
Filomat 31:20 (2017), 6551–6560
https://doi.org/10.2298/FIL1720551B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. We present a new kind of digraphs, called cyclic Kautz digraphs CK(d, `), which are subdigraphs
of the well-known Kautz digraphs K(d, `). The latter have the smallest diameter among all digraphs with
their number of vertices and degree.

Cyclic Kautz digraphs CK(d, `) have vertices labeled by all possible sequences a1 . . . a` of length `, such
that each character ai is chosen from an alphabet containing d + 1 distinct symbols, where the consecutive
characters in the sequence are different (as in Kautz digraphs), and now also requiring that a1 , a`. Their
arcs are between vertices a1a2 . . . a` and a2 . . . a`a`+1, with a1 , a` and a2 , a`+1.

We give the diameter of CK(d, `) for all the values of d and `, and also its number of vertices and arcs.

1. Introduction

It is well-known that, for integers d ≥ 2 and ` ≥ 1, Kautz digraphs K(d, `) have vertices labeled by all
possible sequences a1 . . . a` of length ` with different consecutive symbols, ai , ai+1 for i = 1, . . . , ` − 1, from
an alphabet Σ of d + 1 distinct symbols. Kautz digraphs K(d, `) have arcs between vertices a1a2 . . . a` and
a2 . . . a`a`+1. See Figure 1.

In this paper we define cyclic Kautz digraphs CK(d, `) (see Figure 2), where the labels of their vertices
are defined as the ones of Kautz digraphs, with the additional requirement that the first and last symbols
must also be different (a1 , a`). Cyclic Kautz digraphs CK(d, `) have arcs between vertices a1a2 . . . a` and
a2 . . . a`a`+1, with ai , ai+1, a1 , a` and a2 , a`+1. We observe that cyclic Kautz digraphs CK(d, `) are
subdigraphs of Kautz digraphs K(d, `). Unlike in K(d, `), any label of a vertex of CK(d, `) can be cyclically
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by this Google Fellowship. Research of C. Dalfó is supported by projects MINECO MTM2014-60127-P, and AGAUR 2014SGR1147.
Research of C. Huemer is supported by projects MINECO MTM2015-63791-R, and AGAUR 2014SGR46. C. Dalfó and C. Huemer have
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Figure 1: Kautz digraphs K(2, 3) and K(2, 4).

shifted to form again a label of a vertex of CK(d, `). We study some of the properties of cyclic Kautz digraphs.
Note that, in contrast to Kautz digraphs, CK(d, `) are not d-regular (neither d-out-regular). Therefore, in
CK(d, `), d is the size of the alphabet minus one. Besides, if ` > 3 and d > 1, the maximum out-degree of
CK(d, `) is d.

Cyclic Kautz digraphs CK(d, `) could be relevant in coding theory, because they are related to cyclic
codes. A linear code C of length ` is called cyclic if, for every codeword c = (c1, . . . , c`), the codeword
(c`, c1, . . . , c`−1) is also in C. This cyclic permutation allows to identify codewords with polynomials. For
more information about cyclic codes and coding theory, see Van Lint [8] (Chapter 6). With respect to
other properties of cyclic Kautz digraphs CK(d, `), their number of vertices follows sequences that have
several interpretations. For example, for d = 2 (that is, 3 different symbols), the number of vertices follows
the sequence 6, 6, 18, 30, 66, . . . According to the On-Line Encyclopedia of Integer Sequences [9], this is the
sequence A092297. For d = 3 (4 different symbols) and ` = 2, 3, . . ., we get the sequence 12, 24, 84, 240, 732, . . .
corresponding to A226493 and A218034 in [9].

Originally, Kautz digraphs were introduced by Kautz [6, 7] in 1968. They have many applications, for
example, they are useful as network topologies for connecting processors. Kautz digraphs K(d, `) have
order d`+d`−1, where d is the degree and also is equal to the cardinality of the alphabet minus one. They
are d-regular, have diameter D = `, and maximum connectivity (see Fàbrega and Fiol [4]). In fact, Kautz
digraphs have the smallest diameter among all digraphs with their number of vertices and degree. Kautz
digraphs K(d, `) are related to De Bruijn digraphs B(d, `), which are defined in the same way as Kautz
digraphs, but without the restriction that adjacent symbols in the label of a vertex have to be distinct. Thus,
Kautz digraphs are induced subdigraphs of De Bruijn digraphs, which were introduced by De Bruijn [3] in
1946. De Bruijn digraphs have order d`, where the degree d is equal to the cardinality of the alphabet, and
they are also d-regular, have diameter D = `, and high connectivity. Another interesting property of Kautz
and De Bruijn digraphs is that they can be defined as iterated line digraphs of complete symmetric digraphs
and complete symmetric digraphs with a loop on each vertex, respectively (see Fiol, Yebra and Alegre [5]).
Note that Kautz and De Bruijn digraphs are often inaccurately referred to as Kautz and De Bruijn ‘graphs’,
which should not be confused with the underlying (undirected) Kautz and De Bruijn graphs.

