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Abstract. Let Gσ be a signed graph with the underlying graph G and with sign function σ : E(G) −→ {±}.
In this paper, we characterize the signed graphs with two distinct eigenvalues whose underlying graphs
are triangle-free. Also, we classify all 3-regular and 4-regular signed graphs whose underlying graphs are
triangle-free and give their adjacency matrices as well.

1. Introduction

Studying applications of graph theory in social psychology was initiated by Cartwright, Norman, and
Harary [2] in 1965, when they were doing research on dynamics of population at the University of Michigan.
Dynamics of population studies social relations between individuals of a given social group. Graphs which
are commonly used in this study are signed graphs. Let G = (V,E) be a simple graph and σ : E(G) → {±}
a mapping on the edges set of G. The graph G together with the sign function σ is called a signed graph
and is denoted by Gσ [4]. If σ(e) = +, then the edge e is called positive, and if σ(e) = −, then the edge e is
called negative. A positive sign between people u and v means that u and v are positively related; namely,
they have in common the social characteristics of concern. A negative sign indicates the opposite. A social
characteristic can be “friendship”, having respect for specific social traditions, etc... A group of people with
such relations between them is called a social system. A social system is balanced if positive relations appear
in the system such that positive relations only appear for pairs of people belonging to the same sector and
negative relations only appear for pairs of people not belonging to the same sector.

The adjacency matrix of a graph G, denoted by A(G) = [ai j], is an n × n matrix where ai j = 1 if viv j is an
edge of the graph, and ai j = 0 otherwise. Notice that this matrix is real symmetric. The adjacency matrix of a
signed graph, denoted by Aσ = [aσi j], is an n × n matrix where aσi j = σ(i j)ai j if viv j is an edge of the graph, and
aσi j = 0 otherwise. Thus, if e = i j is an edge and σ(i j) = +, then aσi j = 1, if e = i j is an edge and σ(i j) = −, then
aσi j = −1, and if e = i j is not an edge, then aσi j = 0. The adjacency matrix of a signed graph is also symmetric
(see [1] for some basic results on the adjacency spectrum of signed graphs). A path of length k in a graph
G is a sequence v1e1, . . . , vkekvk+1 with vertices v1, . . . , vk+1 and edges e1, . . . , ek such that, we have vi , vi+1,
1 ≤ i ≤ k and ei is an edge from vi to vi+1. In a signed graph Gσ, a path is called positive (resp. negative) if the
number of its negative edges is even (resp. odd) [1]. The number of positive (resp. negative) paths of length
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k from vertex vi to vertex v j is denoted by w+
i j(k) (resp. w−i j(k)). Zaslavsky [5] proved that if Gσ is a signed

graph with (signed) adjacency matrix Aσ, then the element (i, j) of the matrix (Aσ)k is equal to w+
i j(k) − w−i j(k).

A cycle with n ≥ 3 vertices is a simple graph whose vertices can be sorted as a sequence such that two
vertices are adjacent if and only if they are subsequent members of the sequence. In a signed graph Gσ, a
cycle is called balanced or positive (resp. unbalanced or negative) if the number of its negative edges is even
(resp. odd). A signed graph is called balanced whenever all its cycles are balanced; otherwise, it is called
unbalanced [1]. Let G be a graph with adjacency matrix A. We say that λ is an eigenvalue of G if there exists
a non-zero vector X such that A(G)X = λX. A graph of order n is called regular if all of the vertices are of
the same degree, and in particular, it is called k-regular if the degree of each vertex is equal to the integer
k. If there exists an edge between each pair of vertices, then the graph is called a complete graph. Most of
the notions used for simple graphs are used for signed graphs as well: the degree d(v) of a vertex v, the
neighbor N(x) of a vertex x , maximum degree of vertices ∆(G), induced subgraph G [S] for subset S of V(G),
complete bipartite graphs Km,n, etc... It is well-known that complete graphs are the only graphs with two
distinct eigenvalues. Ramezani [3] proved that if Gσ is a signed graph with only two distinct eigenvalues,
then the underlying graph G is regular. She made use of properties of bipartite graphs in order to find
general properties of matrices of signed graphs with two distinct eigenvalues, but she has not identified
specific graphs.

In this paper, we characterize signed graphs with two distinct eigenvalues whose the underlying graphs
are triangle-free. Also, we classify all 3-regular and 4-regular signed graphs whose underlying graphs are
triangle-free and give their matrices as well.

