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Abstract. Developing accurate mathematical models for host immune response in immunosuppressive
diseases such as HIV and HTLV-1 are essential to achieve an optimal drug therapy regime. Since for HTLV-1
specific CTL response typically occurs after a time lag, we consider a discontinuous response function to
better describe this lagged response during the early stage of the infectious, thus the system of HTLV-1
model will be a discontinuous system. For analyzing the dynamic of the system we use Filippov theory
and find conditions in which the Filippov system undergoes a Hopf bifurcation. The Hopf bifurcation help
us to find stable and unstable periodic oscillations and can be used to predict whether the CTL response
can return to a steady state condition. Also, Hopf bifurcation in sliding mode is investigated. In this case
the solutions will remain in the hyper-surface of discontinuity and as a consequence the disease cannot
progress, at least for a long time. Finally we use numerical simulations to demonstrate the results by
example.

1. Introduction

Human T lymphotropic virus type 1 (HTLV-1) belongs to the retroviruses family. It mainly infects the
CD4+ T cells resulting in persistent human infection [1]. It is estimated that HTLV-1 virus infects 15-20
million worldwide. HTLV-1 retrovirus is responsible for significant mortality. Additionally, HTLV-1 related
pathological conditions are associated with no effective treatment. HTLV-1 virus usually remains without
showing any symptoms during the lifelong host period. In 2-5 percent of cases it develops pathological
conditions, ATL or HAM/TSP. ATL is an aggressive, fatal T-cell malignancy, adult T-cell leukemia, while
HAM/TSP is a chronic, progressive neurologic disorder termed HTLV-1-associated myelopathy/tropical
spastic paraparesis. Cytotoxic T cells (CTLs, CD8+ T cells) are another group of T cells which protect the
host by controlling the proviral load and it seems that the CD8+ cytotoxic T lymphocyte response is an
important determinant of the outcome of HTLV-1 infection [2]. It was suggested that in HAM/TSP the
HTLV-1 does not infect the neuronal cells directly. Evidences have showed that the pathological condition
associated with HAM/TSP were induced by CTLs via secretion of a neurotoxic substance.
In the peripheral blood, HTLV-1 preferentially infects CD4+ helper T cells [3]. HTLV-1 does not exist as free
virions in vivo and infection of healthy CD4+ T cells is achieved through cell-to-cell contact with infected
CD4+ T cells [4]. The immune system reacts to HTLV-1 infection with a strong cytotoxic T lymphocyte (CTL)
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Corresponging author: Zahra Afsharnezhad
Email addresses: elham.shamsara@stu.um.ac.ir (Elham Shamsara), afsharnezhad@math.um.ac.ir (Zahra Afsharnezhad),

re.mostolizadeh@stu.um.ac.ir (Reihaneh Mostolizadeh)



E. Shamsaraet al. / Filomat 31:20 (2017), 6247–6267 6248

response [5]. Understanding the pathogenesis of the HTLV-1 within the host has important implications for
the development of therapeutic measures and for the identification of risk factors for HAM/TSP. Because
HAM/TSP occurs only in the human CNS, formal tests of the mechanisms of pathogenesis are impossible
and the evidence will therefore remain circumstantial. The evidence indicates that the CTL response to
HTLV-1 plays a major role, perhaps the decisive role, in determining the equilibrium provirus load of
HTLV-1 [3]. Mathematical models have been developed to capture the interaction in vivo among HTLV-1,
its target cells, and the CTL immune response in order to explain the pathogenesis of HTLV-1 associated
diseases [4]. One of the mathematical models that introduced for HTLV-1 is [4]

ẋ = λ − βxy − µ1x
ẏ = σβxy − γyz − µ2y

ż = νy f (z) − µ3z
(1.1)

In this model, there are three main types of cells which are critical to the modeling effort: The uninfected
CD4+ target cells x, infected CD4+ target cells y, and HTLV-1 specific CD8+ CTLs z, with turnover rates of
µ1, µ2 and µ3 respectively. Let x(t), y(t), z(t) denote the cell concentration of the corresponding compartment
at time t. Healthy CD4+ T cells are produced at a constant rate λ. The infection of healthy CD4+ T cells is
through direct cell to cell contact with a proviral CD4+ T cell. This interaction is modeled by the mass action
term βxy, the infectivity, β > 0 represents the ability of a proviral cell to transmit HTLV-1 to a susceptible
cell. Of course, not every transmission of HTLV-1 results in a new proviral cell; for example, the reverse
transcription and integration of HTLV-1 into the host genome can be fatal. In order to represent this reality
it is necessary to introduce the σ ∈ [0, 1] which represents the probability of a transmission of HTLV-I
resulting in a new proviral cell. The loss of proviral CD4+ T cells due to CTL lysis is given by γyz. In other
words γ is the rate of CTL-initiated lysis. The term νy f (z) represents the production of CTLs in response
to HTLV-1, where f (z) is the CTL response function. CTLs replicate in response to the presence of proviral
cells. So, it may be expected that the expression for the CTL response function depends on y. Moreover,
since replication of CTLs is done by mitosis the CTL response function also depend on z. In the literature,
CTL response function has taken a linear form f (z) = z [6] or a density dependent form f (z) = z

z+a with a > 0
[1, 7–9]. In [4] a sigmoidal response function of the form f (z) = zn

zn+a with a > 0 and n ≥ 2 is considered.
Sigmoidal response function shows the time lag during the early stage of the infection when z is small [4].
In this paper we consider the special 3−dimension model (1.1), with discontinuous response function
f (z). The reason for discontinuous response function is because, if there exist only a few antigens then
antigen presenting cells (APCs) do not induce immune cells, but if there exist relatively many antigens then
immune cells are gradually induced and the proliferation of immune cells is saturated for sufficiently many
antigens, see Figure 1 (i), [10]. Our HTLV-1 model is discontinuous which according to our knowledge is
not considered in other recent similar studies [4, 9, 11–17].
From a biological point of view, [10] introduced a mathematical model for personal immune response
function. A reasonable function, f (z), for immune cell inducement has been shown in Figure 1 (i). Figure 1
(ii) and (iii) are two different approximation of Figure 1 (i)
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Figure 1: The Figure was taken from [10] .

