ω, dt⊗dP; Rk) is a square integrable process. Then define the Difference processes
x1, z1 as follows,

dx1 = d(x − α) = (F(x − α) + Gν)dt = (Fx1 + Gν)dt, x(0) − α(0) = x1(0) = 0, (6)

dz1 = d(z − β) = H(x − α)dt = Hx1dt, z(0) − β(0) = z1(0) = 0. (7)

It is clear that the above relations are solved for each sample path.
The processes x(·) and z(·) in separation mode are defined as follows (for any control ν(·) ).

x(t) = α(t) + x1(t). (8)

z(t) = β(t) + z1(t). (9)

The above processes (8) and (9) are the state and observation corresponding to the control ν(·) .
First, consider the family of σ - algebras Zt

ν , consists of all the information (until time t) from observation
process z(·) .

Zt
ν = σ(z(s), s ≤ t). (10)

The optimal control is selected in the space of admissible controls. The definitions of admissibility are in
the following:

Definition 2.1. (natural definition): Control ν(·) is admissible if and only if ν(t) is adapted to Zt
ν .

After that, introduce the family of σ - algebras Ft , consists of all the information (until time t ) from without
control observation process β(·) .

Ft = σ(β(s), s ≤ t). (11)

Definition 2.2. : If control ν(·) is admissible then Ft
⊂ Zt

ν.

Definition 2.3. (more restrictive definition): Control ν(·) is admissible if and only if ν(t) is adapted to Ft and to Zt
ν .

All of the above definitions are the result of (8) and (9) expressions. If ν(·) is admissible, then Ft = Zt
ν,

it is one of the important conclusion of expression (9). This conclusion makes it easy to obtain the Kalman
filter x̂ as follows [19].

x̂(t) = E[x(t)|Zt
ν] = E[x(t)|Ft]. (12)

This paper studies the control on the filter to obtain the Kalman filter process. So, consider the ’innovation
process’ I(·) as follows,

I(t) = β(t) −
∫ T

0
(Hα̂ + h)ds = z(t) −

∫ T

0
(Hx̂ + h)ds. (13)
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In equation (13) the first equality is obtained from the expression (5) and the second one is obtained from
the expression (2) as follows,

β(t) − β(0)︸︷︷︸
0

=

∫ t

0
[H(t)α + h(t)]dt +

∫ t

0
σ1db

(12)
−−→ I(t) =

∫ t

0
σ1db = β(t) −

∫ t

0
[H(t)α̂ + h(t)]dt.

Z(t) − Z(0)︸︷︷︸
0

=

∫ t

0
[H(t)x + h(t)]dt +

∫ t

0
σ1db

(12)
−−→ I(t) =

∫ t

0
σ1db = Z(t) −

∫ t

0
[H(t)x̂ + h(t)]dt.

It is clear that I(t) is a Ft wiener process with covariance matrix R(·). The control factor is defined with two
parameters Λ and λ in the linear feedback form as follows,

ν(t) = Λ(t)x + λ(t). (14)

Impose this feedback control on process (1).

dx = [(F + GΛ)x + f + Gλ]dt + σ0dw. (15)

Expression (15) is not the real solution. In fact the real solution is a solution of state process which is
according to the observation z. But before obtaining the real solution we should find optimal control. The
following theorem is about the admissibility of control.

Theorem 2.4. If ν(·) is admissible in the sense of definition (2.3), then the Kalman filter x̂(t) is the solution of,

dx̂ = (Fx̂ + f + Gν)dt + PH∗R−1(dz − (Hx̂ + h)dt), x̂(0) = 0, (16)

where P is the solution of bellow differential equation with initial point P(0).

−
dP
dt

+ FP + PF∗ − PH∗R−1HP + Q = 0

P(0) = E[(x0 − E[x0])(x0 − E[x0])∗].
(17)

Proof. please see the theorem and proof in [7], [9] and [18].