In Section 2 of this paper we give the main parameters of the newly defined cyclic Kautz digraphs
CK(d, `), that is, the number of vertices, number of arcs, and diameter.

We use the habitual notation for digraphs, that is, a digraph G = (V,E) consists of a (finite) set V = V(G)
of vertices and a set E = E(G) of arcs (directed edges) between vertices of G. There are no multiple arcs, that
is, there is at most one arc from each vertex to any other. If a = (u, v) is an arc between vertices u and v, then
vertex u is adjacent to vertex v, and vertex v is adjacent from u. Let Γ+

G(v) and Γ−G(v) denote the set of vertices
adjacent from and to vertex v, respectively. Their cardinalities are the out-degree δ+

G(v) = |Γ+
G(v)| of vertex v,

and the in-degree δ−G(v) = |Γ−G(v)| of vertex v. For all v ∈ V, a digraph G is called d-out-regular if δ+
G(v) = d,

d-in-regular if δ−G(v) = d, and d-regular if δ+
G(v) = δ−G(v) = d.

Given two positive integers d0 and `0, we use CK(d ≥ d0, ` ≥ `0) instead of the longer notation CK(d, `)
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for d ≥ d0 and ` ≥ `0.
For a vertex v = v1v2 . . . v`, let vi denote the i-th symbol of v.

2. Parameters of cyclic Kautz digraphs
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Figure 2: Cyclic Kautz digraphs CK(2, 3) and CK(2, 4).

In this section we provide the number of vertices, number of arcs, and diameter of cyclic Kautz digraphs
CK(d, `).

2.1. Numbers of vertices and arcs
The following two results yield the number of vertices and number of arcs of cyclic Kautz digraphs

CK(d, `).

Proposition 2.1. For d ≥ 2 and ` ≥ 2, the number of vertices of cyclic Kautz digraph CK(d, `) is

nd,` = (−1)`d + d`.

Proof. There is a direct bijection between the vertices of CK(d, `) and the closed walks of length ` in the
complete symmetric digraph with d + 1 vertices (which is equivalent to the complete graph): A vertex of
CK(d, `) is a sequence a1a2 . . . a` of different consecutive symbols, and with a1 , a`, from an alphabet of d + 1
distinct symbols. Such a sequence corresponds to a closed walk a1a2 . . . a`a1 in the complete graph with d+1
vertices. The claim now follows from the fact that the number of closed walks of length ` in a graph equals
the trace of A`, where A is the adjacency matrix of the graph (see, for example, Brouwer and Haemers [2]).
The spectrum of a complete graph with d + 1 vertices has eigenvalue −1 with multiplicity d, and eigenvalue
d with multiplicity 1. Therefore, for this graph, the trace of A` is (−1)`d + d`.

Instead of using spectral theory, a combinatorial proof of Proposition 2.1 is also possible, but it would
be a bit longer.

Proposition 2.2. For d ≥ 2 and ` ≥ 2, the number of arcs of cyclic Kautz digraph CK(d, `) is

md,` = (d + 1)d` − (2d − 1)((−1)`−1d + d`−1).

Proof. Note that for ` = 2, CK(d, 2) is Kautz digraph K(d, 2) and its number of arcs is (d + 1)d2. It is easily
verified that for ` = 3, CK(d, `) has (d − 1)2d(d + 1) arcs. Thus let ` > 3.

A vertex v = a1a2 . . . a` of CK(d, `) is adjacent to vertices of the form a2 . . . a`a`+1, where a`+1 , a2, a`. We
distinguish two cases:

(a) If a` = a2, then vertex v is adjacent to d vertices that have the form a2 . . . a`−1a2a`+1, and their number is
dnd,`−2. This is because a2a3 . . . a`−1 has length ` − 2 and corresponds to the number of vertices nd,`−2.
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(b) If a` , a2, then vertex v is adjacent to d − 1 vertices having the form a2 . . . a`a`+1 with a`+1 , a2, and
their number is nd,` − dnd,`−2.