Figure 1 (ii) is corresponding to the function f1(z) = kz and Figure 1 (iii) is corresponding to f2(z) = mz2

h2+z2

(sigmoid function). The discontinuous CTL response function f (z), seen below, was introduced in place of
the linear function f1(z) and sigmoid function f2(z).

f (z) =

 z2

z2+a2 if z > a
c if 0 6 z < a

(1.2)

Note that 0 ≤ f (z) ≤ 1.
The model (1.2) has some advantages. Firat, it is generally based on sigmoidal function and consideration
of a saturation effect, when z is very large. Moreover, it introduce a time lag for very small values of
z. In addition, it has been shown experimentally that there is an estimated threshold of 400 peptides for
antigen concentration to stimulate T cells proliferation [18–20]. These results imply that a quantitative
threshold exists to commit a T cell to proliferate. In other words, as immune response function changes the
states according to the antigen concentration, personal immune response function can be considered as a
discontinuous switching function.
therefore system (1.1) can be rewritten as follow:

sys(I)


ẋ = λ − βxy − µ1x
ẏ = σβxy − γyz − µ2y 0 ≤ z < a
ż = νcy − µ3z

(1.3)

And

sys(II)


ẋ = λ − βxy − µ1x
ẏ = σβxy − γyz − µ2y z ≥ a
ż = ν z2

z2+a2 y − µ3z
(1.4)

First it should be clarified what is desirable by the term ’discontinuous dynamical system’. It is described
by differential equations with a discontinuous right-hand side, also called Filippov systems. The paper is
organized as follows:
In section 1 a brief explanation is given about Filippov theory. Section 2 is devoted to bifurcation theory
of the system concerning discontinuity. Section 3 will give conditions in which the systems (1.3) and (1.4)
undergo Hopf and fold bifurcations. Section 4 explains and prove the transversality condition. Section 5
considers the Hopf bifurcation for sliding mode. Section 6 given an example which shows our results.
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2. Preliminaries

2.1. Filippov theory
Since this paper is concerned with discontinuous systems, Filippov theory is explained in this section.

For more detail of this section one can see [21–25].
A dynamical system is usually expressed as the following set of ordinary differential equations

ẋ = f (t, x(t)), x(t) ∈ Rn (2.1)

Where x is the n-dimensional state vector and f (t, x(t)) is the vector of right-hand sides describing the
time derivative of the state vector. This study is restricted to differential equations with a right-hand side
discontinuity. The state space Rn is split into two subspaces ν+ and ν− by a hyper-surface Σ such that

Rn = ν− ∪ Σ ∪ ν+ (2.2)

The hyper-surface Σ is defined by a scalar indicator function h(x(t)). The state x(t) is in Σ when h(x(t)) = 0.
The normal n perpendicular to the hyper-surface Σ is given by

n = n(x(t)) = 1rad(h(x(t))) (2.3)

An indicator function h to define a certain hyper-surface Σ is not unique. Different indicator functions can
define the same Σ.
One can assume that the indicator function h(x(t)) is chosen such that it always holds that

1rad(h(x(t))) , 0 (2.4)

The subspaces ν+ and ν− and hyper-surface Σ can be formulated as


ν− = {x ∈ Rn

| h(x(t)) < 0}
Σ = {x ∈ Rn

| h(x(t)) = 0}
ν+ = {x ∈ Rn

| h(x(t)) > 0}
(2.5)

The function f (t, x) is assumed to be locally continuous, smooth and linearly bounded for all x < Σ. From
this assumption it follows that the solution x(t) within each subspace ν+ and ν− exists and is unique (exis-
tence and uniqueness of continuous system theorem [26]).
The set-valued extension of f (t, x(t)) of (2.1) for x ∈ Σ is given by the closed convex hull of all the limits

F(t, x(t)) = c̄o
{
y ∈ Rn

| y = limx̃→x f (t, x̃), x̃ ∈ Rn
\ Σ

}
(2.6)

Where c̄o(A) denotes the smallest closed convex set containing A.
All the limits exist because f (t, x) is assumed to be locally continuous, smooth and linearly bounded for all
x < Σ. The following n-dimensional nonlinear system can be considered with the discontinuous right-hand
side

ẋ(t) = f (t, x(t)) =

 f−(t, x(t)) if x ∈ ν−
f+(t, x(t)) if x ∈ ν+

(2.7)
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With the initial condition x(0) = x0 .
The system described by (2.7) does not define f (t, x(t)) if x(t) is on Σ. This problem can be overcome through
the following set-valued extension F(t, x)

ẋ(t) ∈ F(t, x(t)) =


f−(t, x(t)) if x ∈ ν−
c̄o

{
f−(t, x(t)), f+(t, x(t))

}
if x ∈ Σ

f+(t, x(t)) if x ∈ ν+

(2.8)

where the convex set with two right-hand sides f− and f+ can be cast in

c̄o
{
f−, f+

}
=

{
(1 − q) f− + q f+,∀q ∈ [0, 1]

}
(2.9)

where

0 ≤ q =
(h)x f−

(h)x( f− − f+)
≤ 1 (2.10)

The parameter q is a parameter which defines the convex combination and has no physical meaning. The
extension (or convexification) of a discontinuous system (2.7) into a convex differential inclusion (2.8) is
known as Filippov’s convex method.
Let x ∈ Σ and n(x) be the normal to Σ at x. Moreover nT(x) f−(x) and nT(x) f+(x) be the projections of f−(x)
and f+(x) onto the normal to the hyper-surface Σ
(a) Transversal Intersection. If at x ∈ Σ[

nT(x) f−(x)
]
.
[
nT(x) f+(x)

]
> 0 (2.11)

then any solution of (2.8) with initial condition not in Σ, can reaching Σ at a time t1, and having a transversal
intersection there, this solution is exists and is unique [23].
(b) Sliding Mode. Let x ∈ Σ, one has

[
nT(x) f−(x)

]
.
[
nT(x) f+(x)

]
< 0 (2.12)

Then one has sliding mode through x. This is further classified as attracting or repulsive.

