Filomat 31:2 (2017), 247–254 DOI 10.2298/FIL1702247G



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# Some Properties of Functions Related to Completely Monotonic Functions

## Senlin Guo<sup>a</sup>

<sup>a</sup> Department of Mathematics, Zhongyuan University of Technology, Zhengzhou, Henan, 450007, People's Republic of China

**Abstract.** In this article, we present some properties of classes of functions which are related to completely monotonic or logarithmically completely monotonic functions.

#### 1. Introduction and Main Results

Throughout the paper, N denotes the set of all positive integers,

$$\mathbb{N}_0 := \mathbb{N} \cup \{0\}, \quad \mathbb{R}^+ := (0, \infty),$$

 $I^+$  is an open interval contained in  $\mathbb{R}^+$ ,  $I^0$  is the interior of the interval  $I \subset \mathbb{R}$ ,  $\mathbb{R}$  is the set of all real numbers,  $\mathcal{R}(f)$  denotes the range of the function f and C(I) is the class of all continuous functions on I.

We first recall some definitions we shall use and some basic results relating to them.

**Definition 1.1 (see [4]).** A function f is said to be absolutely monotonic on an interval I, if  $f \in C(I)$ , has derivatives of all orders on  $I^{\circ}$  and for all  $n \in \mathbb{N}_0$ 

$$f^{(n)}(x) \ge 0 \quad (x \in I^o).$$

The class of all *absolutely monotonic functions* on the interval *I* is denoted by *AM*(*I*).

**Definition 1.2 (see [4]).** A function f is said to be completely monotonic on an interval I, if  $f \in C(I)$ , has derivatives of all orders on  $I^{\circ}$  and for all  $n \in \mathbb{N}_0$ 

$$(-1)^n f^{(n)}(x) \ge 0 \quad (x \in I^o).$$

The class of all *completely monotonic functions* on the interval *I* is denoted by *CM*(*I*).

By Leibniz's rule for the derivative of the product function fg of order n, we can easily prove that if  $f, g \in CM(I)(AM(I))$ , then the product function  $fg \in CM(I)(AM(I))$ .

The following two results were given in [27, Chapter IV].

<sup>2010</sup> Mathematics Subject Classification. Primary 26A21; Secondary 26A48, 26E40

*Keywords*. Completely monotonic functions; Strongly completely monotonic functions; Logarithmically completely monotonic functions; Strongly logarithmically completely monotonic functions.

Received: 18 October 2014; Accepted: 15 February 2015

Communicated by Hari M. Srivastava

Email address: sguo@hotmail.com;sguo@zut.edu.cn (Senlin Guo)

**Theorem 1.3.** Suppose that

 $f \in AM(I_1), g \in AM(I) \text{ and } \mathcal{R}(g) \subset I_1.$ 

Then  $f \circ g \in AM(I)$ .

**Theorem 1.4.** Suppose that

$$f \in AM(I_1), g \in CM(I) \text{ and } \mathcal{R}(g) \subset I_1$$

Then  $f \circ g \in CM(I)$ .

**Remark 1.5.** The following example shows that  $f \circ g$  may neither belong to CM(I) nor belong to AM(I) when

 $f \in CM(I_1), g \in AM(I) \text{ and } \mathcal{R}(g) \subset I_1.$ 

For example, let

 $f(x) := e^{-x}$  and  $g(x) := x^2$ ,

then we have

 $f \in CM(\mathbb{R})$  and  $g \in AM(\mathbb{R}^+)$ .

But

 $f \circ g(x) = e^{-x^2} \notin CM(\mathbb{R}^+) \cup AM(\mathbb{R}^+)$ 

since

$$[f \circ g(x)]'' = 2e^{-x^2}(2x^2 - 1) < 0$$

when  $x \in (0, \frac{\sqrt{2}}{2})$ .

The result below (see [20, Theorem 5]) is a converse of Theorem 1.4.

**Theorem 1.6.** Let f be defined on  $[0, \infty)$ . If, for each  $g \in CM(\mathbb{R}^+)$ ,  $f \circ g \in CM(\mathbb{R}^+)$ , then  $f \in AM(\mathbb{R}^+)$ .

The following result was given in [21].

**Theorem 1.7.** *Suppose that* 

 $f \in CM(I_1), g \in C(I), g' \in CM(I^o)$  and  $\mathcal{R}(g) \subset I_1$ ,

then  $f \circ g \in CM(I)$ .