Thus, by adding up the arcs described in (a) and (b), that is, md,` = d2nd,`−2 + (nd,` − dnd,`−2)(d− 1), we obtain
the result.

2.2. Diameter
In this section we compute the diameter of cyclic Kautz digraphs CK(d, `), depending on the values of d

and `.
In the following claims and proofs, let us fix Σ = {0, 1, . . ., d} to be the alphabet of CK(d, `).
First, we discuss the diameter for small values of d and `. Then, we deal with the general case d ≥ 4 and

` ≥ 4.

Lemma 2.3. The diameter of CK(d, 1) is 1. Cyclic Kautz digraphs CK(1, ` ≥ 2) exist only if ` is even. For even `,
the diameter of CK(1, ` ≥ 2) is 1. The diameter of CK(d ≥ 2, 2) is 2.

The proof of this lemma is straightforward and omitted.
Each vertex v of cyclic Kautz digraph CK(d, `) can be uniquely represented on a disc with a marked start

(see Figure 3). We will refer to this as a disc representation of vertex v (in short, the disc of v). In fact, there is
a straightforward bijection between the vertices of CK(d, `) and the set of discs D(d, `) with a marked start,
containing ` symbols of the alphabet of size d + 1 in such a way that no two consecutive symbols are the
same. Moreover, vertex u is adjacent to vertex v if and only if the disc of v can be obtained from the disc of u
by swapping the marked symbol (that is, changing it to a symbol, perhaps itself, different from its left and
right neighbors), and rotating the disc one position. This gives directly the proof of the following lemma,
so it is omitted.
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Figure 3: The disc (or circular) representations of a vertex u = a1a2. . .a`−1a` of CK(d, `) and its neighbor v = a2a3. . .a`x, that is, (u, v) is
an arc in CK(d, `).

Lemma 2.4. There is a path from a vertex u to a vertex v in CK(d, `) if and only if the disc of v can be obtained from
the disc of u by a sequence of operations:

• Rotation of the disc.

• Swap of one symbol.

Let us now consider cyclic Kautz digraphs CK(2, `) with alphabet Σ = {0, 1, 2}, and let us define a function
s1n : Σ2

→ {+,−}, which assigns a +/− sign to an ordered pair of distinct symbols (a, b) as follows:

s1n(0, 1) = s1n(1, 2) = s1n(2, 0) = +,

s1n(1, 0) = s1n(2, 1) = s1n(0, 2) = −.

Given a vertex v of CK(2, `), for ` > 1 we define an imprint of v as a sequence im(v) of length ` containing
symbols + and − as follows. On the i-th position (i ∈ {1, . . . , ` − 1}) of the sequence im(v) there is the symbol
s1n(vi, vi+1). On the last position of im(v) there is the symbol s1n(v`, v1). Since each two consecutive symbols
of v are distinct, the imprint of v is well defined and unique.
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Lemma 2.5. Let u and v be two vertices of CK(2, `), for ` > 1. The imprints of u and v have the same number of +
and − signs if and only if the disc of v can be obtained from the disc of u by a sequence of the operations in Lemma 2.4.

Proof. To prove the reverse implication, we should first observe that performing any of the two operations
does not change the number of +/− signs in the imprint. Rotation clearly has no influence on the number
of + and − signs in the imprint. The swap of a symbol ui can only be performed if ui−1 = ui+1.

To show the forward implication, let us now consider two vertices u and v of CK(2, `) such that the
numbers of + and − signs in the two imprints agree. We will show that this implies that the disc of v can
be obtained from the disc of u by a sequence of the mentioned operations as follows. Since there are only 3
different symbols in u and v, there is a symbol that appears in both of u and v, say us = vt. Using rotations,
there is no loss of generality if we assume that s = t = 1.

Note that rotating the disc of a vertex u = u1u2. . .u` by one position yields the disc of a vertex u(1) =
u2. . .u`u1, and (u,u(1)) is an arc of CK(2, `). Then, by rotating the disc of u by k positions, we obtain a vertex
u(k) = uk+1. . .u`u1. . .uk and there is a path from u to u(k) in CK(2, `). The same transformation can be applied
to any other vertex, say, v or w.