Definition 1. Parameters of any system describe the biological considerations for a given model. Eigenvalues that
determine the stability of an equilibrium point are functions of these parameters. As the parameters change to reflect
changes in biological conditions, the eigenvalues change along with them. Some of eigenvalues may move from the left
to right half of the complex plane. The point at which at least one eigenvalue has zero real-part is called the bifurcation
point. After the eigenvalues completely cross into the right half plane, the equilibrium point looses its stability and
changes to another state. This process is called bifurcation.

Definition 2. (Discontinuous bifurcation). A bifurcation point is called a discontinuous bifurcation point if the
eigenvalues at the bifurcation point are set-valued and contain a value on the imaginary axis.
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Notice that a necessary condition for the existence of a discontinuous bifurcation of a fixed point of a
non-smooth continuous system is a ’jump’ of an eigenvalue (or pair of them) over the imaginary axis, i.e.
the path of the set-valued eigenvalue(s) passes the imaginary axis.

Definition 3. (Generalized Jacobian) Let x be a fixed point of (2.8). At some value for µ if x is not on Σ, then we can
find a single-valued Jacobian matrix J(x, µ). If x is on Σ, then there are two Jacobian matrices J−(x, µ) and J+(x, µ) on
either side of Σ associated with the vector field in ν− and ν+.
Assume that µ varies such that the fixed point x moves from ν− to ν+ via Σ . Let xΣ denote the unique fixed point on
Σ for µ = µΣ. The generalized Jacobian is the closed convex hull of J−(x, µ) and J+(x, µ) at

(
xΣ, µΣ

)
J(xΣ, µΣ) = c̄o

{
(1 − q)J−(xΣ, µΣ) + qJ+(xΣ, µΣ), ∀q | q ∈ [0, 1]

}
(2.13)

In fact, (2.13) defines how the Jacobian ’jumps’ at Σ. The generalized Jacobian is, for a system with a single switching
boundary, a convex combination of two matrices J−(x, µ) and J+(x, µ) if x ∈ Σ. To be more precise, (2.13) gives the
set of values which the generalized Jacobian can attain on Σ. From the set-valued generalised Jacobian the set-valued
eigenvalues can be obtained. The eig(J(xΣ, µΣ) together with (2.13) give a unique path of eigenvalues ”during” the
jump as q is varied from 0 to 1 [25].

Let Sλ = ei1(J(xΣ, µΣ) denote the subspace in the complex plane of the set-valued eigenvalues and let Im+

be the subspace of purely imaginary numbers with positive imaginary part containing the origin.

Definition 4. (Single crossing bifurcation). If Sλ
⋂

Im+comprises only one element, then the bifurcation is a single
crossing bifurcation.

2.2. Equilibrium bifurcation in Filippov PWS Systems with Sliding

For more information of this subsection, one can see [27].

Definition 5. One can denote a point X ∈ D as a regular equilibrium of (2.8) if X is such that either
f−(X, µ) = 0 and h(X, µ) > 0
or
f+(X, µ) = 0 and h(X, µ) < 0.
Alternatively, one can say that a point Y ∈ D is a virtual equilibrium of (2.8) if either
f−(Y, µ) = 0 but h(Y, µ) < 0
or
f+(Y, µ) = 0 but h(Y, µ) > 0.

Definition 6. One can say a point X ∈ R3 is a boundary equilibrium of (2.8) if

f−(X) = f+(X) = 0, c̄o{ f−, f+}(X) = 0. (2.14)

Definition 7. A boundary equilibrium bifurcation occurs at µ if
(i) f−(X, µ) = 0
(ii) h(X, µ) = 0
(iii) fix(X, µ) is invertible for i = −,+.
Where h(X, µ) = c̄o{ f−, f+}(X, µ).

While the first two conditions state that X is a boundary equilibrium as µ varies, the third condition ensures
non-degeneracy.
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Definition 8. I).Persistence: At the bifurcation point, a regular equilibrium lying in region ν− is turned into a
regular equilibrium lying in region ν+ (or vice versa).
We state that (2.8) exhibits a border-crossing bifurcation (persistence) if, when µ (the bifurcation parameter) is varied
in a neighborhood of the origin, one branch of regular equilibria and a branch of virtual equilibria cross at the boundary
equilibrium point X = 0 when µ = 0, exchanging their properties. Namely, it may be assumed that there exists,
smooth branches X+(µ) and X−(µ) such that X+(0) = X−(0) and, without loss of generality (reversing the sign of µ
if necessary),
1. f−(X+, µ) = 0, h(X+, µ) > 0 and f+(X−, µ) = 0, h(X−, µ) > 0 for µ < 0,
2. f−(X+, µ) = 0, h(X+, µ) < 0 and f+(X−, µ) = 0, h(X−, µ) < 0 for µ > 0.
In terms of collision of equilibria with the boundary, this scenario describes how the only regular equilibrium point
X+ for µ < 0 hits the boundary when µ = 0 and turns continuously into the regular equilibrium X− for µ > 0.
II) Nonsmooth fold: At the bifurcation point, the collision of a stable and unstable equilibrium is observed on the
boundary followed by their disappearance.

In the following, we refer to the theorem of equilibrium points branching from a boundary equilibrium,[27,
Theorem2.7].