By this theorem the real equation of solution with the ’innovation process’ is as follows,

dx̂ = [(F + GΛ)x̂ + f + Gλ]dt + PH∗R−1dI, x̂(0) = x0. (18)

The solution of expression (18) is the Kalman filter of x and is corresponding to the observation z; But what
functions should be used instead of Λ(·) and λ(·) parameters in control factors. This issue is expressed in
the next subsection. The following theorem is a complete proof of optimality and uniqueness of feedback
control.

Theorem 2.5. (optimality of control): For a SOCPP with a payoff function (3), state process (1) and observable
dynamic (2) there is an optimal and unique feedback control in the form of (14), with the following control parameters,
among the set of admissible control in the sense of definition (2.3).

Λ(t) = −N−1(t)G∗(t)Π(t).

λ(t) = −N−1(t)n∗(t) −N−1(t)G∗(t)r(t).

Where Π and r are the solutions of the following differential equations.

dΠ

dt
+ ΠF + F∗Π −ΠGN−1G∗Π + M = 0, Π(T) = MT.

dr
dt

+ (F∗ −ΠGN−1G∗)r + Π( f − GN−1n∗) + m∗ = 0, r(T) = mT.
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Proof. Beforehand, state the control factor form in expression (14). Assume that the control parameters Λ
and λ are unspecified in this form. Denote the control factor (14) by u(·) instead of ν(·). The corresponding
state and observation processes are denoted by y(·) and ζ(·) respectively.

dy = (Fy + f + Gu)dt + σ0dw, y(0) = ξ, (19)

dζ = (Hy + h)dt + σ1db, ζ(0) = 0. (20)

The Kalman filter of state process corresponding to the observation process y(·) and control factor u(t) =
Λ(t)ŷ(t) + λ(t) is as follows.

dŷ = [(F + GΛ)ŷ + f + Gλ]dt + PH∗R−1(dζ − (Hŷ + h)dt), ŷ(0) = x0, (21)

Make a ’change of control function’ to prove the optimality of this case. Suppose that process µ(·) is adapted
to Ft . Now if the process η(·) is adapted to Ft and it has the bellow differential equation, then make sure
that the ’change of control function’ ν(t) is also adapted to Ft.

dη = [(F + GΛ)η + f + Gλ + Gµ]dt + PH∗R−1dI, η(0) = x0, (22)

where the ’innovation process’ is as follows,

dI = dz − (Hη + h)dt, (23)

and the change of control function is,

ν(t) = Λ(t)η(t) + λ(t) + µ(t). (24)

In fact the state and observation processes which are corresponding to the control factor ν(·) and η(t) is the
Kalman filter of process x as expressed in the expression (12).
Furthermore η(t) is adapted to Ft. Impose the additional condition that process µ(·) is adapted to Zt

ν, then
we can understand from the innovation process (23) and equation (22) that η(t) is also adapted to Zt

ν.
So the process η(t) is adapted to the both families of σ - algebras Ft and Zt

ν. Therefore, ν(·) is admissible in
the sense of definition (2.3). The corresponding state (x) and observation (z) processes for any µ(·) are as
follows,

dx = (Fx + f + Gν)dt + σ0dw, x(0) = ξ, (25)

dz = [H(t)x + h(t)]dt + σ1db, z(0) = 0. (26)

The process x̂ is the Kalman filter corresponding to the state process x(·) and control ν(·).

dx̂ = [(F + GΛ)x̂ + f + Gλ + Gµ]dt + PH∗R−1(dz − (Hx̂ + h)dt), x̂(0) = x0, (27)

Find the following useful comment by comparing Kalman filters (21) and (27).

dz − (Hx̂ + h)dt = dζ − (Hŷ + h)dt = dβ − (Hα̂ + h)dt. (28)

By subtracting these two Kalman filters make a new process (x̃) as follows [18].

dx̃
dt

= (F + GΛ)x̃ + Gµ, x̃(0) = 0, (29)

where,

x̃(t) = x̂(t) − ŷ(t). (30)

Moreover, by using Kalman filter (12) for the ’separated processes’ (8) and (9) find the following two new
relations for x̂ and ŷ.
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x̂(t) = α̂(t) + x1(t),
ŷ(t) = α̂(t) + y1(t).

