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Abstract.
Up to now there is no homotopy for Marcus-Wyse (for short M-) topological spaces. In relation to

the development of a homotopy for the category of Marcus-Wyse (for short M-) topological spaces on Z2,
we need to generalize the M-topology on Z2 to higher dimensional spaces X ⊂ Zn, n ≥ 3 [18]. Hence the
present paper establishes a new topology on Zn,n ∈ N, where N is the set of natural numbers. It is called the
generalized Marcus-Wyse (for short H-) topology and is denoted by (Zn, γn). Besides, we prove that (Z3, γ3)
induces only 6- or 18-adjacency relations. Namely, (Z3, γ3) does not support a 26-adjacency, which is quite
different from the Khalimsky topology for 3D digital spaces. After developing an H-adjacency induced by
the connectedness of (Zn, γn), the present paper establishes topological graphs based on the H-topology,
which is called an HA-space, so that we can establish a category of HA-spaces. By using the H-adjacency,
we propose an H-topological graph homomorphism (for short HA-map) and an HA-isomorphism. Besides,
we prove that an HA-map (resp. an HA-isomorphism) is broader than an H-continuous map (resp. an H-
homeomorphism) and is an H-connectedness preserving map. Finally, after investigating some properties
of an HA-isomorphism, we propose both an HA-retract and an extension problem of an HA-map for
studying HA-spaces.

1. Introduction

An Alexandroff topological structure plays an important role in applied topology [1, 32] so that a locally
finite topological structure strongly contributed to the study of digital spaces [1]. We say that a digital
space is a pair (X,R), where X is a nonempty set and R is a binary symmetric relation on X such that X is
R-connected [22]. Here, we say that X is R-connected if for any two elements x and y of X there is a finite
sequence (xi)i∈[0,l]Z of elements in X such that x = x0, y = xl and (x j, x j+1) ∈ R for j ∈ [0, l − 1]Z. In digital
topology, several kinds of tools have been used to study nD digital spaces. One of them is the Khalimsky
(for brevity, K-) topology on the Euclidean nD space with integer coordinates, denoted by (Zn, κn) [27].
Furthermore, a graph theoretical approach was often used to study digital spaces [34]. Since M-topology
(Z2, γ2) [37] was formulated for studying spaces in Z2 [37], it has been used to study digital spaces from the
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viewpoint of digital geometry. Hereafter, for the set Z ⊂ Z2 the paper assumes its subspace (Z, γ2
Z) := (Z, γ)

induced by (Z2, γ2). Besides, we generalize the M-topological structure on Z2 to nD spaces. To do this
work, we consider a product space (Z2, γ2) × (Z, γ) := (Z3, γ3) introduced by Kong [29]. Motivated by this
approach, we propose a topology on Zn,n ∈ N, denoted by (Zn, γn) (see Definition 3.1), which is an extended
topology of both the M-topology and (Z3, γ3) in [29]. Under (Zn, γn), we can naturally consider the notions
of an H-continuous map and an H-homeomorphism. But we can observe that an H-continuous map is so
rigid that it has some limitations of geometric transformations (see Remark 4.1). Thus, after establishing the
notion of an H-adjacency induced by the connectedness of (Zn, γn), we obtain H-topological graphs based
on the H-topology, which is called HA-spaces. By using these H-topological graphs, we establish a new
map, called an HA-map (see Definition 4.8) which is broader than an H-continuous map and finally, it is
proved to be an H-connectedness preserving map which can be used in applied topology. Furthermore, to
study HA-spaces substantially, we need to establish an HA-isomorphism.

Then we may naturally pose the following queries.
(Q1) On Zn, what is a relation among an ordinary k-adjacency relation of Zn, an H-adjacency and a

K-adjacency ?

Let SCn,l
H be a simple closed H-curve with l-elements in (Zn, γn), SCn,l

K a simple closed K-curve with
l-elements in (Zn, κn) and SCn,l

k a simple closed k-curve with l-elements in Zn with a k-adjacency relation.

(Q2) What is a relation among SCn,l
H , SCn,l

K and SCn,l
k ?

Since an HA-map is different from a K-continuous map, a digitally k-continuous map [9, 10] and the
other digitally continuous maps [11], we need to establish a new notion of a retract for HA-spaces.

(Q3) What is an HA-retract for HA-spaces ?

In Sections 3–6, we shall address these issues. This approach can contribute to the classification of
HA-spaces and nD digital spaces.

The present paper follows traditional approaches in studying digital topology which includes a graph
theoretical approach [9–11, 31, 34], an M-topological structure [13, 17, 37] and a K-topological structure
[8, 27].