In [20] the authors gave an interesting result related to Theorem 1.7 as follows.

**Theorem 1.8.** For each function  $f \in CM(I)$ , where  $I := [0, \infty)$ , there exists a function g on I such that

 $g(0) = 0, f \circ g \in CM(I) \text{ and } g' \notin CM(\mathbb{R}^+).$ 

This result shows that the condition:

 $g' \in CM(I^o)$ 

in Theorem 1.7 is not a necessary condition. We also recall

**Definition 1.9 (see [26]).** A function f is said to be strongly completely monotonic on  $I^+$  if, for all  $n \in \mathbb{N}_0$ ,  $(-1)^n x^{n+1} f^{(n)}(x)$  are nonnegative and decreasing on  $I^+$ .

The class of such functions on the interval  $I^+$  is denoted by  $SCM(I^+)$ . It is easy to see that  $SCM(I^+)$  is a nontrivial subset of  $CM(I^+)$ . **Definition 1.10 (see [2]).** A function f is said to be logarithmically completely monotonic on an interval I if  $f > 0, f \in C(I)$ , has derivatives of all orders on  $I^{\circ}$  and for  $n \in \mathbb{N}$ 

$$(-1)^n [\ln f(x)]^{(n)} \ge 0 \quad (x \in I^o).$$

The set of all *logarithmically completely monotonic functions* on the interval *I* is denoted by *LCM*(*I*). In [18] the authors proved

**Theorem 1.11.** Let  $I_1$  and I be open intervals, and let f and g be defined on  $I_1$  and I respectively. If

 $f' \in LCM(I_1), g' \in LCM(I) \text{ and } \mathcal{R}(g) \subset I_1.$ 

Then  $(f \circ q)' \in LCM(I)$ .

**Definition 1.12 (see [15]).** A function f is said to be strongly logarithmically completely monotonic on  $I^+$  if f > 0 and, for all  $n \in \mathbb{N}$ ,  $(-1)^n x^{n+1} [\ln f(x)]^{(n)}$  are nonnegative and decreasing on  $I^+$ .

Such a function class on the interval  $I^+$  is denoted by  $SLCM(I^+)$ .

It is apparent that the class  $SLCM(I^+)$  is a nontrivial subclass of  $LCM(I^+)$  and that if each of the functions f and g belongs to  $SLCM(I^+)(LCM(I))$ , then the product function  $fg \in SLCM(I^+)(LCM(I))$ .

In [15] the authors proved an important relationship between  $SLCM(\mathbb{R}^+)$  and  $SCM(\mathbb{R}^+)$  as follows.

**Theorem 1.13.**  $SLCM(\mathbb{R}^+) \cap SCM(\mathbb{R}^+) = \emptyset$ .

The following result (see [15]) also reveals a relationship between  $SLCM(I^+)$  and  $SCM(I^+)$ .

Theorem 1.14. Suppose that

$$f \in C(I^+), f > 0 and f' \in SCM(I^+).$$

If

$$xf'(x) \ge f(x) \ (x \in I^+),$$

then

$$\frac{1}{f} \in SLCM(I^+).$$

In [18] the authors proved

**Theorem 1.15.** Suppose that

 $f \in SLCM(I_1^+), g' \in SCM(I^+) \text{ and } \mathcal{R}(g) \subset I_1^+.$ 

If

 $2xg'(x) \ge g(x) \quad (x \in I^+),$ 

then  $f \circ g \in SLCM(I^+)$ .

We shall also use the terminologies *almost strongly completely monotonic function* [15] and *almost completely monotonic function* [25] to simplify the statements of our results. The class of all *almost strongly completely monotonic functions* on the interval  $I^+$  and the class of all *almost completely monotonic functions* on the interval  $I^+$  and the class of all *almost completely monotonic functions* on the interval  $I^+$  and the class of all *almost completely monotonic functions* on the interval I are denoted by  $ASCM(I^+)$  and by ACM(I), respectively.

The following two results (see [15]) show relationships between  $SLCM(I^+)$  and  $ASCM(I^+)$ .

**Theorem 1.16.**  $SLCM(I^+) \subset ASCM(I^+)$ .

**Theorem 1.17.** Suppose that

$$f \in C(I^+), f > 0 \quad and \quad -f \in ASCM(I^+).$$

Then

$$\frac{1}{f} \in SLCM(I^+).$$

In [18], the following results were shown.