Now, due to the expressions (8) and (9) and the above relations, find the following equalities,

d(x1 − y1) = F(x1 − y1) + G(ν − u) = F(x1 − y1) + GΛ(x1 − y1) + Gµ, x1(0) − y1(0) = 0.

From the above equation conclude that,

x̂(t) − ŷ(t) = x1(t) − y1(t) = x(t) − y(t) = x̃(t). (31)

To compute the value of cost functions, use expression (30) and substitute x̂(t) = x̃(t) + ŷ(t), in J(ν(·)) relation
and simplified it as follows,

J(ν(·)) = K(µ(·)) = E
{ ∫ T

0
[(y(t) + x̃(t))∗M(y(t) + x̃(t))

+ (Λŷ + λ + Λx̂ + µ)∗N(Λŷ + λ + Λx̂ + µ)
+2m(y + x̃) + 2n(Λŷ + λ + Λx̂ + µ)]dt
+ (y(T) + x̃(T))∗MT(y(T) + x̃(T))

+ 2mT(y(T) + x̃(T))
}
.

By simplifying the above relation the corresponding payoff function is,

J(ν(·)) = J(u(·)) + E
{ ∫ T

0
[x̃∗Mx̃ + (Λx̃ + µ)∗N(Λx̃ + µ)]dt + x̃(T)∗MTx̃(T)

}
+ 2X,

where,

X = E
{ ∫

[x̃∗(t)My(t) + (Λx̃ + µ)∗N(Λŷ + λ) + mx̃ + n(Λx̃ + µ)]dt + x̃∗(T)MT y(T) + mTx̃(T)
}
.

From equality (31) and the above relations find the following relation,

Ex̃∗(t)My(t) = E
{
x̃∗(t)ME[y(t)|FT]

}
= Ex̃∗(t)Mŷ(t). (32)

Define,

p(t) = Π(t)y(t) + r(t), (33)

and use it for expression X,

X =

∫ T

0
(x̃∗My + (Λx̃ + µ)∗N(Λŷ + λ) + mx̃ + n(Λx̃ + µ))dt + x̃∗(T)p(T). (34)

then the differential form of x̃(t)p(t) is produced as follows,

d
dx

x̃∗(t)p(t) = x̃∗(F∗ + Λ∗G∗)p + µ∗G∗p + x̃∗
[dΠ

dt
y + Π(F + GΛ)y + Π(F + Gλ) +

dr
dt

]
.

So by substituting the above relation in (34) find the below expression,

X =

∫ T

0

{
x̃∗My + (Λx̃ + µ)∗N(Λŷ + λ) + mx̃ + n(Λx̃ + µ)

+ x̃∗(F∗ + Λ∗G∗)p + µ∗G∗p

+ x̃∗
[dΠ

dt
y + Π(F + GΛ)y + Π(F + Gλ) +

dr
dt

]}
dt.
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In the above relation, set the coefficients of x̃∗ and µ∗ to zero. This yields the bellow relations,

My + Λ∗N(Λy + λ) + m∗ + Λ∗n∗ + (F∗ + Λ∗G∗)(Πy + r) +
dΠ

dt
y + Π( f + GΛ)y + Π( f + Gλ) +

dr
dt

= 0, (35)

N(Λy + λ) + n∗ + G∗(Πy + r) = 0. (36)

Match the coefficients of y and constant terms of equalities (35) and (36), then get the following relations,

M + Λ∗NΛ + (F∗ + Λ∗G∗)Π +
dΠ

dt
+ Π(F + GΛ) = 0, (37)