The rest of the paper proceeds as follows: Section 2 provides some basic notions on digital topology.
Section 3 develops a new topology on Zn,n ∈ N, that is called the H-topology and investigates its properties.
Section 4 refers to some limitations of an H-continuous map and develops the notion of an HA-map (resp.
an HA-isomorphism) being broader than an H-continuous map (resp. an H-homeomorphism). Besides,
we prove that an HA-map is an H-connectedness preserving map which can be used in applied topology.
Besides, it formulates an adjacency, so called an H-adjacency relation, induced by the H-connectedness.
In addition, it develops H-topological graphs based on the H-topology (HA-spaces for short). Section 5
compares among simple closed K-, H- and k-curves. Section 6 proposes an HA-retract and an extension
problem of an HA-map. Section 7 concludes the paper with a summary and a further work.

2. Preliminaries

Since almost of all digital topologies are based on Alexandroff topology, let us recall basic notions of
the structure. We say that a topological space X is Alexandroff if for each point x ∈ X there is the minimal
open set (or the smallest open set) V(x) containing x [1]. In particular, every locally finite space (where each
point has an open neighborhood which is finite) is Alexandroff. It is easy to see that for each point y ∈ V(x)
we have V(y) ⊂ V(x). This implies that if X is a T0-space and x, y ∈ X then V(x) = V(y) if and only if x = y.
Alexandroff spaces appear by a natural way in studies of topological models of digital spaces. They are
quotient spaces of the Euclidean spaces Rn defined by special decompositions [16, 23]. Some studies of
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Alexandroff spaces from the general topological point of view can be found for example in [1].

Motivated by the Alexandroff topological approach, many mathematical tools have been used in the
fields of both digital topology and digital geometry. We need to recall some terminology from a graph
theoretical approach and the topologies such as Marcus-Wyse, Khalimsky topology and so forth. It is well
known that the study of 2D digital spaces plays an important role in digital geometry related to the fields
of mathematical morphology, computer graphics, image analysis, image processing and so forth. Thus the
M-topological structure [37], denoted by (Z2, γ2) in the paper, was established by using the set U in (2.1) as
a base, where for each point p = (x, y) ∈ Z2

U :=
{

U(p) := {(x ± 1, y), (x, y ± 1)} ∪ {p} if x + y is even, and
{p} : else.

}
(2.1)

As a further term of a point in Z2, in the paper we call a point p = (x1, x2) completely even if each xi is
even, i ∈ {1, 2} and further, a point p = (x1, x2) completely odd if each xi is odd, i ∈ {1, 2}. For a set X ⊂ Z2 we
can take the subspace induced by (Z2, γ2), denoted by (X, γ2

X), which has been often studied in the context
of digital images [8, 35, 37].

Let us recall some notions on the K-topology. The K-topology κ on Z is induced by the set {[2n − 1, 2n +
1]Z |n ∈ Z} as a subbase [27] so that it is a T 1

2
space (see also [27, 28]), where for two distinct points a and

b in Z let [a, b]Z = {n ∈ Z | a ≤ n ≤ b} be called an integer interval [31]. Furthermore, the product topology
on Zn induced by (Z, κ) is called the Khalimsky nD space which is denoted by (Zn, κn). For a set X ⊂ Zn we
can consider a subspace induced by (Zn, κn), denoted by (X, κn

X). Besides, both a K-continuous map and a
K-homeomorphism are established from the viewpoint of K-topology.
In (Zn, κn) we say that a simple closed K-curve with l elements in Zn is a path (xi)i∈[0,l]Z ⊂ Zn that is K-
homeomorphic to a quotient space of a Khalimsky line interval [0, 2m]Z or [1, 2m + 1]Z in terms of the
identification of the only two end points x0 and xl. We denote it by SCn,l

K [19]. In other words, we can
represent SCn,l

K as a simple K-path (xi)i∈[0,l]Z ⊂ Zn such that x0 = xl if and only if | i − j | = 1(mod l).

Let us recall some digital topological tools introduced by Rosenfeld [34]. To study a multidimensional
space X ⊂ Zn in a graph theoretical approach, we have used the k-adjacency relations of Zn. As a general-
ization of the k-adjacency relations of 2D and 3D digital spaces [31, 34], the k-adjacency relations of Zn were
established in [9] (see also [12]):
For a natural number m where 1 ≤ m ≤ n, two distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn are called k(m,n)- (briefly, k-) adjacent if

at most t of their coordinates differs by ± 1, and all others coincide. (2.2)

Concretely, according to the two numbers m,n ∈ N, the k(m,n) (or k)-adjacency relations of Zn were
represented in [9, 12], as follows (for more details, see also [12]).

k := k(m,n) =

n−1∑
i=n−m

2n−iCn
i ,where Cn

i =
n!

(n − i)! i!
. (2.3)

Rosenfeld [34] called a set X ⊂ Zn with a k-adjacency as a digital image denoted by (X, k). Indeed, to
follow a graph theoretical approach of studying nD digital images, both the k-adjacency relations of Zn and
a digital k-neighborhood have been often used. More precisely, using the k-adjacency of Zn in (2.3), we say
that a digital k-neighborhood of p in Zn is the set [34]

Nk(p) := {q | p is k-adjacent to q} ∪ {p}.