Now observe that by swapping the symbol at a position i in the disc of a vertex w, we can change
the imprint of w in positions i − 1 and i from −+ to +− or vice versa. For example, if s1n(wi−1,wi) = −
and s1n(wi,wi+1) = +, then wi−1 = wi+1, and thus, we can swap the symbol wi for the remaining symbol
(different from wi−1 and wi). Based on this observation, notice that by a sequence of operations of swapping
a symbol of the disc of w = w1. . .w`, we can obtain the disc of w′ = w′1. . .w

′

` such that w′1 = w1 and the imprint
im(w′) = (+. . .+−. . .−) contains all the + signs contiguously at the beginning and all the− signs contiguously
at the end. Thus, in particular, we can transform by a sequence of swaps the discs of vertices u′ = u′1 . . . u

′

`
and v′ = v′1 . . . v

′

` into the discs of vertices u′′ = u′′1 . . . u
′′

` and v′′ = v′′1 . . . v
′′

` such that u′′1 = u′1 = v′1 = v′′1 , and
both imprints im(u′′) and im(v′′) are of the form (+. . . + −. . .−). Since the imprints of u and v have the same
number of +/− signs and the performed operations do not change it, it follows that im(u′′) = im(v′′).

Finally, observe that the imprint of a vertex w together with the first symbol of w determines uniquely
the vertex w in CK(2, `). Since im(u′′) = im(v′′) and u′′1 = v′′1 , we obtain that u′′ = v′′. Therefore, the disc of v
can be obtained from the disc of u by a sequence of the mentioned operations.

Then, from Lemmas 2.4 and 2.5, we have the following result.

Corollary 2.6. In CK(2, `), there is a path from a vertex u to a vertex v if and only if the imprint of v contains the
same number of + and − signs as the imprint of u.

We now use Corollary 2.6 to prove the following result.

Table 1: Two vertices u and v of CK(2, `), for ` = 3 and for ` ≥ 5, such that the numbers of + and − signs in their imprints differ,
implying that u and v belong to different strongly connected components.

u, imprint of u v, imprint of v
` = 3 012 021

(+ + +) (− − −)
` = 3r, ` ≥ 5 012012. . .012 021012. . .012

(+ + + + + + . . . + ++) (− − − + + + . . . + ++)
` = 3r + 1, ` ≥ 5 012012. . .0121 021012. . .0121

(+ + + + + + . . . + + − −) (− − − + + + . . . + + − −)
` = 3r + 2, ` ≥ 5 012012. . .01201 021012. . .01201

(+ + + + + + . . . + + + +−) (− − − + + + . . . + + + +−)

Lemma 2.7. The diameter of CK(2, 4) is 7. CK(2, 3) and CK(2, ` ≥ 5) are not strongly connected.
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Proof. As it can be checked in Figure 2, the diameter of CK(2, 4) is D = 7. We could argue that the diameter
of CK(2, 4) is finite by showing that all the vertices of CK(2, 4) have imprints that contains exactly two +
signs and two − signs. Since the size of the alphabet is 3, any vertex v of CK(2, 4) contains some symbol
twice and it cannot be on neighboring positions. Thus, either v1 = v3 or v2 = v4. In the first case, pairs v1v2
and v2v3 contribute to the imprint by exactly one + and one −, and the same is true for the other two pairs,
v3v4 and v4v1. We conclude that the imprint contains exactly two + signs and two − signs. In the second
case, the same conclusion holds by an analogous argument.

Now, for ` = 3 and for ` ≥ 5 we show that CK(2, `) are not strongly connected. In particular, we
distinguish 4 cases depending on the value of ` and, for each case, we show two vertices u and v of CK(2, `)
such that the numbers of + and − signs in the imprints of the two vertices differ (see Table 1). Then, by
Corollary 2.6, there is no path from u to v in CK(2, `). Note that for ` = 3r with r ≥ 1, we obtain directed cycles
of length 3 without reaching all the vertices, which indicates that the digraph is not strongly connected. For
example, for ` = 3, see Figure 2 (left).

Lemma 2.8. The diameter of CK(3, 4) is 6 = 2` − 2.

Proof. First, we prove that the diameter is at most 6. Consider two vertices u1u2u3u4 and v1v2v3v4. We show
that there is either a sequence y1y2 or y1 such that by concatenating u1u2u3u4, y1y2 or y1, and v1v2v3v4, we
obtain a sequence with the property that any contiguous subsequence of length 4 forms a vertex of CK(3, 4).