**Theorem 1.18.** Suppose that

$$f \in ACM(I_1), -g \in ACM(I) \text{ and } \mathcal{R}(g) \subset I_1.$$

Then  $f \circ g \in ACM(I)$ .

Theorem 1.19. Suppose that

$$f \in LCM(I_1), -g \in ACM(I) \text{ and } \mathcal{R}(g) \subset I_1.$$

Then  $f \circ g \in LCM(I)$ .

In [25], the following result, among others, was established.

Theorem 1.20. Suppose that

$$f \in ASCM(I_1^+), g' \in SCM(I^+) \text{ and } \mathcal{R}(g) \subset I_1^+.$$

If

$$2xg'(x) \ge g(x) \quad (x \in I^+),$$

then  $f \circ g \in ASCM(I^+)$ .

There is a rich literature on completely monotonic and related functions. For several recent works, see (for example) [1], [3], [6]-[19] and [22]-[25].

In this article, we further investigate the properties of functions which are related to completely monotonic or logarithmically completely monotonic functions. Our main results are as follows.

Theorem 1.21. Suppose that

$$f \in ACM(I_1), -g \in ASCM(I^+)$$
 and  $\mathcal{R}(g) \subset I_1$ .

Then

$$f \circ g \in ASCM(I^+).$$

Theorem 1.22. Suppose that

$$f \in LCM(I_1), -g \in ASCM(I^+)$$
 and  $\mathcal{R}(g) \subset I_1$ .

Then

$$f \circ g \in SLCM(I^+).$$

**Theorem 1.23.** Let  $I_1$  and I be open intervals, and let f and g be defined on  $I_1$  and I respectively. If

 $f' \in CM(I_1), g' \in CM(I) \text{ and } \mathcal{R}(g) \subset I_1.$ 

Then

$$(f \circ g)' \in CM(I).$$

**Theorem 1.24.** Let f and g be defined on  $I_1^+$  and  $I^+$  respectively. Suppose that

$$f' \ge 0, f' \in ASCM(I_1^+), g' \in SCM(I^+) \text{ and } \mathcal{R}(g) \subset I_1^+$$

If

$$2xg'(x) \ge g(x) \quad (x \in I^+),$$

then

$$(f \circ g)' \in ASCM(I^+).$$

Theorem 1.25. Suppose that

$$f > 0$$
 and  $-f \in ACM(I)$ ,

then

### 2. Lemmas

We need the following lemmas to prove the main results.

**Lemma 2.1 (see [5, p. 21]).** Suppose that the functions y = y(x) ( $x \in I_1$ ) and  $x = \varphi(t)$  ( $t \in I$ ) are n times differentiable, and that  $\mathcal{R}(\varphi) \subset I_1$ . Then, for  $t \in I$ ,

$$\frac{d^n y}{dt^n} = \sum_{(i_1,\dots,i_n)\in\Lambda_n} \left(\frac{n!}{i_1!\cdots i_n!}\right) \frac{d^m y(\varphi(t))}{dx^m} \prod_{j=1}^n \left\{ \left(\frac{\varphi^{(j)}(t)}{j!}\right)^{i_j} \right\},$$

where

$$m = i_1 + \cdots + i_n$$

and

$$\Lambda_n := \{ (i_1, \dots, i_n) | \ i_1, \dots, i_n \in \mathbb{N}_0, \sum_{\nu=1}^n \nu i_\nu = n \}.$$
(1)

Lemma 2.2 (see [25, Lemma 4]). Suppose that each of the functions f and g is nonnegative and belongs to ASCM( $I^+$ ). Then the function  $fg \in ASCM(I^+)$ .