Furthermore, we often use the notation [31]

N∗k(p) := Nk(p) \ {p}.
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For one of the k-adjacency relations of Zn in (2.3), a simple k-path with l + 1 elements in Zn is assumed
to be an injective finite sequence (xi)i∈[0,l]Z ⊂ Zn such that xi and x j are k-adjacent if and only if |i − j| = 1
[31]. If x0 = x and xl = y, then the length of the simple k-path, denoted by lk(x, y), is the number l. A simple
closed k-curve with l elements in Zn, denoted by SCn,l

k [9], is the simple k-path (xi)i∈[0,l−1]Z , where xi and x j
are k-adjacent if and only if |i − j| = 1(mod l) [31].

For a digital image (X, k), as a generalization of Nk(p) [9] the digital k-neighborhood of x0 ∈ X with radius
ε is defined in X to be the following subset [10] of X

Nk(x0, ε) := {x ∈ X | lk(x0, x) ≤ ε} ∪ {x0}, (2.4)

where lk(x0, x) is the length of a shortest simple k-path from x0 to x and ε ∈ N.
Concretely, for X ⊂ Zn we obtain [10]

Nk(x, 1) = Nk(x) ∩ X. (2.5)

3. A Generalization of the M-topology and its Properties

For two M-topological spaces (X, γ2
X) := X and (Y, γ2

Y) := Y, a function f : X → Y is said to be M-
continuous at a point x ∈ X if f is continuous at the point x from the viewpoint of M-topology. Furthermore,
we say that a map f : X→ Y is M-continuous if it is M-continuous at every point x ∈ X. Using M-continuous
maps, we establish the M-topological category, denoted by MTC, consisting of two sets [17].

(1) The set of objects (X, γ2
X),

(2) For every ordered pair of objects (X, γ2
X) and (Y, γ2

Y), the set of all M-continuous maps f : (X, γ2
X)→

(Y, γ2
Y) as morphisms.

Besides, in MTC, for two spaces (X, γ2
X) and (Y, γ2

Y), we say that a map f : X → Y is an M-
homeomorphism [37] if f is an M-continuous bijection and that f−1 : Y→ X is M-continuous.

Starting with (Z2, γ2), let us now develop a new topology on Zn which is not compatible with (Zn, κn).
By using (Z, γ) and the M-topology, we now establish high dimensional digital topological structure. More
precisely, consider the product topology on Z2

×Z := Z3 induced by γ2 and γ so that we have the topological
space (Z3, γ3). In general, we define the following:

Definition 3.1. On Zn,n ≥ 3, we define the product topology γn induced by the topologies (Zn−1, γn−1) and
(Z, γ), i.e. (Zn−1, γn−1) × (Z, γ) := (Zn, γn).

In this paper (Zn, γn) is called H-topology.

Corollary 3.2. (Zn, γn) is a proper subspace of (Zn+1, γn+1) with the relative topology on Zn induced by (Zn+1, γn+1),
n ∈ N.

Remark 3.3. (1) For the case of n = 3 of the H-topology, Kong [29] established it.
(2) The case of n = 4 is also treated in [30].

Besides, the paper [8] further studied the following:
(•) If a set X ⊂ Z3 is 6-connected, then it is topologically connected,
(•) If a set X ⊂ Z3 is not 26-connected, then it is not topologically connected.

In all subspaces of (Zn, γn) of Figures 1-3 and 5-6, a black jumbo dot means a point whose all coordinates
are odd (for brevity, a completely odd point), the symbols �means a point in Zn whose all coordinates are
even (for short a completely even point) and • means a mixed point. Under the H-topology (Zn, γn), for a
given point p ∈ Zn since the smallest open set of the point p, denoted by OH(p), plays an important role in
studying H-topological spaces, let us investigate OH(p) around the origin point (0, 0, ..., 0) := 0n ∈ Zn.

Example 3.4. Under the H-topological structure of (Z3, γ3), for the origin 03 ∈ Z3 we obtain OH(03) = {xi | i ∈
[1, 14]Z} ∪ {03} shown at Figure 1(1). Indeed, for the point p := (1, 1, 0) ∈ Z3 we also have OH(p) which is the
same shape of OH(03) (see Definition 3.1). Next, for the point x14 := (0, 0, 1) ∈ Z3 in Figure 1(2), according to
the H-topological structure from Definition 3.1, we obtain OH(x14) = {xi | i ∈ [10, 14]Z}. Similarly, for the point
x8 := (1, 0, 0) we obtain OH(x8) = {xi | i ∈ {3, 8, 12}} and finally, for the point x13 := (0, 1, 1) OH(x13) = {x13}.
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Figure 1: Configuration of OH(p) under (Z3, γ3), where (1) p = 03 ∈ Z3; (2) p=(0,0,1); (3) p=(1,0, 0); (4) p=(0,1,1).