2. Main Results

In this section, we determine all 3-regular and 4-regular signed graphs whose the underlying graphs
are triangle-free.

Theorem 2.1. [3] Let Gσ be a signed graphs with two distinct eigenvalues. Then the underlying graph G is regular.

Theorem 2.2. Let G be triangle-free and k-regular graph. Thus, Gσ has two distinct eigenvalues if and only if the
number of positive paths and negative paths of length two between each pair of non-adjacent vertices are equal, in
which case (Aσ)2 = kIn.

Proof. Assume that Gσ has two distinct eigenvalues α and β. Then by diagonalizabality of Aσ:

(Aσ)2
− (α + β)Aσ + αβIn = 0.

Since G is a triangle-free, the number of positive paths and negative paths of length two between each pair
of adjacent vertices vi and v j is zero. Thus, [(Aσ)2]i j = 0, (Aσ)i j = ±1 and αβ(In)i j = 0. So (α+ β)(±1) = 0. This
shows that, α+β = 0 and (Aσ)2 = −αβIn. We knowαβ = −k, then (Aσ)2 = kIn. However since [(Aσ)2]i j = k(In)i j,
(Aσ)2

i j = 0, where i , j. On the other hand by [5], [(Aσ)2]i j = w+
i j(2) − w−i j(2). So w+

i j(2) = w−i j(2). This implies
that, the number of positive paths and negative paths of length two between each pair of non-adjacent
vertices are equal.

Conversely assume that the number of positive paths and negative paths of length two between each
pair of non-adjacent vertices is equal, indeed w+

i j(2) = w−i j(2). In addition, (Aσ)2
i j = w+

i j(2) − w−i j(2), where
i , j. This implies that, (Aσ)2

i j = 0. Since G is k-regular, [(Aσ)2]ii = k. Hence, (Aσ)2 = kIn . Then minimal
polynomial Aσ is χ(Gσ, x) = x2

− k. So the signed graph Gσ has two distinct eigenvalues ±
√

k.

Lemma 2.3. Let Aσ be the adjacency matrix of a signed graph Gσ. If (Aσ)2 = kIn, then the number of common
neighbors of pair of non-adjacent vertices x and y in G are even.

Proof. Since (Aσ)2 = kIn, w+
i j(2) − w−i j(2) = 0. So w+

i j(2) = w−i j(2). Therefore, half of paths of length two are
positive and another half are negative. Then, the number of common neighbors of pair of non-adjacent
vertices x and y in G are even.
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Figure 1: A Signed Hypercube Graph Qσ
3 .

Theorem 2.4. Let Gσ be 3-regular graphs with two distinct eigenvalues. If the underlying graph G is triangle-free,
then G is isomorphic to the hypercube Q3 in Figure 1.

Proof. Let N(x) = {x1, x2, x3}. Since G is triangle-free, {x1, x2, x3} is independent set. Suppose that y1 and y2
are adjacent to x1, (x is also adjacent to x1, so d(x1) = 3), so x1 is the common neighbor of x and y1. However
by Lemma 2.3, each pair of non-adjacent vertices have an even number of common neighbors. Therefore,
there is another common neighbors of x and y1. Since G is 3-regular and d(x) = 3, x2 or x3 must be adjacent to
y1. Without loss of generality, let x3 be the common neighbor of x and y1. Hence, y1x3 ∈ E(G). Now, consider
the common neighbors of x and y2. Then either y2x2 ∈ E(G) or y2x3 ∈ E(G). Assume that y2x3 ∈ E(G). Then
x1 and x3 have three common neighbors {x, y1, y2}, a contradiction to Lemma 2.3. So y2x2 ∈ E(G). With
the same argument we have y1x2 < E(G), otherwise x1 and x2 have three common neighbors {x, y1, y2}, a
contradiction. Now, consider the common neighbors of x2 and x3. Moreover, x is the common neighbor
of x2 and x3 and y2x3 < E(G) and y1x2 < E(G). So there has another vertex that the common neighbor of
x2 and x3. Let y3 be such common neighbor of x2 and x3. So x2y3 ∈ E(G) and x3y3 ∈ E(G). Then we have
d(x) = d(x1) = d(x2) = d(x3) = 3 and d(y1) = d(y2) = d(y3) = 2.