**Remark 2.3.** By using similar method with that of proving Lemma 2.2, we can prove that if  $f, g \in SCM(I^+)$ , then  $fg \in SCM(I^+)$ 

Lemma 2.4 (see [15, Theorem 3(1)]). Suppose that

$$f \in C(I), f > 0 and f' \in CM(I^o).$$

Then

$$\frac{1}{f} \in LCM(I).$$

### 3. Proofs of the Main Results

Proof. [Proof of Theorem 1.21] Since

$$-g \in ASCM(I^+),$$

we know that, for  $i \in \mathbb{N}$ ,

 $(-1)^{i+1}x^{i+1}g^{(i)}(x)$  are nonnegative and decreasing on  $I^+$ . (2)

Let

$$h(x) := f \circ g(x) = f(g(x)) \quad (x \in I^+).$$
(3)

By Lemma 2.1, for  $n \in \mathbb{N}$ , we obtain

 $(-1)^n x^{n+1} h^{(n)}(x) =$ 

$$\sum_{(i_1,\dots,i_n)\in\Lambda_n} \left(\frac{n!}{i_1!\cdots i_n!}\right) \frac{(-1)^m f^{(m)}(g(x))}{x^{m-1}} \prod_{j=1}^n \left\{ \left(\frac{(-1)^{j+1} x^{j+1} g^{(j)}(x)}{j!}\right)^{i_j} \right\},\tag{4}$$

$$\frac{1}{f} \in LCM(I).$$

 $m = i_1 + \dots + i_n \ge 1$ 

where

and 
$$\Lambda_n$$
 is defined by (1).  
By setting  $i = 1$  in (2), we get  $g'(x) \ge 0$ .

Thus

g(x) is increasing on  $I^+$ .

Since

we find for

 $(i_1, \cdots, i_n) \in \Lambda_n$ 

 $f \in ACM(I_1),$ 

that

$$(-1)^m f^{(m)}(x) \ge 0 \quad (m = i_1 + \dots + i_n), \tag{6}$$

and

 $(-1)^m f^{(m)}(x)$  are decreasing on  $I_1$ 

since

$$(-1)^{m+1}f^{(m+1)}(x) \ge 0 \quad (m=i_1+\cdots+i_n).$$

From the results (5), (6) and (7), we obtain for  $(i_1, \dots, i_n) \in \Lambda_n$  that

 $(-1)^m f^{(m)}(g(x))$  are nonnegative and decreasing on  $I^+$ .

By (2) and (8), from (4), we conclude for  $n \in \mathbb{N}$  that  $(-1)^n x^{n+1} h^{(n)}(x)$  are nonnegative and decreasing on  $I^+$ . Therefore

 $h = f \circ g \in ASCM(I^+).$ 

The proof of Theorem 1.21 is completed.  $\Box$ 

Proof. [Proof of Theorem 1.22]

Since

$$f \in LCM(I_1)$$

we get

 $\ln f \in ACM(I_1).$ 

From (9), by Theorem 1.21, we have

$$(\ln f) \circ g \in ASCM(I^+). \tag{10}$$

Since

 $(\ln f) \circ g = \ln(f \circ g),$ 

from (10) we have

 $\ln(f \circ g) \in ASCM(I^+),$ 

which implies that

 $f \circ q \in SLCM(I^+).$ 

The proof of Theorem 1.22 is completed.  $\Box$ 

(5)

(7)

(8)

(9)

Proof. [Proof of Theorem 1.23] By Theorem 1.7, we have

$$f' \circ g \in CM(I)$$

It is easy to see that

 $(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$ 

Since

and

from (11), we obtain that

 $(f \circ g)' \in CM(I).$ 

 $f' \circ g \in CM(I)$ 

 $g' \in CM(I),$ 

The proof of Theorem 1.23 is completed.  $\Box$ 

*Proof.* [Proof of Theorem 1.24]

By Theorem 1.20, we get

$$f'(g(x)) \in ASCM(I^+). \tag{12}$$

Since

 $SCM(I^+) \subset ASCM(I^+),$ 

from the condition of the theorem, we have

$$g' \in ASCM(I^+). \tag{13}$$

By Lemma 2.2, from (12) and (13), and in view that

$$f' \ge 0$$
,

and

 $q' \geq 0$ ,

we have

 $f'(g(x)) \cdot g'(x) = (f \circ g)'(x) \in ASCM(I^+).$ 

The proof of Theorem 1.24 is completed.  $\Box$ 

Proof. [Proof of Theorem 1.25] Since

$$-f \in ACM(I)$$

implies

 $f \in C(I)$  and  $f' \in CM(I^{\circ})$ 

(see Lemma 2(1) in [25]), by Lemma 2.4, we obtain that

$$\frac{1}{f} \in LCM(I).$$

The proof of Theorem 1.25 is completed.  $\Box$ 

# Acknowledgment

Dedicated to Professor Hari M. Srivastava on the occasion of his seventy-fifth birthday.