Λ∗Nλ + m∗ + Λ∗n∗ + (F∗ + Λ∗G∗)r + Π( f + Gλ) +
dr
dt

= 0, (38)

NΛ + G∗Π = 0, (39)

Nλ + n∗ + G∗r = 0. (40)

By solving equations (39) and (40) respect to the parameters Λ and λ, we can achieve the following results,

Λ(t) = −N−1(t)G∗(t)Π(t),

λ(t) = −N−1(t)n∗(t) −N−1(t)G∗(t)r(t).
(41)

Now by substituting equalities (41) in expressions (37) and (38) the following differential equations are
obtained,

dΠ

dt
+ ΠF + F∗Π −ΠGN−1G∗Π + M = 0, Π(T) = MT. (42)

dr
dt

+ (F∗ −ΠGN−1G∗)r + Π( f − GN−1n∗) + m∗ = 0. r(T) = mT. (43)

In fact, by solving equations (42) and (43), find the parameters of equality (41) for optimal feedback control
(14). Therefore, find that X = 0 and,

J(ν(·)) = K(µ(·)) = J(u(·)) + E
{ ∫ T

0
[x̃∗Mx̃ + (Λx̃ + µ)∗N(Λx̃ + µ)]dt + x̃(T)∗MTx̃(T)

}
. (44)

It is clear that the optimal process µ(·) is zero for minimizing the cost function J(ν(·)). Therefore, it is
possible to know that the change of control function is equal to the feedback control. It means that the
control feedback is optimal and unique.

From the above results, deduce that minimizing the cost function (3) which is according to the state
and observation processes (1) and (2) has a unique solution. Its control factor is equality (14) with control
parameters (41).
After finding optimal feedback control it should be substituted in the state process. Now there are two
dynamic systems so that the second one is according to the first. In the next section a method will be
introduced to simulate this partially observation process.

2.2. Partially observation systems
The continuous partially observation systems are described as follows,

dx = [F(t)x + f (t)]dt + δdw, x(0) = ξ, (45)

dy = [H(t)x(t) + h(t)]dt + γdb(t), y(0) = 0, (46)

where ξ, is a vector random variable with Gaussian probability law, with mean value x0 and covariance
matrix P0. The processes w(·) and b(·) are wiener processes with the corresponding noise covariance matrices
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Q(·) and R(·) respectively. The matrix R(·) is uniformly positive definite. It should be mentioned that the
variable ξ and processes w(·) and b(·) are mutually independent. The matrix functions δ, z,H, h, γ,w(·), b(·), ξ
are n × d, k × 1, k × n, k × 1, k × k, d × 1, k × 1,n × 1 dimensional respectively. At time t the controller from
where observations y(r) for 0 ≤ r ≤ t where 0 is the start time. The corresponding noise covariance matrices
of processes w(·) and b(·) in equations (45) and (46) are defined by Q = (δ × δ∗)n×n and R = (γ × γ∗)k×k
respectively [2].
For simulating this kind of system, convert it to the discrete time mode. Consider these discrete systems as
follows,

xk+1 = Fkxk + fk + δkwk, k = 0, 1, · · · ,N − 1, x0 = ξ, (47)

yk = Hkxk + hk + γkbk, k = 0, 1, · · · ,N − 1. (48)

where xk ∈ R
n and yk ∈ R

k and the matrix functions Fk, fk, δk,wk, ξ,Hk, hk, γk and bk are n× n,n× 1,n× d, d×
1,n× 1, k×n, k× 1, k× k and k× 1 dimensional respectively. The variables wk and bk are Gaussian with mean
value 0 and covariance matrices Qk and Rk respectively and the matrix Rk is positive definite. The variables
ξ,wk and bk are mutually independent [23].
Let us consider the sequence of σ - algebras,

yk = σ(y0, . . . , yk−1), k = 1, . . . ,N. (49)

The solution of partially observable systems is to compute following relation [24] and [25].

x̂N = E[ xN | yN ].