We can consider naturally an H-continuous map and an H-homeomorphism. For two H-topological
spaces (X, γn

X) := X and (Y, γn
Y) := Y a function f : X→ Y is said to be H-continuous at a point x ∈ X if f is

continuous at the point x from the viewpoint of H-topology. In other words, we can represent it as follows:

f (OH(x)) ⊂ OH( f (x)). (3.1)

Furthermore, a map f : X → Y is H-continuous if it is H-continuous at every point x ∈ X. For two H-
topological spaces (X, γn

X) := X and (Y, γn
Y) := Y, a function f : X→ Y is said to be an H-homeomorphism

if f is an H-continuous bijection and the inverse f−1 is H-continuous.

Example 3.5. Under (Z3, γ3), the two spaces in Figure 2 (4) and (6) are H-homeomorphic to each other.
Indeed, they have four closed points with the relative topology induced by (Z3, γ3).

By Corollary 3.2, we obtain the following:

Proposition 3.6. (Zm, γm) cannot be H-homeomorphic to (Zn, γn) if m , n.

In digital topology simple examples of locally finite T 1
2
-spaces (not T1) are the Khalimsky line (Z, κ) [27]

and the M-topology (Z2, γ2). Recall that a set A of a topological space X is called semi-open [24] if there
is an open set O such that O ⊂ A ⊂ ClO, where “Cl” means the closure operator. The semi-closed sets are
defined as the complements to the semi-open sets. The separation axioms semi-Ti, where i = 0, 1

2 etc (see
[3, 26]), are obtained from the definitions of the usual separation axioms Ti by the replacing of open sets by
semi-open ones. For example, a space X satisfies the separation axiom T 1

2
[7] if for each point p of X the set

{p} is either open or closed, i.e. for each point p of X at least one of the sets {p}, X \ {p} is open. Hence, a
space X satisfies the separation axiom semi-T 1

2
if for each point p of X at least one of the sets {p}, X \ {p} is

semi-open, i.e. for each point p of X the set {p} is either semi-open or semi-closed [6]. As a rule (cf. [6]) the
axiom Ti implies the axiom semi-Ti but the converse does not hold. It is clear that the products X×Y, where
X,Y are either (Z, κ) or (Z2, γ2), are not T 1

2
(even not T 1

4
, see [2] for the definition). But they are evidently

T0-spaces. So are their subspaces.
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Since digital spaces are so related to both an Alexandroff topological structure and low level separations
axioms, the recent paper [5] proved the following:

Proposition 3.7. [5] A T0-Alexandroff space is a semi-T 1
2
-space.

Since each of an M-topological space and a K-topological space is a T0-Alexandroff space [1], they are
proved to be semi-T 1

2
-spaces [5, 13]. Since the H-topology is an Alexandroff space with T0-separation axiom,

we obtain the following:

Corollary 3.8. The H-topology (Zn, γn) is a semi-T 1
2
-space.

Definition 3.9. In (Zn, γn), two distinct points x, y in Zn are H-adjacent if y ∈ OH(x) or x ∈ OH(y).

By using this notion, let us now establish the following terminology which can be used to study H-
topological spaces.

Definition 3.10. Let (X, γn
X) := X be an H-topological space. Then we define the following:

(1) Two distinct points x, y ∈ X are called H-path connected if and only if there is a finite sequence (or a
path) (x0, x1, ..., xm) on X with {x0 = x, x1, ..., xm = y} such that {xi, xi+1} is H-adjacent, i ∈ [0,m − 1]Z,m ≥ 1.
Besides, the number m is called the length of this H-path. Furthermore, an H-path is called a closed H-curve
if x0 = xm.

(2) A simple H-path in X is an H-path (xi)i∈[0,m]Z such that the set {xi, x j} are H-adjacent if and only if
| i − j | = 1.
Furthermore, we say that a simple closed H-curve with l elements (xi)i∈[0,l]Z ⊂ Zn, denoted by SCn,l

H , l ≥ 4, is
a simple H-path with x0 = xl if and only if | i − j | = 1(mod l).

Example 3.11. Let us consider the spaces in Figure 2 with the relative topologies on the given sets. Then
we obtain the following:

(1) Under (Z3, γ3), each of the spaces in Figure 2(4) and (6) is a kind of SC3,8
H .

(2) Under (Z3, γ3), the space in Figure 2(5) cannot be an SC3,8
H because of the completely even points

in the space such as w4 and w8. More precisely, we obtain the smallest open set of the point w4, i.e.
OH(w4) = {wi | i ∈ [2, 6]Z}.

(3) Under (Z3, γ3), while the space in Figure 2(7) is an SC3,6
H , the space Y := (yi)i∈[0,5]Z in Figure 2(8) cannot

be an SC3,6
H because each of the points y0 := (0,−1, 0) and y3 := (0, 1, 1) in the space (Y, γ3

Y) is not H-connected
with the other points, which implies that this space is disconnected.