Theorem 1. (equilibrium points branching from a boundary equilibrium). For the systems of interest, assuming that

det(A) , 0

D − CA−1B , 0

CA−1E , 0 (2.15)

persistence is observed at the boundary equilibrium bifurcation point if

CA−1E < 0 (2.16)

if

CA−1E > 0 (2.17)

then a nonsmooth fold is observed. Where A = f−X, B = f−µ, C = hX, D = hµ and E = f+ − f−.

Proof. For the proof see [27]

Theorem 2. (Routh-Hurwitz criteria) The RouthHurwitz stability criterion is a mathematical method that is a
necessary and sufficient condition for determining whether a linear system is stable or not. That is, for an n-order
polynomial P(Λ) = Λn + a1Λ

n−1 + ... + an−2Λ
2 + an−1Λ + an = 0, all the following Hurwitz arrangements ∆i

(i = 1, 2, ...,n) should be positive ( for proof see [28] ).

∆1 = a1

∆2 = det

a1 1
a2 a3


∆2 = det


a1 1 0
a3 a2 a1

a5 a4 a3


...

∆n = an · ∆n−1

(2.18)
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3. Bifurcation Analysis

3.1. Equilibrium points of system (3.1).
According to the system (2.8), the systems ν− ((1.3)) and ν+ ((1.4)) can be rewritten as


ẋ = λ − βxy − µ1x,
ẏ = σβxy − γyz − µ2y,
ż = (1 − α)νcy + ανy z2

z2+a2 − µ3z,
(3.1)

where 0 ≤ α ≤ 1 is the Filippov parameter.
Notice that the case α = 0 gives the system (1.3), α = 1 shows the system (1.4), whenever 0 < α < 1, the
system (3.1) will be on the hyper surface Σ.
For each case we try to find the equilibria.

(I) Let in system (3.1), α = 0.
Thus the solution interval for z is 0 ≤ z ≤ a. For z = 0

P0 = (
λ
µ1
, 0, 0). (3.2)

P0 is called the free disease equilibrium.
Suppose that z , 0, it means, the immune cells are present, or in other words there is infection in the body, so also
we should consider y , 0, hence

λ − βxy − µ1x = 0⇒ y =
λ − µ1x
βx

, (3.3)

and

σβxy − γyz − µ2y = 0⇒ x =
µ2 + γz
σβ

. (3.4)

By substituting (3.4) in (3.3):

y =
λσβ − µ1µ2 − µ1γz

βµ2 + βγz
(3.5)

therefore

νc ×
λσβ − µ1µ2 − µ1γz

βµ2 + βγz
− µ3z = 0 (3.6)

hence

νcλσβ − νcµ1µ2 − νcµ1γz − βµ2µ3z − βγµ3z2 =

z2 +
νcµ1γ + βµ2µ3

βγµ3
z +

cν
βγµ3

(µ1µ2 − λσβ) = 0 (3.7)

If (3.7) satisfies in the following condition

µ1µ2 < λσβ, (3.8)
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then exactly one root exist in the interval 0 < z ≤ a. The equilibrium point which z satisfies in (3.7) and
condition (3.8) is

P1 = (x1, y1, z1) (3.9)

This is called the carrier equilibrium. Thus in ν−, there are two equilibria P0 and P1.

(II) Whenever α = 1.

In this case by substituting (3.5) in the third terms of (1.4), we obtain

νλσβz2
− νµ1µ2z2

− νµ1γz3
− βµ2µ3z3

− βγµ3z4
− µ2µ3βa2z − µ3βγa2z2 = 0 (3.10)

z = 0 is not in interval of region ν+. (3.10) can be rewritten as follows:

1(z) = βγµ3z3 + (νµ1γ + βµ2µ3)z2
− ν(λσβ − µ1µ2)z + µ3βγa2z + µ2µ3βa2 = 0 (3.11)

In this region z ≥ a, from a biological point of view, y > 0 should be true. From (3.5) it can be concluded that

λσβ − µ1µ2 − µ1γz > 0⇒ λσβ − µ1µ2 > µ1γz⇒
λσβ − µ1µ2

µ1γ
> z ≥ a (3.12)

Let

R0 =
λσβ

µ1µ2
(3.13)

consequently

a ≤ z <
µ2

γ
(R0 − 1) (3.14)

hence acceptable roots of 1(z) are in interval

I =

[
a,
µ2

γ
(R0 − 1)

)
(3.15)

Note that since a > 0 one should have R0 > 1, to have a meaningful interval and it will be true, when (3.8)
is satisfied. We prove that there is exactly one root of 1(z) in interval (3.15). Denote the equilibrium point
in the region ν+ by:

P∗∗ = (x∗∗, y∗∗, z∗∗) (3.16)

where z∗∗ satisfies in 1(z).

(III) When 0 < α < 1.
On Σ, z = a, thus the equilibria satisfy in system

λ − βxy − µ1x = 0
σβxy − γya − µ2y = 0
(1 − α)νcy + 1

2ανy − µ3a = 0.
(3.17)
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(1 − α)νcy + 1
2ανy − µ3a = 0, leads to

y =
µ3a

ν((1 − α)c + 1
2α)

, (3.18)

also from (3.17)λ − βxy − µ1x = 0
y(σβx − γa − µ2) = 0.