253

(11)

S. Guo / Filomat 31:2 (2017), 247-254

#### References

- [1] H. Alzer, N. Batir, Monotonicity properties of the gamma function, Appl. Math. Lett. 20 (2007) 778-781.
- R. D. Atanassov, U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci. 41 (1988) 21–23.
- [3] N. Batir, On some properties of the gamma function, Exposition. Math. 26 (2008) 187-196.
- [4] S. Bernstein, Sur la définition et les propriétés des fonctions analytiques d'une variable réelle, Math. Ann. 75 (1914) 449-468.
- [5] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, Products, Sixth Edition, Academic Press, New York, 2000.
- [6] S. Guo, Some conditions for a class of functions to be completely monotonic, J. Inequal. Appl. 2015 (2015), Article ID 11, 7 pages.
- [7] S. Guo, Logarithmically completely monotonic functions and applications, Appl. Math. Comput. 221 (2013) 169–176.
  [8] S. Guo, A class of logarithmically completely monotonic functions and their applications, J. Appl. Math. 2014 (2014) Article ID
- 757462, 5 pages.
- [9] S. Guo, Some properties of completely monotonic sequences and related interpolation, Appl. Math. Comput. 219 (2013) 4958–4962.
   [10] S. Guo, A. Laforgia, N. Batir, Q.-M. Luo, Completely monotonic and related functions: their applications, J. Appl. Math. 2014 (2014) Article ID 768516, 3 pages.
- [11] S. Guo, F. Qi, A class of logarithmically completely monotonic functions associated with the gamma function, J. Comput. Appl. Math. 224 (2009) 127–132.
- [12] S. Guo, F. Qi, H. M. Srivastava, A class of logarithmically completely monotonic functions related to the gamma function with applications, Integral Transforms Spec. Funct. 23 (2012) 557–566.
- [13] S. Guo, F. Qi, H. M. Srivastava, Supplements to a class of logarithmically completely monotonic functions associated with the gamma function, Appl. Math. Comput. 197 (2008) 768–774.
- [14] S. Guo, F. Qi, H. M. Srivastava, Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic, Integral Transforms Spec. Funct. 18 (2007) 819–826.
- [15] S. Guo, H. M. Srivastava, A certain function class related to the class of logarithmically completely monotonic functions, Math. Comput. Modelling 49 (2009) 2073–2079.
- [16] S. Guo, H. M. Srivastava, A class of logarithmically completely monotonic functions, Appl. Math. Lett. 21 (2008) 1134–1141.
- [17] S. Guo, H. M. Srivastava, N. Batir, A certain class of completely monotonic sequences, Adv. Difference Equations 2013 (2013) Article ID 294, 9 pages.
- [18] S. Guo, H. M. Srivastava, W. S. Cheung, Some properties of functions related to certain classes of completely monotonic functions and logarithmically completely monotonic functions, Filomat 28 (2014) 821–828.
- [19] S. Guo, J.-G. Xu, F. Qi, Some exact constants for the approximation of the quantity in the Wallis' formula, J. Inequal. Appl. 2013 (2013) Article ID 67, 7 pages.
- [20] L. Lorch, D. J. Newman, On the composition of completely monotonic functions, completely monotonic sequences and related questions, J. London Math. Soc. (Ser. 2) 28 (1983) 31–45.
- [21] K. S. Miller, S. G. Samko, Completely monotonic functions, Integral Transform. Spec. Funct. 12 (2001) 389-402.
- [22] F. Qi, S. Guo, B.-N. Guo, Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math. 233 (2010) 2149–2160.
- [23] A. Salem, A completely monotonic function involving q-gamma and q-digamma functions, J. Approx. Theory 164 (2012) 971–980
- [24] H. Sevli, N. Batir, Complete monotonicity results for some functions involving the gamma and polygamma functions, Math. Comput. Modelling 53 (2011) 1771–1775.
- [25] H. M. Srivastava, S. Guo, F. Qi, Some properties of a class of functions related to completely monotonic functions, Comput. Math. Appl. 64 (2012) 1649–1654.
- [26] S. Y. Trimble, J. Wells, F. T. Wright, Supperaddative functions and a statistical application, SIAM J. Math. Anal. 20 (1989) 1255–1259.
- [27] D. V. Widder, The Laplace Transform, Seventh Printing, Princeton University Press, Princeton, 1966.