In the first case, u1u2u3u4y1y2v1v2v3v4, corresponding to a walk of length 6, we must have:
(1.1) y1 , u2,u4, v2;
(1.2) y2 , y1,u3, v1, v3;
(1.3) v1 , u4.

In the second case, u1u2u3u4y1v1v2v3v4, corresponding to a walk of length 5, we must have:
(2.1) y1 , u2,u4, v1, v3;
(2.2) v1 , y1,u3;
(2.3) v2 , u4.

We begin with the case that (1.3) does not hold, that is, v1 = u4. Then, there is always a possible choice
for y1 in (2.1), because the alphabet has 4 symbols. Moreover, v1 = u4 , u3, u4 = v1 , v2, and (2.2) and (2.3)
are satisfied. This assures a walk of length 5.

Now suppose that v1 , u4. A choice for y1 in (1.1) is always possible. Besides, if some of the four
symbols y1,u3, v1, v3 in (1.2) are equal, a choice for y2 is also possible, and then a walk of length 6 is
obtained. Otherwise, if y1,u3, v1, v3 are different, we consider again the sequence u1u2u3u4y1v1v2v3v4,
where (2.1) holds because of the choice of y1 in (1.1), and so does (2.2). Moreover, we must have u4 < {y1,u3}

(and v1 , u4), then u4 = v3 , v2 because y1,u3, v1, v3 are all different. Thus, (2.3) is fulfilled and we obtain a
walk of length 5.

Finally, it is easy to check that there are vertices at distance 6, for instance, 1012 and 0202.

We proceed with the remaining values of d and `, and give coincident upper and lower bounds for the
diameter of CK(d, `).

Lemma 2.9. The diameter of CK(3, ` ≥ 3) with ` , 4 is at most 2` − 1.

Proof. We claim that between any two vertices u and v of CK(3, ` ≥ 3) with ` , 4, there is always a path of
length at most 2` − 1.

In particular, we will show that there is either a sequence x = x1x2. . .x`−1 of ` − 1 symbols or a sequence
y = y1y2. . .y`−2 of `−2 symbols such that by concatenating the sequence of u, one of x or y, and the sequence
of v, we obtain a sequence with the property that any contiguous subsequence of length ` forms a vertex of
CK(3, ` ≥ 3) with ` , 4.

Given vertices u and v, let us first find such a string x of ` − 1 symbols. From the definition of a vertex
of a cyclic Kautz digraph it follows that, in the desired sequence, the symbol xi must differ from symbols
xi−1, xi+1, ui+1, and vi (also, x1 differs from u`, and x`−1 differs from v1). We adopt the following strategy. We
choose the symbols for x1, x2, . . ., x`−1 one by one in this order. Our alphabet has 4 symbols, but for each
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xi (with the exception of the last one) there are exactly 3 restrictions given. We therefore can choose the
symbols for x1, x2, . . ., x`−2 that meet the requirements. However, a problem may arise when choosing the
symbol for x`−1, for which we need to choose a symbol that differs from u`, x`−2, v1, and v`−1. We distinguish
two cases. If any two of these 4 symbols are the same, there remains a symbol which can be assigned to
x`−1 and the constructed sequence x of length ` − 1 satisfies the requirements.

Otherwise, if all the 4 symbols u`, x`−2, v1, and v`−1 differ, say u` = α1, x`−2 = α2, v1 = α3, and v`−1 = α4,
we cannot assign a symbol to x`−1 that would satisfy the requirements. We observe the following:

(1) u` , v1;

(2) u` = α1 implies u`−1 , α1;

(3) x`−2 = α2 implies u`−1 , α2.

In this case, instead of searching a sequence x of ` − 1 symbols, we find a sequence y of ` − 2 symbols as
follows. In the desired string, a symbol yi must differ from the symbols yi−1, yi+1, ui+1, and vi+1 (also, y1
differs from u`, and y`−2 differs from v1). Moreover, since y has length ` − 2, the subsequence u`y1. . .y`−2v1
also needs to be a vertex of CK(3, ` ≥ 3) with ` , 4, thus u` must differ from v1. The condition u` , v1 is
satisfied by the above observation (1). To choose the symbols for y1, y2, . . ., y`−2 we adopt a similar strategy
as above. Again, we can choose the symbols for y1, y2, . . ., y`−3 one by one in this order and meet the
requirements. Finally, for y`−2 we need to choose a symbol that differs from u`−1, y`−3, v1, and v`−1. Since
the previous search for x failed, we know that v1 = α3, v`−1 = α4, and u`−1 , α1, α2. This implies that u`−1
has the same symbol as either v1 or v`−1, and thus there remains one symbol which can be assigned to y`−2.