Suppose that y is the third neighbor of y1. Therefore, y1y ∈ E(G). So y1 is the common neighbor of
x1 and y. However by Lemma 2.3 and considering the common neighbors of y and x1 and the common
neighbors of y and x3, we have y2y ∈ E(G) and y3y ∈ E(G),respectively. Moreover y2 is the unique neighbor
of x1 except y1, whose degree is less than 3, and y3 is the unique neighbor x3 except y1, whose degree is less
than 3. All vertices have already degree 3. So its underlying graph, hypercube Q3 is shown in Figure 1.

Corollary 2.5. Let G be 3-regular and triangle-free graph. Then Gσ has two distinct eigenvalues if and only if G is
the three-dimensional hypercube with the unbalanced quadrangles.

Proof. Suppose that Gσ has two distinct eigenvalues. By Theorem 2.4, G must be hypercube Q3. By Theorem
2.2, the number of positive paths and negative paths of length two between each pair of non-adjacent vertices
are equal. Now, there are two paths between each pair of non-adjacent vertices, then one of them is positive
and another is negative. Then all of the quadrangles are unbalanced.

Conversely assume that G � Q3 and all of the quadrangles are unbalanced. Then there is a path of
length two and positive and a path of length two and negative between each pair of non-adjacent vertices.
This proves that the number of positive paths and negative paths of length two between each pair of
non-adjacent vertices are equal and by Theorem 2.2, G has two distinct eigenvalues.

Example 2.6. Let Qσ
3 be the signed graph as seen in Figure 1. Then it has two distinct eigenvalues. Let the rows of a

signed adjacency matrix Qσ
3 correspond successively vertices x, y1, y2, y3, x1, x2, x3 and y. So we have,
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Figure 2: Signed Graphs Fσi and Gσ
j .

A(Qσ
3) =



0 0 0 0 −1 +1 −1 0
0 0 0 0 +1 0 −1 +1
0 0 0 0 −1 −1 0 +1
0 0 0 0 0 +1 +1 +1
−1 +1 −1 0 0 0 0 0
+1 0 −1 +1 0 0 0 0
−1 −1 0 +1 0 0 0 0
0 +1 +1 +1 0 0 0 0


.

By a tedious calculation we as see that [A(Qσ
3)]2 = 3I8 and its eigenvalues are ±

√
3.

Theorem 2.7. Let G be 4-regular graph, triangle-free and Gσ be its signed graphs with two distinct eigenvalues.
Then, G is isomorphic to one of Fi, G j, the hypercube Q4 and H depicted in Figures 2 and 3.

Proof. Let N(x) = {x1, x2, y1, y2}. Since G is triangle-free, {x1, x2, y1, y2} is independent set. Assume that y, x3
and x4 are adjacent to x1, so x1 is the common neighbor of x and y. By Lemma 2.3 there must be another one
or three neighbors between each pair of vertices x and y in {x2, y1, y2}, between each pair of vertices x and
x3 in {x2, y1, y2} and between each pair of vertices x and x4 in {x2, y1, y2}. Now, assume that k1, k2 and k3 are
the numbers of common neighbors between each pair of vertices x and y, x and x3, x and x4, respectively.
Thus {k1, k2, k3} = {1, 3}. Without loss of generality, four cases are happening.

Case 1: k1 = 1, k2 = 1 and k3 = 1.
Assume that x2y ∈ E(G). Since k1 = 1, y1y < E(G) and y2y < E(G). Moreover, x is the common neighbor

of x1 and y1. By Lemma 2.3, there is the other common neighbor between each pair of vertices x1 and y1 in
{x3, x4}. Suppose that x3 is the common neighbor of x1 and y1. Since k2 = 1, x2x3 < E(G) and y2x3 < E(G). we
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consider the common neighbors of x1 and y2. Since y2y < E(G) and y2x3 < E(G), y2x4 ∈ E(G). Since k3 = 1,
x2x4 < E(G) and y1x4 < E(G). As G is 4-regular, x2 has another two neighbors, say y3 and y4. Now, x is the
common neighbor of x2 and y1 and y1y < E(G), otherwise the number of common neighbors of x1 and y1
are 3, a contradiction to Lemma 2.3. Then there is another neighbor between each pair of vertices x2 and
y1 which belongs to {y3, y4}. Assume that y3 is the common neighbor of x2 and y1, therefore y1y4 < E(G),
otherwise the number of common neighbors of x2 and y1 are 3, a contradiction to Lemma 2.3. Since x is
the common neighbor of x2 and y2 and y2y < E(G), there is another common neighbor between each pair of
vertices x2 and y2 which belongs to {y3, y4}.
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Figure 3: Signed Graphs Hσ and Hypercube Qσ
4 .