(4) Under (Z3, γ3), the space in Figure 2(9) cannot be an SC3,4
H because the space is disconnected from

the viewpoint of the H-topology because every singleton {ti}i∈[1,4]Z is a smallest open set, which means the
space in Figure 2(9), denoted by (T, γ3

T), is a discrete topological space derived from H-topology.

Reminding Example 3.11, in order to investigate some difference between the H-topology and the K-
topology, let us examine the spaces in Figure 2 from the viewpoint of K-topology. Let KTC be the category
of K-topological spaces.

Example 3.12. (1) Under (Z3, κ3), each of the spaces in Figure 2(4) and (6) is a kind of SC3,8
K .

(2) Under (Z3, κ3), the space in Figure 2(5) cannot be an SC3,8
K (see the points w4,w8).

(3) Under (Z3, κ3), the space in Figure 2(7) cannot be an SC3,6
K (see the points y0, y2).
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Figure 2: Configuration of several types of an SCn,l
H ,n ∈ {2, 3} (see (1)-(3), (4), (6) and (7)): The spaces in (5),(8) and (9) cannot be SC3,l

H
for the given l elements.

Remark 3.13. In view of Examples 3.11 and 3.12, compared with the K-topology, it turns out that the
H-topology has its own features (see also Figure 2(7)).

Let us now establish the category of H-topological spaces which is an extension of MTC, denoted by
HTC, as follows:

(1) The set of objects (X, γn
X),

(2) For every ordered pair of objects (X, γn
X) and (Y, γn

Y), the set of all H-continuous maps f : (X, γn
X)→

(Y, γn
Y) as morphisms.

Let us now compare between the H-topology and the K-topology.

Theorem 3.14. The H-topology (Zn, γn) cannot be compatible with the K-topology on Zn up to H-homeomorphism
or K-homeomorphism, where n , 1.

Before proving this assertion, we need to recall the following: (Z, γ) is equivalent to the Khalimsky line
(Z, κ) and further, (Z2, γ2) cannot be compatible with the digital plane with the K-topology.

Proof. In case of n = 3, let us investigate the smallest open sets of the points around the point p := 03 ∈ Z3.
More precisely, without loss of generality it suffice to examine the following eight points around the origin
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(0, 0, 0) ∈ Z3. Put


q0 := (p0, 0), q1 := (p0, 1), where p0 := (0, 0) ∈ Z2,

q2 := (p1, 0), q3 := (p1, 1), where p1 := (0, 1) ∈ Z2,

q4 := (p2, 0), q5 := (p2, 1), where p2 := (1, 0) ∈ Z2,

q6 := (p3, 0), q7 := (p3, 1), where p3 := (1, 1) ∈ Z2.


(3.2)

Then we obtain the following smallest open sets of the given points qi, i ∈ [0, 7]Z (see Figure 1).


OH(q0) = N4(p0) × [−1, 1]Z,OH(q1) = N4(p0) × {1},
OH(q2) = {p1} × [−1, 1]Z,OH(q3) = {q3},

OH(q4) = {p2} × [−1, 1]Z,OH(q5) = {q5}, and
OH(q6) = N4(p3) × [−1, 1]Z,OH(q7) = N4(p3) × {1}.

 (3.3)

Meanwhile, for the given points qi, i ∈ [0, 7]Z under the K-topology (Z3, κ3) we have their smallest open
sets SN(qi) as follows:



SN(q0) = N26(q0),SN(q1) = N8(p0) × {1},
SN(q2) = ∪t∈[−1,1]Z {t} × [−1, 1]Z

SN(q3) = {(±1, 1, 1), q3},

SN(q4) = {1} ×N8(0, 0),
SN(q5) = {(1,±1, 1), q5},

SN(q6) = {(1, 1,±1), q6}, and
SN(q7) = {q7}.


(3.4)

In view of (3.3) and (3.4), we obtain

{
OH(qi) ( SN(qi), i ∈ [0, 5]Z and
SN(q j) ( OH(q j), j ∈ {6, 7}.

}
(3.5)

and further, their cardinalities are the following (see (3.3) and (3.4)):{
]OH(q0) = 15, ]OH(q1) = 5, ..., ]OH(q7) = 5 and
]SN(q0) = 27,SN(q1) = 8, ..., ]SN(q7) = 1.

}
(3.6)

Owing to the properties of (3.5) and (3.6), we prove that (Z3, γ3) is not compatible with (Z3, κ3) up to
H-homeomorphism or K-homeomorphism because these two homeomorphisms are established in terms
of smallest open sets according to their corresponding topologies. By using the method similar to the proof
of the case n = 3, in view of the H-topological structure from Definition 3.1, we prove that (Zn, γn),n ≥ 4 is
not compatible with (Zn, κn) either.