(3.19)

In second equation of (3.19), y = 0 is not acceptable, because it means there are specific immune cells against
HTLV-1, while there is no infection, so

σβx − γa − µ2 = 0 ⇒ x =
γa + µ2

σβ
, (3.20)

hence by (3.19)

y =
λσβ − γaµ1 − µ2µ1

γaβ + βµ2
(3.21)

Setting equal (3.18) and(3.21) one obtains:

λσβ − γaµ1 − µ2µ1

γaβ + βµ2
=

µ3a

ν((1 − α)c + 1
2α)

⇒ µ3 =
(λσβ − γaµ1 − µ2µ1)(ν((1 − α)c + 1

2α))
βa(γa + µ2)

(3.22)

Thus by (3.18), (3.20) and z = a, one can write the equilibrium point on Σ as:

P∗ = (x∗, y∗, z∗) = (
γa + µ2

σβ
,
λσβ − γaµ1 − µ2µ1

γaβ + βµ2
, a) (3.23)

µ3 can be rewritten as follow:

µ3 =
yν(c − αc + 1

2α)
a

(3.24)

3.2. Jacobian matrix of system (3.1) at the equilibrium point P∗ on Σ

Jacobian of the model (3.1) is

A(α) =


−β y − µ1 −β x 0

β σ y β σ x − γ z − µ2 −γ y

0 Q N

 , (3.25)
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where

Q = −
ν

(
α ca2 + α cz2

− α z2
− ca2

− cz2
)

a2 + z2 , (3.26)

N =
2α a2ν yz − a4µ3 − 2 a2z2µ3 − z4µ3

(a2 + z2)2 . (3.27)

Now, by substituting the equilibrium point (3.23) in (3.25), the Jacobian matrix can be obtained as follows:

A(α) |(P∗)=


−

N
l −

l
σ 0

−
σ (lµ1−N)

l 0
γ (lµ1−N)

β l

0 −1/2 ν (2α c − α − 2 c) −
ν c(α lµ1−Nα−lµ1+N)

β la

 , (3.28)

where

N = λσβ, (3.29)
l = aγ + µ2. (3.30)

The characteristic polynomial of (3.28), by considering condition (3.22), is

P = Λ3 + AΛ2 + BΛ + C, (3.31)

where

A =
νc(α − 1)(lµ1 −N)

βla
+

N
l

(3.32)

B = −
γν

(
lµ1 −N

)
(2c(α − 1) − α)
2βl

+
νcN

(
lµ1 −N

)
(α − 1)

βl2a
−

(
lµ1 −N

)
(3.33)

and

C = −
γνN

(
lµ1 −N

)
(2c(α − 1) − α)

2βl2
−
νc

(
lµ1 −N

)2 (α − 1)
βla

(3.34)

Since the aim is to have a pair of purely imaginary eigenvalues, one can assume the eigenvalues of (3.31)
as follows:

λ1 = G and λ2,3 = ±iω (3.35)

Therefore (3.35), the characteristic polynomial is

(Λ − G)(Λ − iω)(Λ + iω) = 0⇒ Λ3
− GΛ2 + ω2Λ − ω2G = 0 (3.36)
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Now that is enough to find G and ω. Note that by (3.29), A = G, B = ω2 and C = ω2G, these relations imply
that ω2 = C

A = B which leads to following conditions

C = AB (3.37)

Thus

γνN(2c(α − 1) − α)
2βl2

−
νc

(
lµ1 −N

)
(α − 1)

βla
=

(
νc(α − 1)(lµ1 −N)

βla
+

N
l

)(−
γν(2c(α − 1) − α)

2βl
+
νcN(α − 1)

βl2a
− 1) (3.38)

Hence one obtains the following condition between the parameters

(
νc(α − 1)(lµ1 −N)

βla
)(
γν(2c(α − 1) − α)

2βl
) + (

νc(α − 1)(lµ1 −N)
βla

+
N
l

)
N
l
νc(α − 1)
βla

−
N
l

= 0 (3.39)

By definition 1, from (3.39) one should calculate the set-valued 0 < α < 1, which is obtained from

(s0 + s1)α2 + (−2s0 − s1 + s2)α + s0 − s2 −
N
l

= 0 (3.40)

where

s0 =
ν2c2(lµ1 −N)

β2l2a
(γ +

N
l

), (3.41)

s1 =
γν2c(lµ1 −N)

2β2l2a
, (3.42)

s2 =
N2νc
βl3a

. (3.43)

The phase portrait and numerical analysis of these parameters values will be shown in simulation section.

4. Transversality

In this section the transversality condition will be checked for the system (3.1)

4.1. Transversal intersection on hyper-surface Σ

Since the Hopf bifurcation is investigated in the transversal case, here one obtains, conditions in which
the solutions cross Σ transversally.
By (2.5) we can define Σ

Σ =
{
(x, y, z) | z = a

}
(4.1)

The hyper-surface Σ is defined by a scalar indicator function h(X(t)). The state X(t) = (x(t), y(t), z(t)) is in Σ
when h(X(t)) = 0, therefore h(X) = z − a and Oh(X) = (0, 0, 1). One can apply the transversality condition
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(2.11) for the system (3.1):

νcy − µ3z > 0 and νy
z2

z2 + a2 − µ3z > 0 (4.2)

or

νcy − µ3z < 0 and νy
z2

z2 + a2 − µ3z < 0 (4.3)

assume

νcy − µ3z < 0⇒ νcy < µ3z (4.4)

Then (3.24) implies,

z >
ac

c − αc + 1
2α

(4.5)

Also with (4.3), one should have νy z2

z2+a2 − µ3z < 0, again with (3.24) one obtains:

(c − αc +
1
2
α)

z2

a
− z + (c − αc +

1
2
α)a > 0⇒ 4

(c − αc + 1
2α)2

a
> 1 (4.6)

4.2. Transversal intersection on imaginary axis

In this section first we state the following lemma

Lemma 1. Suppose that A(α) = Dx fµ0 (x0) has a simple pair of pure imaginary eigenvalues (λ1,2(α) = µ(α) ±
iω(α), µ(0) = 0, ω(0) > 0), where α is a set-valued, with 0 < α < 1, and no other eigenvalues with zero real parts.
Let q ∈ Cn be a complex eigenvector corresponding to λ1:

A(α)q = iω0q, A(α)q̄ = −iω0q̄. (4.7)

Introduce also the adjoint eigenvector p ∈ Cn having the properties

A(α)Tp = −iω0p, A(α)Tp̄ = iω0p̄ (4.8)

and satisfying the normalization,
〈
p, q

〉
= 1, where

〈
p, q

〉
=

∑n
i=1 p̄iqi.