Therefore, we can either find a sequence x of length ` − 1, or a sequence y of length ` − 2. In both cases
this gives us an upper bound of 2` − 1 on the length of the shortest path between any pair of vertices of
CK(3, ` ≥ 3) with ` , 4.

We use a strategy very similar in the proofs of Lemmas 2.10 and 2.11. In order to avoid repetitions, we
omit the proof of the former and only give the one of the latter.

Lemma 2.10. The diameter of CK(d ≥ 3, 3) is at most 5 = 2` − 1.

Lemma 2.11. The diameter of CK(d ≥ 4, ` ≥ 4) is at most 2` − 2.

Proof. We show that for any pair of vertices u and v of CK(d ≥ 4, ` ≥ 4), there is always a path of length at
most 2` − 2 or 2` − 3. In particular, we show that there is either a sequence y = y1y2. . .y`−2 of ` − 2 symbols
or a sequence z = z1z2. . .z`−3 of ` − 3 symbols, such that the concatenation of u, one of y or z, and v forms a
sequence such that any contiguous subsequence of length ` is a vertex of CK(d ≥ 4, ` ≥ 4).

Given vertices u and v, we distinguish two cases depending on whether symbols u` and v1 differ or
not. Let us first assume that u` , v1. We construct sequence y of ` − 2 symbols one by one, respecting the
following restrictions. Symbol y1 must differ from symbols u2, u`, and v2. In general, yi must differ from
ui+1, yi−1, and vi+1. Finally, y`−2 must also differ from v1. Since for each of yi we have at most 4 restrictions,
and the alphabet contains 5 symbols, we can always find a symbol to assign to yi. These restrictions ensure
that the constructed sequence y satisfies that each subsequence of ` symbols of u,y or of y,v forms a vertex
of CK(d ≥ 4, ` ≥ 4). Moreover, the assumption that u` , v1 ensures that also sequence u`y1. . .y`−2v1 forms a
vertex of CK(d ≥ 4, ` ≥ 4).

Let us now assume that u` = v1. This implies that no sequence y of length ` − 2 satisfying the above
property can be found, since u`y1. . .y`−2v1 is not a vertex of CK(d ≥ 4, ` ≥ 4). However, this also implies
that u` = v1 , v2 and that v1 = u` , u`−1. We construct sequence z of ` − 3 symbols one by one, respecting
analogous restrictions as in the previous case. Again, due to the fact that the alphabet contains 5 symbols,
we can find z, such that subsequences of ` symbols of u, z or of z, v form a vertex of CK(d ≥ 4, ` ≥ 4). Besides,
since u` = v1, we observe that u` , v2 and v1 , u`−1. Therefore also both sequences u`−1u`z1. . .z`−3v1 and
u`z1. . .z`−3v1v2 form vertices of CK(d ≥ 4, ` ≥ 4).

Therefore, we can either find a sequence y of length ` − 2, or a sequence z of length ` − 3. This gives us
an upper bound of 2` − 2 on the diameter of CK(d ≥ 4, ` ≥ 4).
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Lemma 2.12. The diameter of CK(d ≥ 3, 3) is at least 5 = 2` − 1.

Proof. Let u = 012 and v = 210 be two vertices of CK(d ≥ 3, 3). We argue that u and v are at distance at least
5 as follows. Since the only symbol 2 in u is at position u3, but v1 = 2, at least two steps are needed to reach
v from u. Since u2 = v2, then u2u3v2(= u2v1v2) is not a vertex and v cannot be reached from u in two steps.
Also, since u3 = v1 and u3v1v2 is not a vertex, thus also three steps are not enough to reach v from u. Finally,
since u3 = v1 and u3xv1 is not a vertex for any symbol x, thus v cannot be reached from u in four steps.

Lemma 2.13. The diameter of CK(3, ` ≥ 3) with ` , 4 is at least 2` − 1.