We claim that y3 is not the common neighbor of x2 and y2, otherwise the common neighbors of x
and y3 are {x2, y1, y2}, a contradiction to Lemma 2.3. Then y4 is the common neighbor of x2 and y2.
Now, add a new vertex z and consider as the fourth neighbor of y1. Considering the common neighbors
of y1 and y2, we have y2z ∈ E(G). This follows that d(x) = d(x1) = d(x2) = d(y1) = d(y2) = 4 and
d(y) = d(x3) = d(x4) = d(y3) = d(y4) = d(z) = 2.

We claim that {y, x3, x4, y3, y4, z} is independent set, otherwise we have the edges yz ∈ E(G), x3y4 ∈ E(G)
and x4y3 ∈ E(G). If yz ∈ E(G), then the number of common neighbors of x1 and z are 1, a contradiction.
Then {y, x3, x4, y3, y4, z} is independent set and yz < E(G), x3y4 < E(G) and x4y3 < E(G).

Suppose that x5 and x6 are adjacent to y. Since x1 is the common neighbor of y and x3, either x3x5 ∈ E(G)
or x3x6 ∈ E(G). Assume that x3x5 ∈ E(G). Therefore x3x6 < E(G). Now, x4x5 < E(G), otherwise the common
neighbors of x1 and x5 are {y, x3, x4}, a contradiction.

Now, consider the common neighbors of x1 and x6. Since y is the common neighbor of x1 and x6,
x4x6 ∈ E(G). Suppose that y5 is as the fourth neighbor of x3. So x3 is the common neighbor of x1 and
y5. With the same process x4 is also the common vertex between x1 and y5. Moreover, y is the common
neighbors of x2 and x5. So there is another common neighbor between x2 and x5. This shows that y3x5 ∈ E(G)
or y4x5 ∈ E(G). However we review both cases.

1 ) If y3x5 ∈ E(G), then y4x5 < E(G). By considering the common neighbors of y and y4 we have
y4x6 ∈ E(G). We claim that y3x6 < E(G) and y3y5 < E(G), otherwise the common neighbors of y and
y3 are {x2, x5, x6} or the common neighbors of x3 and y3 are {y1, x5, y5}, a contradiction to Lemma 2.3.



E. Ghasemian, G.H. Fath-Tabar / Filomat 31:20 (2017), 6393–6400 6398

Then y3 has a new neighbor, say y6. Since y3 is the common neighbor of y1 and y6 and z is adjacent
to y1 and with degree less than 4, zy6 ∈ E(G). By the same argument and considering the common
neighbors of y2 and y6, we have y4y6 ∈ E(G). Now, considering the common neighbors of y2 and
y5 we have zy5 ∈ E(G). Then we have d(x5) = d(x6) = d(y5) = d(y6) = 3 and all above vertices are
degree 4. Now, since G is a triangle-free, {x5, x6, y5, y6} is independent set. Suppose that t is the fourth
neighbor of x5. Considering the common neighbors of t and y, t and x3, t and y3, respectively, we have
x5t ∈ E(G), x6t ∈ E(G), y5t ∈ E(G) and y6t ∈ E(G). All vertices have already degree 4 and its underlying
graph is isomorphic to the hypercube Q4, in Figure 3.

2 ) If y4x5 ∈ E(G), then y4 is the common neighbor of y2 and x5. Since z is adjacent to y2 with degree
less than 4, zx5 ∈ E(G). Now, x2 is the common neighbor of y and y3. By Lemma 2.3, x6 is another
common neighbor between y and y3. So x6y3 ∈ E(G). By the same argument and considering the
common neighbors of x3 and y3 we have y3y5 ∈ E(G). Since x5 is the common neighbor of x3 and
y4, y4y5 ∈ E(G). However, considering the common neighbors of z and x4, we have zx6 ∈ E(G). All
vertices have already degree 4 and its underlying graph is isomorphic to the H, in Figure 3.

x y

x1

x3

y1 y2

y3 y4

x1

x3

x5

x y

y1 y2

y4

y5 y6
F1

σ F2
σ

y3

+ + +
+ +

_ _+

+ + _
 +  +   _

  _ +
+  _

+
+

+

+ +
 + _ _

+ + _ _ + __+

+ + _ _ +  +   _  _

   _ +
_

+

x2

x4x4

 x2_
_

x6

Figure 4: Signed Graphs Fσ1 and Fσ2 .