According to Theorem 3.3 in [29],

µ′(0) = Re
〈
p,A′(0)q

〉
, 0 (4.9)

guarantees the transversality.

Proof. For the proof see [29]
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4.3. Hopf-like Bifurcation

Now in the following we check the transversality condition and Hopf bifurcation for system (3.1)

Theorem 3. (Hopf-like Bifurcation). Suppose (3.39) is satisfied and α is obtained from (3.40), such that 0 < α < 1.
Also let we have (4.7), (4.8) and (4.9), then the Filippov system (3.1) will undergo a Hopf bifurcation.

Proof. It is shown that if (3.39) is satisfied, then the characteristic polynomial of the system (3.1) can have a
set-valued pair of pure imaginary eigenvalues. Therefore for the proof, one must investigate the transver-
sality. First one should find eigenvectors q, p corresponding to (4.7) and (4.8), such that (4.9) is satisfied.
In order to have the eigenvector q , (0, 0, 0) corresponding to eigenvalue λ1 = iω0, one should have (by the
computation):


(iω + N

l )V1 + l
σV2 = 0

σ( (lµ1−N)
l )V1 + (iω)V2 − (γ (lµ1−N)

βl V3 = 0

( 1
2ν(2αc − 2c − α))V2 + (iω +

νc(α−1)(lµ1−N)
βla )V3 = 0

(4.10)

Where V1, V2 and V3 are the elements of eigenvector q.
From first term of (4.10)

V1 = −
l2

σ(iωl + N)
V2 (4.11)

By substituting (4.11) in the second term of (4.10), one obtains

−
1
2
γν(lµ1 −N)(2αc − 2c − α)

βl
+ (iω +

νc(α − 1)(lµ1 −N)
βla

)(iω −
l(lµ1 −N)
iωl + N

))V3 = 0 (4.12)

In (4.12) one requires that V3 , 0, so suppose that the real and imaginary parts of its coefficients are equal
to zero, thus

1
2
γν(lµ1 −N)(2αc − 2c − α)

βl
=
ω2l2(lµ1 −N)
−ω2l2 −N2 − ω

2 +
N(lµ1 −N)2νc(α − 1)
βa(−ω2l2 −N2)

(4.13)

Nl
−ω2l2 −N2 +

νc(α − 1)
βla

+
l(lµ1 −N)νc(1 − α)
βa(−ω2l2 −N2)

= 0 (4.14)

With (4.13) and (4.14), the eigenvector corresponding to λ = iω is

q =
[
1, −σ iωl+N

l2 ,
βσl(lµ1−N+ω2l)−iωβσN

γl(lµ1−N)

]
(4.15)

Similarly the adjoint eigenvector p , (0, 0, 0) corresponding to λ2 = −iω0, is:


(−iω + N

l )W1 +
σ(lµ1−N)

l W2 = 0
l
σW1 − (iω)W2 + ( 1

2ν(2αc − 2c − α))W3 = 0
−(γ (lµ1−N)

βl W2 + (−iω +
νc(α−1)(lµ1−N)

βla )W3 = 0
(4.16)

Thus

p =
[
1, iωl−N

σ(lµ1−N) ,
γ(iωl−N)(νc(α−1)(lµ1−N)+iωβla)

ν2c2(α−1)2(lµ1−N)2+ω2βla

]
(4.17)
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If, one has the following relation.

(−iω + (
(νc(α − 1)(lµ1 −N))

βla
))(

(l(lµ1 −N) + ω2l + iωN)
σ(lµ1 −N)

) =

(
1
2
ν(2αc − 2c − α))(

(γ(iωl −N))
σβl

) (4.18)

Taking the inner product of p with the derivative of

A(α)q = λ(α)q, (4.19)

one has〈
p,

dA
dα

q
〉

= µ′(α) ± iω′(α). (4.20)

Thus, the transversality condition is given by

µ′(α) = Re
〈
p,

dA
dα

q
〉
, (4.21)

because

dA
dα

q = (0, 0,
1
2
ν(2c − 1)σ(iωl + N)

l2
+

lνcσ(lµ1 −N + ω2l) − iωβσN
γal

). (4.22)

A simple calculation implies then the transversality condition (4.9). Therefore by condition (3.39) and (4.9),
the Hopf bifurcation can be occured.

5. Sliding Mode Bifurcation.

In sliding mode condition, by (2.12), one of the following relation should be satisfied,

νcy − µ3z < 0 and νy
z2

z2 + a2 − µ3z > 0 (5.1)

or

νcy − µ3z > 0 and νy
z2

z2 + a2 − µ3z < 0 (5.2)

(5.2) is satisfied.
By definition 5, (2.14), and (1.2), P∗ is a boundary equilibrium if and only if

c =
1
2

(5.3)

Next step is to investigate the conditions of the definition 6 for the system (3.1). The condition (i) and (ii)
comes from (5.3). The third condition of definition 6, is satisfied if (det( fix) , 0) for i = ± by (5.3) one has:

det( fix) = det(


−
β (−aγµ1+βλσ−µ1µ2)

aβ γ+βµ2
− µ1 −

aγ+µ2

σ 0

β σ (−aγµ1+βλσ−µ1µ2)
aβ γ+βµ2

0 −
γ (−aγµ1+βλσ−µ1µ2)

aβ γ+βµ2

0 1/2 ν −µ3

) =

1/2

(
aγµ1 − βλσ + µ1µ2

) (
2 a2γ2µ3 + 4 aγµ2µ3 + γλ ν σ + 2µ2

2µ3

)
(
aγ + µ2

)2 (5.4)
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(5.4) can not be equal to zero, because