Proof. For ` = 3, it is easy to verify that the vertices 012 and 210 of CK(3, 3) are at distance 5. Let then ` ≥ 5.
We distinguish two cases depending on the parity of `, and in both we describe a pair of vertices u and v of
CK(3, ` ≥ 5) that are at distance at least 2` − 1.

First, let ` be odd. Consider u = 0101. . .012, and v = 210. . .1010 of CK(3, ` ≥ 5), where we underlined
the symbols that are repeated. Since the only symbol 2 in u is at position u`, but v contains 2 at position
v1, at least ` − 1 steps are needed to reach v from u. However, ` − 1 steps are also not enough, since
u`−1 = 1 = v`−1, and thus sequence u`−1u`v2. . .v`−1(= u`−1v1v2. . .v`−1) is not a vertex of CK(3, ` ≥ 5). For the
sake of contradiction, assume that there is a path of length ` + z, for some 0 ≤ z < ` − 1. Then, there must
exist a sequence of z symbols x = (x1, x2, . . ., xz), such that any contiguous subsequence of length ` of u, x, v
forms a vertex of CK(3, ` ≥ 5). For z = ` − 2 no such sequence x exists, since u` = 2 = v1, which implies that
u`x1. . .xzv1 is not a vertex of CK(3, ` ≥ 5). If z is odd, there is no such sequence x, since u`−1 = 1 = v`−2−z,
which implies that u`−1u`x1. . .xzv1. . .v`−2−z is not a vertex of CK(3, ` ≥ 5). If z is even, assume for the sake
of contradiction that there is such a sequence x. First observe that x cannot contain any symbol 0 or 1 as
follows. Since any subsequence of u, x, v of ` consecutive symbols must form a vertex of CK(3, ` ≥ 5), the
symbol at position xi must differ from the symbols at positions ui+1 and v`−1−z+i. Thus, at position xi, cannot
be 0: If i is odd, also ` − 1 − z + i is odd and thus v`−1−z+i = 0; otherwise if i is even, then i + 1 is odd and
thus ui+1 = 0. Note that 0 ≤ z < ` − 1 implies ` − 1− z + i > 1, and i ≤ z, thus also i + 1 ≤ ` − 1. Similarly, the
symbol at position xi cannot be 1: If i is odd, i + 1 is even and ui+1 = 1; otherwise, if i is even, ` − 1 − z + i
is even and v`−1−z+i = 1. Therefore, since the size of the alphabet is 4, sequence x consists only of 2’s and
3’s. Since u` = 2 = v1, both x1 and xz must be 3. Then, x2 = xz−1 = 2, and x3 = xz−2 = 3, and so on. Since z is
even, sequence x has even length, and thus xz/2 = xz/2+1 (the same symbols meet in the middle of x), which
is not possible and we get a contradiction.

Now, let ` be even and let us proceed similarly. Consider u = 1020 20. . .2012, and v = 21302 02. . .02010
of CK(3, ` ≥ 5), where the underlined symbols mean that they are repeated. (For example, for ` = 6,
u = 102012, and v = 213010.)

Since vertex v starts with symbols 21, but vertex u does not contain this pattern, at least ` − 1 steps are
needed to reach v from u. However, `−1 steps are also not enough, since u`−1 = 1 = v`−1, and thus sequence
u`−1u`v2 . . . v`−1(= u`−1v1. . .v`−1) is not a vertex of CK(3, ` ≥ 5). Also ` steps do not suffice, since u` = 2 = v1,
and thus u`v1. . .v`−1 is not a vertex of CK(3, ` ≥ 5). Again, assume for the sake of contradiction that there
is a path of length ` + z connecting u and v, for some 1 ≤ z < ` − 1. Then, there must exist a sequence of
z symbols x = (x1, x2, . . ., xz) such that any contiguous subsequence of length ` of u, x, v forms a vertex of
CK(3, ` ≥ 5). We distinguish two cases depending on the parity of z. If z is odd, we distinguish three cases
depending on z (the length of x), and for each we argue why there cannot be such a sequence x.

• z < ` − 5: Independent of x, subsequence u`−2u`−1u`x1. . .xzv1. . .v`−3−z is not a vertex of CK(3, ` ≥ 5),
since u`−2 = 0 = v`−3−z.

• z = ` − 5: Independent of x, subsequence u`−3. . .u`x1. . .xzv1 is not a vertex of CK(3, ` ≥ 5), since
u`−3 = 2 = v1.