Case 2: k1 = 3, k2 = 1 and k3 = 1.
By a similar argument as Case 1, the underlying graph is isomorphic to graph F1 or F2 in Figure 4 and

the underlying graph G2 or G3 in Figure 5.
Case 3: k1 = 3, k2 = 3 and k3 = 1.
In this case, y and x3 are adjacent to all vertices of {x2, y1, y2} such that x4 is only adjacent to one of

them. Assume that x2x4 ∈ E(G), so y1x4 < E(G) and y2x4 < E(G). Hence, the common neighbors of x1 and y1
contain {x, y, x3}, a contradiction. Then, this case could not occur.

Case 4: k1 = 3, k2 = 3 and k3 = 3.
In this case, y and x3 and x4 are adjacent to all vertices of {x2, y1, y2}. All vertices have already degree 4

and its underlying graph is isomorphic to the complete bipartite graph K4,4, which is also the underlying
graph G1 in Figure 2.

Corollary 2.8. Let G be 4-regular and triangle-free graph. Then Gσ has two distinct eigenvalues if and only if

1 ) G � Q4 or G � H and all of the quadrangles Gσ are unbalanced or
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2 ) G � F1, F2, G1, G2 or G3 and there are exactly one positive path and one negative path of length two or two
positive paths and two negative paths of length two between each pair of non-adjacent vertices.
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Figure 5: Signed Graphs Gσ
2 and Gσ

3 .

Proof. Suppose that Gσ has two distinct eigenvalues. By Theorem 2.7, G must be Q4, H, F1, F2, G1, G2
or G3. Assume that G � Q4 or G � H. There are exactly two paths of length two between each pair of
non-adjacent vertices. By Theorem 2.2, Q4 and H have two distinct eigenvalues, if one of the path is positive
and other path is negative. Then the number of positive paths and negative paths between each pair of
non-adjacent vertices are equal and all of the quadrangles in graphs Q4 and H are unbalanced. Now, in
graphs F1, F2, G1, G2 and G3, there are two paths of length two or four paths of length two between each
pair of non-adjacent vertices, which the number of positive paths and negative paths of length two between
each pair of non-adjacent vertices are equal by Theorem 2.2.

Conversely assume that G � Q4 or G � H and all of the quadrangles are unbalanced. Then there is
only one path of length two and positive and one path of length two and negative between each pair
of non-adjacent vertices. Then the number of positive paths and negative paths of length two between
each pair of non-adjacent vertices is equal and according to Theorem 2.2, Q4 and H have two distinct
eigenvalues. Now, suppose that G � F1, F2, G1, G2 or G3 and there are exactly one positive path and one
negative path of length two or two positive paths and two negative paths of length two between each pair
of non-adjacent vertices. Thus, the number of positive paths and negative paths of length two between each
pair of non-adjacent vertices is equal. By Theorem 2.2 the graphs F1, F2, G1, G2 and G3 have two distinct
eigenvalues.

Example 2.9. Let Fσ1 be signed graphs as seen in Figures 4. Then it has two distinct eigenvalues. Let the rows of a
signed adjacency matrix Fσ1 correspond successively vertices x, y, x1, x2, y1, y2, x3, x4, y3 and y4. Then we have,
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A(Fσ1) =



0 0 +1 +1 +1 +1 0 0 0 0
0 0 +1 +1 −1 −1 0 0 0 0

+1 +1 0 0 0 0 +1 +1 0 0
+1 +1 0 0 0 0 −1 −1 0 0
+1 −1 0 0 0 0 0 0 +1 +1
+1 −1 0 0 0 0 0 0 −1 −1
0 0 +1 −1 0 0 0 0 −1 +1
0 0 +1 −1 0 0 0 0 +1 −1
0 0 0 0 +1 −1 −1 +1 0 0
0 0 0 0 +1 −1 +1 −1 0 0


.

Finally with a tedious calculation w have [A(Fσ1)]2 = 4I10 and its eigenvalues are ±2.
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