In view of Definition 3.1 (see Figure 1 and Figure 2(9)), we obtain the following property which is quite
different from the K-topology.

Corollary 3.15. Under (X, γ3
X), depending on the situation of X, the HA-space X induces a 6- or an 18-adjacency

relation. Namely, (X, γ3
X) does not support a 26-adjacency relation.
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4. A Development of an HA-Map which is an H-Connectedness Preserving Map

In view of the H-continuity of a map between two H-topological spaces (see (3.1)), an H-continuous
map is so rigid that it has some limitations of geometric transformations.

Remark 4.1. Consider the space (Y, γ3
Y) in Figure 2(7), where Y := {yi|i ∈ [0, 5]Z}. Consider self maps f1 and

f2 of (Y, γ3
Y) in such ways:

(1) f1 : (Y, γ3
Y) → (Y, γ3

Y) given by f1(yi) = yi+1(mod 6) as one click geometric transformation. Then it is clear
that f1 is not an H-continuous map because the smallest open set of yi is the set {yi−1(mod 6), yi, yi+1(mod 6)} if
i ∈ {0, 2, 4} and the smallest open set of y j is the set {y j} if j ∈ {1, 3, 5}.

(2) f2 : (Y, γ3
Y) → (Y, γ3

Y) given by f1(yi) = yi+2(mod 6) as a two-clicks geometric transformation. Then f2 is
an H-continuous map.

Owing to this property of an H-continuous map (in particular, see Remark 4.1(1)), we need to formulate
another map preserving H-connectedness. Hence let us now establish a map which is broader than an
H-continuous map. To do this work, first of all, we need to consider the H-topological adjacency of (Zn, γn).

Under the H-topology (Zn, γn), let us define the notions of an adjacency relation for two points in Zn

and an H-adjacency (for short HA-) neighborhood of a point x ∈ Zn. Furthermore, by using an HA-map,
we establish the notion of an HA-isomorphism. These notions will play important roles in studying digital
nD spaces.

Definition 4.2. Given a point p ∈ Zn, we define the (smallest) HA-neighborhood of p, denoted by HA(n, p)
(for short HA(p) if there is no danger of ambiguity), as follows:

HA(n, p) = {q | p is H-adjacent to q}. (4.1)

In view of (4.1), we observe that p < HA(n, p). Namely, we see that the H-adjacency holds only the
symmetric relation without the reflexive relation. Since (Zn, γn) is an Alexandroff topological space, we
obtain the following:

Remark 4.3. Under (Zn, γn), for two distinct points there is an equivalence between their H-adjacency and
H-connectedness.

Under (Zn, γ),n ≥ 3, owing to the property of H-connectedness, for any point p ∈ Zn we clearly observe
the following (see Figure 1)

Theorem 4.4. Assume that p(resp. p′) is a completely even point in Zn(resp. Zn−1) , e.g. p := 0n ∈ Zn as the origin
point of Zn (resp. p′ := 0n−1 ∈ Zn−1). Then we obtain ]HA(n, p) = 3]HA(n − 1, p′) + 2,n ≥ 3, where ]HA(n, p)
(resp. ]HA(n − 1, p′)) means the cardinality of the set HA(n, p)(resp. HA(n − 1, p′)) in Zn (resp. Zn−1).

Proof. For the given point p := (

n-tuples︷  ︸︸  ︷
0, · · · , 0) ∈ Zn, in view of the product topological construction of the

H-topology (Zn, γn),n ≥ 3, we see that

]HA(n, p) = 3(]HA(n − 1, p′) + 1) − 1 = 3]HA(n − 1, p′) + 2, (4.2)

which proves the assertion.

Example 4.5. In view of (4.2) and Definition 3.1, we obtain that for the origin point p := (

n-tuples︷  ︸︸  ︷
0, · · · , 0) ∈ Zn,n ≥ 3

]HA(3, p) = 14, ]HA(4, p) = 44 and so forth.
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Definition 4.6. For an H-topological space (X, γn
X) consider two H-topological spaces (A, γn

A) := A and
(B, γn

B) := B such that A and B are nonempty subsets of X. Then we say that two subspaces A and B of X are
H-adjacent to each other if A ∩ B = ∅ and there are points a ∈ A and b ∈ B such that a and b are H-adjacent
to each other.