In fact the solution of discrete systems (47) and (48) is according to the observation process until time N. In
this way, use the linear filters [21]. A best linear filter is defined as follows,

Fs = x̄N +

N−1∑
k=0

Sk(yk − ȳk), (50)

where
{
S0, . . . ,SN−1

}
is a set of matrices which characterized by S in the text and x̄N and ȳk represent the

means of xN and yk respectively. The sequences x̄k and ȳk are defined as follows [20].

x̄k+1 = Fkx̄k + fk, k = 0, . . . ,N − 1, (51)

ȳk = Hkx̄k + hk. (52)

Choose S in order to minimize the bellow function. It is a rule to obtain the best linear filter [18].

L(S) = E(xN − Fs)∗(xN − Fs). (53)

Let Λkl be the correlation matrix of the process xk, which is in L(Rn;Rn).

Λkl = E(xk − x̄k)(xl − x̄l)∗. (54)

It should be expressed that, Λ∗kl = Λlk and if M ∈ L(Rn;Rn), the following relation is held,

E(xk − x̄k)∗M(xl − x̄l) = trΛlkM. (55)

Then by using the expression (53), (54) and (55) deduce that,

L(S) = E

(xN − x̄N)(xN − x̄N)∗ +

 N−1∑
k=0

Sk(yk − ȳk)
2

− 2
 N−1∑

k=0

Sk(yk − ȳk)
(xN − x̄N)∗

,



A. Delavarkhalafi, A. Poursherafatan / Filomat 31:19 (2017), 5979–5992 5987

where,

E
 N−1∑

k=0

Sk(yk − ȳk)
2

= E
 N−1∑

k,l=0

Sl(yl − ȳl)S∗k(yk − ȳk)∗
 =

N−1∑
k,l=0

trΛlkH∗kS∗kSlHl +

N−1∑
k=0

trRkS∗kSk,

and,

E

 N−1∑
k=0

Sk(yk − ȳk)
(xN − x̄N)∗

 =

N−1∑
k=0

E
(
Sk(yk − ȳk)(xN − x̄N)∗

)
=

N−1∑
k=0

trΛkNSkHk.

Therefore,

L(S) = trΛNN +

N−1∑
k=0

trRkS∗kSk +

N−1∑
k,l=0

trΛlkH∗kS∗kSlHl − 2
N−1∑
k=0

trΛkNSkHk. (56)

It is important to find that, there is a unique S minimizing the functional L(S).

Theorem 2.6. There exist a unique S minimizing the functional L(S).

Proof. Suppose that the set of S is a finite dimensional vector space with the scalar product (S, S̃) that states
as follows,

(S, S̃) =
∑

k

trS∗kS̃k. (57)

Since the functional L(S) ≥ 0 and the equation (56) are quadratic then it can be concluded that trΛNN ≥ 0
and

∑
k,l trΛlkH∗kS∗kSlHl ≥ 0. Furthermore, according to the following expressions, find

∑N−1
k=0 trRkS∗kSk ≥ 0.

(See [18].)

N−1∑
k=0

trRkS∗kSk =

N−1∑
K=0

n∑
h=1

m∑
i, j=1

Rk,i jSk,hiSk,hj ≥ α
N−1∑
K=0

n∑
h=1

m∑
i=1

(Sk,hi)2 = α‖S‖2 ≥ 0. (58)

As mentioned previously, know that L(S) ≥ 0 and it should be minimized.
Furthermore, it can be found that trΛNN ≥ 0,

∑
k,l trΛlkH∗kS∗kSlHl ≥ 0 and

∑N−1
k=0 trRkS∗kSk ≥ 0. By these concepts

find that sum of the expressions with an unknown variable in (56) is zero.
Therefore, there is a unique minimum S which is applied in the following expression,