• z = ` − 3: We observe that there are the following restrictions on the symbols in x: Since for each i,
both ui+1. . .u`x1. . .xi and xi. . .xzv1. . .vi+2 must be vertices of CK(3, ` ≥ 5), symbol xi must differ from
both ui+1 and vi+2. Moreover, x1 must differ from u`, and xz must differ from v1. Considering u and
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v, this implies that x can only consist of symbols 1 and 3, with x1 = 1 and xz = 3. However, since the
two symbols in x must alternate, and z is odd, all these conditions cannot be satisfied and we get a
contradiction.

If z is even, we distinguish three cases depending on z (the length of x), and for each we identify a
subsequence of u, x, v of length ` that does not form a vertex of CK(3, ` ≥ 5):

• z < ` − 4: u`x1. . .xzv1. . .v`−1−z is not a vertex, since u` = 2 = v`−1−z.

• z = ` − 4: u`−1u`x1. . .xzv1v2 is not a vertex, since u`−1 = 1 = v2.

• z = ` − 2: u`x1. . .xzv1 is not a vertex, since u` = 2 = v1.

Therefore, in both cases (odd and even `), we identified a pair of vertices of CK(3, ` ≥ 3) with ` , 4 that
are at distance at least 2` − 1, thus bounding the diameter of CK(3, ` ≥ 3) with ` , 4 from below.
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Figure 4: Summary of the diameter of CK(d, `), depending on the values of d and `.

Lemma 2.14. The diameter of CK(d ≥ 4, ` ≥ 4) is at least 2` − 2.

Proof. Consider u = . . .0101012 (u begins with 01 if ` is odd and with 10 if ` is even), and v = 1320202. . . of
CK(d ≥ 4, ` ≥ 4). We show that the shortest path from u to v in CK(d ≥ 4, ` ≥ 4) has length at least 2` − 2 as
follows. Since vertex v starts with symbols 13, but vertex u does not contain this pattern, at least ` − 1 steps
are needed to reach v from u. Also, since u` , v1, ` − 1 steps are not enough. For the sake of contradiction,
assume that there is a path of length ` + z, for some 0 ≤ z < ` − 2. Then, there must exist a sequence of
z symbols x = (x1, x2, . . ., xz) such that any contiguous subsequence of length ` of u, x, v forms a vertex of
CK(d ≥ 4, ` ≥ 4). We distinguish four cases depending on the parity of z and `, and for each we identify a
subsequence of u, x, v of length ` that does not form a vertex of CK(d ≥ 4, ` ≥ 4):

• z odd, ` odd: u`x1. . .xzv1. . .v`−1−z is not a vertex, since u` = 2 = v`−1−z.

• z odd, ` even: uz+2. . .u`x1. . .xzv1 is not a vertex, since uz+2 = 1 = v1.

• z even, ` odd: uz+2. . .u`x1. . .xzv1 is not a vertex, since uz+2 = 1 = v1.

• z even, ` even: u`x1. . .xzv1. . .v`−1−z is not a vertex, since u` = 2 = v`−1−z.

Therefore, the shortest path from u to v has length at least 2` − 2.

Results 2.3–2.14 determine the diameter of CK(d, `) for all the values of d and `; we summarize them
into the following theorem (see Figure 4 for a scheme).

Theorem 2.15. The diameter of CK(d, `) is

D(CK(d, `)) =


1 for d = 1, ` ≥ 2 if ` is even;
` for ` = 1; for d ≥ 2, ` = 2;

2` − 1 for d = 2, ` = 4; for d ≥ 3, ` = 3; for d = 3, ` ≥ 5;
2` − 2 for d = 3, ` = 4; for d ≥ 4, ` ≥ 4.

Recall that, for d = 1 and ` ≥ 2 when ` is odd, the cyclic Kautz digraphs do not exist. Moreover, for d = 2
and ` ≥ 3 when ` , 4, the cyclic Kautz digraphs are not strongly connected.
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3. Conclusions

In this paper we give the main parameters of a new network called cyclic Kautz digraph CK(d, `), which
is related to cyclic codes. These parameters are the number of vertices, the number of arcs and the diameter
for all the values of d and `. As cyclic Kautz digraphs CK(d, `) are subdigraphs of the well-known Kautz
digraphs K(d, `), the former inherits some properties of the latter. It would be interesting to explore further
properties of cyclic Kautz digraphs, as well as their relations to coding theory.
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