In order to compare the H-adjacency with the K-adjacency, let us now recall some basic notions and
terminology on K-topology. In (Zn, κn), we say that two distinct points x and y are K-adjacent if y ∈ SN(x)
or x ∈ SN(y) [28], where SN(x) is the smallest open neighborhood of the point x. For a point p ∈ Zn, since a
permutation of coordinates and a translation by an even vector is a homeomorphism of Zn onto itself [33],
we can consider the point p as p = (pi)i∈[1,n]Z where there are consecutively k even coordinates from 1 to α

coordinates and the other n − α coordinates are odd such as p := (

α︷  ︸︸  ︷
0, · · · , 0,

β︷  ︸︸  ︷
1, · · · , 1) :=< α, β >, where there

are α zeros and n−α ones. Let p :=< α, β > be a point in Zn. For a point p ∈ Zn under (Zn, κn), the Khalimsky
adjacency neighborhood is denoted by KA(p) and further, it turns out that [33] (see also [19])

]KA(p) = (3α − 1) + (3β − 1) = 3α + 3β − 2. (4.3)

Owing to the properties of (2.3), (4.2) and (4.3), we obtain the following:

Theorem 4.7. For Zn,n ≥ 3, the K-, the H-adjacency and the digital k-adjacency of (2.3) are not compatible with
each other.

Proof. By Theorem 4.4 and Example 4.5, and owing to the property (4.3) and the k-adjacency in (2.2), the
proof is completed. More precisely, assume p := 03, q := (0, 0, 1) and r = (1, 0, 0) in Z3

]KA(p) = 26, ]HA(p) = 14, k ∈ {6, 18, 26},
]KA(q) = 10, ]HA(q) = 6, k ∈ {6, 18, 26} and
]KA(r) = 10, ]HA(r) = 4, k ∈ {6, 18, 26}.

 (4.4)

After comparing the cardinalities of adjacency neighborhoods of p and q in (4.4), we complete the proof.

Let us now establish an H-adjacency neighborhood of a given point x ∈ (X, γn) as follows:

HN(x) := HA(x) ∪ {x} (4.5)

Since any point x ∈ (X, γn) always has HN(x), we may consider the following map.

Definition 4.8. For two HA-spaces (X, γn0
X ) := X and (Y, γn1

Y ) := Y, we say that a function f : X → Y is an
HA-map at a point x ∈ X if

f (HN(x)) ⊂ HN( f (x)).

Furthermore, we say that a map f : X→ Y is an HA-map if the map f is an HA-map at every point x ∈ X.

In view of Definitions 3.1 and 4.8, Remarks 4.1 and 4.3, we obtain the following:

Remark 4.9. (1) While an H-continuous map implies an HA-map, the converse does not hold.
(2) An HA-map is an H-connectedness preserving map.

Using HA-maps, we establish an HA-category, denoted by HAC, consisting of two sets.
(1) For any set X ⊂ Zn, the set of HA-spaces as objects of HAC,
(2) For every ordered pair of objects (X, γn0

X ) := X and (Y, γn1
Y ) := Y, the set of all HA-maps f : X → Y as

morphisms of HAC.
Since the inverse of an HA-map (resp. H-continuous map) need not be an HA-map (resp. H-continuous

map), we need to establish the following notion.

Definition 4.10. For two spaces (X, γn0
X ) := X and (Y, γn1

Y ) := Y, a map h : X→ Y is called an HA-isomorphism
if h is a bijective HA-map (for short HA-bijection) and further, h−1 : Y→ X is an HA-map.

In Definition 4.10, we denote by X ≈HA Y an HA-isomorphism from X to Y.
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5. A Comparison Among Simple Closed Curves such as SCn,l
K

, SCn,l
k

and SCn,l
H

In digital topology, since the study of simple closed curves associated with the given topologies plays an
important role in classifying digital spaces, this section investigates some properties of SCn,l

H and compares
SCn,l

H ∈ HTC with both SCn,l
K ∈ KTC and SCn,l

k . To do this work, we need to investigate the following:

Theorem 5.1. SCn,l1
H is H-homeomorphic to SCn,l2

H if and only if l1 = l2.

Proof. Before proceeding the proof, we recall some properties of SCn,l
H := (xi)i∈[0,l−1]Z . For i ∈ [0, l − 1]Z, the

subspace {xi, xi+1(mod l)} induced by (Zn, γn) is H-connected and further, each point xi ∈ SCn,l
H , i ∈ [0, l − 1]Z,

has the smallest open set, as follows:{
OH(xi) = {xi−1(mod l), xi, xi+1(mod l)} or
OH(xi) = {xi}

}
(5.1)

in terms of the property of SCn,l
H (see Definition 3.10(2) and the structure OH(xi) shown in Figure 1).

Furthermore, in (5.1), in case OH(xi) = {xi−1(mod l), xi, xi+1(mod l)}, we obtain OH(xi+1(mod l)) = {xi+1(mod l)}, and in
case OH(xi) = {xi}, we have

OH(xi+1(mod l)) = {xi(mod l), xi+1(mod l), xi+2(mod l)}.