N−1∑
k=0

trRkS∗kSk +

N−1∑
k,l=0

trΛlkH∗kS∗kSlHl − 2
N−1∑
K=0

trΛkNSkHk = 0, ∀S. (59)

Now the unique linear filter (50) is existed, but the set S should be found as follows.

d
dSi

L(S0,S1, . . . ,SN−1) = 0, ∀i = 0, 1, . . . ,N − 1. (60)

The above expression is a convenient rule in multiple cases to obtain the minimum or maximum amount
of the function [22]. As stated obviously, L(S) is quadratic, so make sure that by using the relation (60) the
minimum of L(S) is obtained.
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3. Estimation methods

In this section we introduce two methods for a general stochastic optimal problem with partial obser-
vation in filtering case. Suppose the following stochastic optimization problem,

minν∈U J(ν(·)) =

∫ T

0
(x∗Mx + ν∗Nν + 2mx + 2nν)dt + x∗(T)MTx(T) + 2mTx(T).

dx = (Fx + f + Gν)dt + σ0dw, x(0) = ξ.

dz = (Hx + h)dt + σ1db, z(0) = 0.

Where, U is the space of admissible controls. First, find the feedback control u(x, t) = Λ(t)x(t) + λ(t) with
the following parameters,

Λ(t) = −N−1(t)G∗(t)Π(t),

λ(t) = −N−1(t)n∗(t) −N−1(t)G∗(t)r(t).

To do this, Π(t) and r(t) must be obtained. They are the solutions of the following differential equations,

dΠ

dt
+ ΠF + F∗Π −ΠGN−1G∗Π + M = 0, Π(T) = MT.

dr
dt

+ (F∗ −ΠGN−1G∗)r + Π( f − GN−1n∗) + m∗ = 0, r(T) = mT.

Now the feedback control can be constructed. Substitute the feedback control in the state and observation
processes and obtain the following dynamic system,

dx = (Fx + f + G(−N−1G∗Πx −N−1n∗ −N−1G∗r))dt + δdw, x(0) = ξ. (61)

dz = (Hx + h)dt + γdb, z(0) = 0. (62)

3.1. linear filter method

At first, we should discrete the above system for k = 0, 1, . . . ,N − 1 then substitute Π(tk) and r(tk) in the
discrete form of (61) and (62) as follows,

xk+1 = Fkxk + fk + Gk(−N−1
k G∗kΠ(t)xk −N−1

k n∗k −N−1
k G∗kr(t)) + δkwk, x0 = ξ. (63)

yk = Hkxk + hk + γkbk. (64)

As it was stated in the previous sections, the needed solution is x̂N = x̄N +
∑N−1

k=0 Sk(yk − ȳk), where x̄k
and ȳk are defined in equations (51) and (52). All arguments in the solution x̂N are known expect Sk for
k = 0, 1, . . . ,N − 1. Chose dynamic system as (63) and (64) and obtain Sk(t) for k = 0, 1, . . . ,N − 1. In fact,
in this method achieve x̂N as a function of t in each sample path. Of course, the solution is a curve in each
sample path.

3.2. Adams-Moulton method for non-linear problem

The second method is due to the difficulty of solutions Π(t) and r(t) in 1-dimensional cases. Sometimes
the exact solutions of these differential equations are too long and some computational problems are
occurred in estimations. Therefore, using one step Adams-Moulton method helps us in estimations. This
1-step method for solving y′ = f (x, y) is as follows.

yn+1 − yn =
h
2

( fn+1 + fn). (65)
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There is a problem in the dynamics of Π(t) and r(t). In fact, the known value of these differential equations
are Π(T) = MT and r(T) = m∗T. It means that they are not initial value. Therefore construct a backward
method according to the relation (65) for the differential equations Π(t) and r(t) as follows. We use the
following form of these dynamics to obtain the backward methods,

Π′ = −ΠF − F∗Π + ΠGN−1G∗Π −M,

r′ = −(F∗ −ΠGN−1G∗)r −Π( f − GN−1n∗) −m∗.