1
2

(
aγµ1 − βλσ + µ1µ2

) (
2 a2γ2µ3 + 4 aγµ2µ3 + γλ ν σ + 2µ2

2µ3

)
(
aγ + µ2

)2 =

1
2

(
aγµ1 − βλσ + µ1µ2

)
aγ + µ2

(
2 a2γ2µ3 + 4 aγµ2µ3 + γλ ν σ + 2µ2

2µ3

)
aγ + µ2

=

−
1
2

y∗
(
2 a2γ2µ3 + 4 aγµ2µ3 + γλ ν σ + 2µ2

2µ3

)
aγ + µ2

, 0 (5.5)

Since y∗ , 0 and all the parameters are positive. The possible birth of a family of stable limit cycles
bifurcating from a boundary equilibrium bifurcation can be sought with the following steps.
1. First, the origin should be the asymptotically stable equilibrium of the piecewise linear system formed
by linearizing f− and f+ about their values at the origin.
2. Second, the boundary equilibrium bifurcation at µ = 0 must represent a persistence scenario with a
regular stable focus equilibrium becoming unstable.
To investigate the first step of this aim, the fixed point P∗ is transformed which is defined in (3.23) to the
origin.
Consider

x̄ = x − γa+µ2

σβ

ȳ = y − λσβ−γaµ1−µ2µ1

γaβ+βµ2

z̄ = z − a

(5.6)

By the variable (x̄, ȳ, z̄), the system (3.1) is:


˙̄x = −βx̄ȳ − λσβ

γa+µ2
x̄ − γa+µ2

σβ ȳ
˙̄y = σβx̄ȳ +

σ(λσβ−µ1(γa+µ2))
γa+µ2

x̄ − γȳz̄ − γ(λσβ−µ1(γa+µ2))
β(γa+µ2) z̄

˙̄z = (1 − α)νcȳ + ((1 − α)νcλσβ−µ1(γa+µ2)
β(γa+µ2) − µ3a) + ανȳ (z̄+a)2

(z̄+a)2+a2 + αν
λσβ−µ1(γa+µ2)

β(γa+µ2)
(z̄+a)2

(z̄+a)2+a2 − µ3z̄

(5.7)

Note that at z̄ = 0 in the third terms of (5.7), one has (λσβ−µ1(γa+µ2)
β(γa+µ2) ((1 − α)νc + 1

2αν) − µ3a) and this is equal to
zero with the condition (3.24). Thus (0, 0, 0) is the equilibrium of (5.7).
Now the asymptotically stability for the origin with respect to two cases α = 0, 1 will be investigated.
(I) If α = 0 in (5.7), with (5.3) the matrix is

A− =


−

N
l

l
σ β 0

σ (−lµ1+N)
l 0 −

γ (−lµ1+N)
β l

0 1/2 ν −µ3

 . (5.8)

The characteristic polynomial of (5.8) is

a3Λ
3 + a2Λ

2 + a1Λ + a0, (5.9)



E. Shamsaraet al. / Filomat 31:20 (2017), 6247–6267 6263

where

a3 = 1,

a2 =
lµ3 + N

l
,

a1 = 1/2

(
−γ lν µ1 + 2 Nβµ3 + Nγ ν + 2 l2µ1 − 2 Nl

)
β l

,

a0 = 1/2

(
−lµ1 + N

) (
Nγ ν − 2 l2µ3

)
l2β

. (5.10)

By the Routh-Hurwitz stability criterion of third order polynomials, Theorem 2, (5.9) is asymptotically
stable if all the coefficients of (5.10) are positive and a2a1 > a3a0, where a3, a2, a1 and a0 are the coefficient of
Λi, i = 0, 1, 2, 3. It can be noticed that a3 = 1, a2 > 0 (since all the elements are positive parameters). One can
choose the suitable parameters in order to have a1 and a0 positive and it will happen if

−γ lν µ1 + 2 Nβµ3 + Nγ ν + 2 l2µ1 − 2 Nl > 0 ⇒ Nβµ3 + l2µ1 −Nl >
1
2

(γν(µ1l −N)), (5.11)

(
−lµ1 + N

) (
Nγ ν − 2 l2µ3

)
> 0 (5.12)

a2a1 > a3a0 implies from the following condition

(lµ3 + N)(−γ lν µ1 + 2 Nβµ3 + l2µ1 −Nl) >
(
−lµ1 + N

) (
Nγ ν − 2 l2µ3

)
(5.13)

(II) In case α = 1 in (5.7) with (5.3), (5.6) the matrix is

A+ =


−

N
l

l
σ β 0

σ (−lµ1+N)
l 0 −

γ (−lµ1+N)
β l

0 0 −µ3

 (5.14)

The characteristic polynomial of (5.14):

Λ3 +

(
lµ3 + N

)
Λ2

l
+

(
Nβµ3 + l2µ1 −Nl

)
Λ

β l
−
µ3

(
−lµ1 + N

)
β

(5.15)

Again by Routh-Hurwitz, likewise case α = 0, one must have

(Nβµ3 + l2µ1 −Nl) > 0 ⇒ Nβµ3 > l(−lµ1 + N)
−lµ1 + N < 0 (5.16)

Note that because of (5.16) in (5.12), one obtains

Nγν < 2l2µ3 (5.17)

For asymptotically stability of (5.15) in addition to (5.16) and (5.17), the following relation should be satisfied

(lµ3 + N)(Nβµ3 + l2µ1 −Nl) > µ3(lµ1 −N). (5.18)

Further, the second step of occurring Hopf bifurcation in sliding mode is investigated.
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By the definition of A, E and C in Theorem 1, one has

A−1 =


−

γ lυ
Nγυ−2µ3l2 −2 l3µ3

σ (−lµ1+N)(Nγυ−2µ3l2) 2 γ l2

σ β (Nγυ−2µ3l2)