Now, apply the Adams- Moulton method on the above equations and obtain Πn and rn as follow.

Πn =

√√
Πn+1 + N−1G2 h

2 Πn+1
2 + hFΠn+1 + 2M

N−1G2 + ( 1+hF
N−1G2h )2

−N−1G2 h
2

+
1 + hF

N−1G2h
, (66)

ΠN = MT. (67)

rn =
rn+1 −

h
2 (N−1G2Πn+1 − F)rn+1 −

h
2 Πn+1(GN−1h − f ) − h

2 Πn(GN−1h − f ) − hm

1 + h
2 (N−1G2Πn − F)

, (68)

rN = m∗T. (69)

By using the above relations, find the numerical solutions of Π(t) and r(t) in the backward mode. Then
substitute the numerical results in (63) and (64) relations for k = 0, 1, . . . ,N − 1.

xk+1 = Fkxk + fk + Gk(−N−1
k G∗kΠkxk −N−1

k n∗k −N−1
k G∗krk) + δkwk, x0 = ξ. (70)

yk = Hkxk + hk + γkbk. (71)

After obtaining the processes xk, yk, x̄k and ȳk from the relations (70), (71), (51) and (52) simulate the filtering
process x̂N for n = 0, 1, . . . ,N − 1.

x̂n = x̄n +

n−1∑
k=0

Sk(yk − ȳk). (72)

This method simulates the filtering process x̂n point wise. In fact, the graph of this process turned around
the exact solution of the partial observation system. Deduce that the expected exact solution of the system
is the curve fitting of some paths witch is obtained by the second method.

In fact, these two methods are the same. In these methods we use the linear filters to estimate the
Kalman filter of the corresponding process. The only difference between the two methods is substituting
the solutions of differential equations (42) and (43) in the relation (63). In the first method we use the regular
solution of (42) and (43) and in the second one we use the numerical method of them. We use the numerical
method, because, in some non-linear cases the regular solution of differential equations (42) and (43) dose
not exist.

4. Numerical Example

In this section we take two examples to evaluate methods. Example (4.1) solves with both methods.
In this example, we will conclude that the methods are equivalent. But in the example (4.2), the control
parameters are not solvable, because, it can be solved only by the second method.
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Example 4.1. Consider the following example and obtain x̂n.

minν∈U J(ν(·)) = minν∈UE

∫ 1

0
(
ν2

2
)dt + 2x(1)

,
dx = (x + ν + 1)dt + dw, x(0) = 0.
dz = xdt + db, z(0) = 0.

The differential equations of Π and r are solvable. So, this example can be solved by the both methods. The
approximations of x̂ with the linear filter method and Adamz-Moulton method are as follows,

Figure1. Five paths of linear filtering method in ten points.

Figure2. Five paths of Adamz- Moulton method in ten points.

By comparing these two methods in the bellow figure, conclude that they are equivalent.

Figure3. Comparison of Two Methods.
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Example 4.2. Consider the bellow example. In this example the differential equations of control parameters don’t
have analytical solutions. So, this example can be solved only by the second method.

minν∈U J(ν(·)) = minν∈UE

∫ 1

0
(2x2 + ν2)dt + 2x(1)

,
dx =

(
− sin(πt + 1)x +

√

t + 1ν + 1
)
dt + dw, x(0) = 0.1.

dz = (x + 1)dt + db, z(0) = 0.

According to the state process, we can understand that the exact solution has a sinusoidal form. So, we should see
this sinusoidal form in the estimation.

Figure4. Five paths of second method in ten points.

5. Conclusion

In this paper we studied the general form of SOCPPs. First the linear filtering method is introduced to
estimate this kind of problem. But this method can be used when the dynamics of control parameters have
analytical solutions. The second method is used in non-linear cases when the analytical solutions do not
exist. According to the first example we can conclude that, these methods are equivalent.
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