−2 σ lµ3β
Nγυ−2µ3l2 −2 Nlµ3β

(−lµ1+N)(Nγυ−2µ3l2) 2 Nγ
Nγυ−2µ3l2

−
σ lυ β

Nγυ−2µ3l2 −
Nlυ β

(−lµ1+N)(Nγυ−2µ3l2) 2 l2
Nγυ−2µ3l2


(5.19)

and

E =


0 0 0

0 0 0

0 1/2 υ 0

 (5.20)

also

h(X) = h(x, y, z) =
[
0 0 z

]
⇒ C = hX =

[
0 0 1

]
(5.21)

therefore

CA−1E =
[
0 ν( l2

Nγν−2l2µ3
) 0

]
(5.22)

By (5.22), by (5.17) and (5.12) one gives

ν(
l2

Nγν − 2l2µ3
) < 0 (5.23)

At present by using Theorem 1, one can conclude that the boundary equilibrium point P∗ is a bifurcation
point. In the numerical section the periodic solutions on the hyper-surface Σ will be shown. This is a
new result for the disease, with which one can preserve the solutions in a steady state, for a long time in a
surface.

Results

The four equilibria, P0, P1, P∗ and P∗∗ are related to different stages of the disease. In other words, we have
ν− region for free disease equilibrium (P0) and also for the early stage of the infection where immune cells z are too
small (carrier equilibrium P1). In Σ, the symptoms of the disease progress as immune cells (CTL response) develop
(P∗). By increasing in intensity of the disease and saturation of immune cells, the trajectories will go to region ν+,
where we have the equilibrium (P∗∗). We investigated the conditions for the parameters in which the system
undergoes Hopf bifurcation. Hopf bifurcation help us to find the periodic solutions in order to entrap
the disease in a cycle and prevent it from progressing. In fact two cases were considered; first the case
that the equilibrium point starts from P∗ on Σ, entering to region ν−, then intersects the hyper-surface Σ
transversally again and after going to region ν+ again will back to the first point, and secondly the case that
is the sliding mode case, in which solutions intersect Σ tangentially or may leave Σ tangentially, or even has
a section of sliding motion in hyper-surface Σ. The second case is a situation that is unique to non-smooth
systems, specifically, when the system dynamics do something degenerate with respect to a discontinuity
boundary. For example, this might involve an invariant set gaining a first contact with a certain Σ, or the
onset of sliding along the orbits of that invariant set. These events are refereed to as discontinuity-induced
bifurcations (DIBs) because, as we shall see, depending on the circumstances this may or may not lead to
a bifurcation in either of the classical senses as a parameter is varied. Our main interest is about DIBs of
equilibria which for more details we refer to [27].
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6. Simulation (An example)

Now we give an example to show our results by numerical techniques. In Figure 2 one obtains regions
of (ω, ν, γ), (ω, ν, λ), (ω, λ, γ), in which one has a pair of pure imaginary eigenvalues for system (3.1) in
transversal case. In Figure 3 for the specific values, which is in consistent with (3.39), one can observe the
occurrence of Hopf bifurcation in transversal case.
In Figure 4.(i) one considers parameters such that they satisfy in sliding mode conditions, i.e, λ = 1, a =
0, β = 1, µ2 = 2, µ1 = 0.01, µ3 = 0.1, σ = 0.25, ν = 1.5, γ = 2, β = 1. The Figure 4.(ii) is shown that the solutions
of Figure 4.(i) in the hyper-surface Σ and after 100 days one sees the asympotically stable.

Figure 2: Parameter regions, where in (A) are considers µ1 = 0.01, µ2 = 0.1, µ3 = 0.1, β = 1, α = 0.5, λ = 0.25, σ = 0.5, a = 0.7, c = 2
3 , in

(B),µ1 = 0.01, µ2 = 0.1, µ3 = 0.1, β = 1, α = 0.5, γ = 4, σ = 0.5, a = 0.7, c = 2
3 and in (C), µ1 = 0.01, µ2 = 0.1, µ3 = 0.1, β = 1, α = 0.05, ν =

1.25, σ = 0.5, a = 0.7, c = 2
3 .

Figure 3: Limit cycle, After 150 days. one considers µ1 = 0.1, µ2 = 1, µ3 = 0.9054734682, β = 1, α = 0.6, λ = 6.23284081, σ = 0.5, a =
3
4 , c = 3

4 and γ = 4.
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Figure 4: The solution is established on the hyper-surface Σ and one has sliding mode solutions.

7. Conclusion

A discontinuous response function for an HTLV-1 immuno-suppersive model was considered that was
previously unobserved. This response function divided the system (1.1) into two systems (1.3) and (1.4).
To analyze systems (1.3) and (1.4) Filippov theory was used and three solution regions ν−, Σ and ν+ were
found. In the next step, equilibria, P0, P1, P∗ and P∗∗, corresponding to each region were calculated. To define
the parameter conditions in which the trajectories of the system move from basin of P∗∗ in ν+ (HAM/TSP
region) to basin of P1 in ν− (carrier equilibrium) a stable periodic solution was needed. Thus, the general
conditions under which the system undergoes Hopf bifurcation was investigated. Hopf bifurcation helps
ensure a steady state in the carrier equilibrium region of the disease. For this purpose regions of different
parameters were found. Furthermore, bifurcation for sliding mode, which is a new approach in the field of
infections, were considered. Moreover, by numerical simulation the results were applied as examples. Ac-
cording to figures a stable periodic oscillation that system trajectories attracted to the basin of P1 is present.
Continuous models which were proposed by previous works could trap the disease in a progressed state.
Our study based on sliding mode condition will give the opportunity for trapping the situation of the
disease in a mild condition that was achieved by considering the discontinuous model.
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