Let us now consider the two spaces SCn,l1
H := (xi)i∈[0,l1−1]Z and SCn,l2

H := (y j) j∈[0,l2−1]Z . If l1 = l2, then owing to
the property (5.1), we have a map h : SCn,l1

H → SCn,l2
H satisfying that the restriction map to OH(xi), denoted

by h|OH(xi), is (locally) H-homeomorphic to OH(y j) for each i ∈ [0, l1 − 1]Z because the numbers li, i ∈ {1, 2} are
even. Thus the map h is an H-homeomorphism.
Conversely, if SCn,l1

H is H-homeomorphic to SCn,l2
H , then it is clearly l1 = l2.

Let us study the set SCn,l
2n in the H-topological approach.

Theorem 5.2. For the set SCn,l
2n := X, the subspace (X, γn

X) becomes an SCn,l
H depending on the situation as follows.

(1) For every SC2,l
4 := X the subspace (X, γ2

X) always becomes an SC2,l
H .

(2) For every SCn,l
2n := X,n ≥ 3, the subspace (X, γn

X) need be neither an SCn,l
H nor an SCn,l

K . The validity depends
on the situation.

Proof. (1) As shown in (5.1), each point xi ∈ (X, γ2
X) has the following property: OH(xi) = {xi−1(mod l), xi, xi+1(mod l)}

induced by the set N4(xi, 1) or OH(xi) = {xi} and further, if ]OH(xi) = 3, then ]OH(xi+1(mod l)) = 1. Owing to the
property of SCn,l

H (see Definition 3.10(2) and the structure OH(xi) shown in Figure 1), the proof is completed
because the number l is even.

(2) Consider the two spaces in Figure 3(1) and (2). While they are SC3,8
6 , they are neither SC3,8

H nor SC3,8
K .

More precisely, take the completely even points in Figure 3(1), e.g. x2, x6 and the completely odd points
in Figure 3(2), e.g. x2, x6. Owing to these points, they cannot be SC3,8

H . By using the method similar to the
above proof, we prove that the spaces in Figure 3(1) and (2) cannot be an SC3,8

K either. However, the space
in Figure 3(3) is both an SC3,8

H and an SC3,8
K .

Remark 5.3. For the set SC3,l
18 := X, the subspace (X, γn

X) (resp.(X, κn
X)) need not be an SC3,l

H (resp. SC3,l
K ). The

validity depends on the situation.

Proof. Owing to the smallest open set structures from the H- and the K-topology, the assertion is proved.
For instance, consider the space in Figure 3 (5). While it is an SC3,6

H , it cannot be an SC3,6
K owing to the

completely even points y0 and y2 in the space. Motivated by the subset X1 := {(1, 1, 2), (2, 2, 2), (3, 3, 2)} of
Figure 3(4), we can easily take SC3,l

18 := X such that (X, κ3
X) is neither SC3,l

K nor SC3,l
H .
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Figure 3: Similarity and difference among simple closed curves such as SCn,l
K , SCn,l

k and SCn,l
H .

By Corollary 3.15, we obtain the following:

Corollary 5.4. Consider the set SC3,l
k = (xi)i∈[0,l−1]Z := X, where the adjacency k = 26. Then the subspace (X, γ3

X)
need not be an SC3,l

H .

Proof. Owing to the structure of the smallest open set of the point x ∈ SC3,l
26 := X, the assertion is valid. For

instance, consider SC3,4
26 := X in Figure 2(9). Then it is clear that under H-topology each point of X has the

singleton as its smallest open set. Namely, the space (X, γ3
X) is a discrete space from the viewpoint of the

H-topology. Meanwhile, consider the set Y := {w2,w4,w6,w8} in Figure 2(5). Then the set Y is a kind of
SC3,4

k , k = in{18, 26} and further, (Y, γ3
Y) can be SC3,4

H .

In Corollary 5.4, in case SC3,4
k := X such that k = 26 and k , 18, (X, γ3

X) is not an SC3,4
H .

Let us now investigate similarity and difference among simple closed H-and K-curves and digital
k-connectivity, k ∈ {6, 18}.
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Figure 4: For the spaces in Figure 3, an observation of similarity and difference among simple closed H-and K-curves and digital
k-connectivity, k ∈ {6, 18}.

Remark 5.5. In view of Theorems 3.14, 5.2(1) and Remark 5.3, we observe that there are some similarity
and difference among simple closed H-and K-curves and digital k-connectivity, k ∈ {6, 18} (see Figure 4).

6. An HA-Retract and an Extension of an HA-Map in the Category HAC

In view of Theorem 4.7, we see that an HA-map is different from several continuous maps in [11]. Since
an extension problem plays an important role in HAC, this section introduces the notion of an HA-retract
and studies an extension problem of an HA-map. Motivated by the several kinds of retracts in [14], we
now introduce a new retract for HA-spaces and study its properties related to an extension problem of an
HA-map. Owing to Theorem 3.14, Corollary 3.15, the following HA-retract is different from the K-, KA-,
KD-k-retract in [14].

Definition 6.1. In HAC, we say that an HA-map r : (X′, γn
X′ )→ (X, γn

X) is an HA-retraction if
(1) X ⊂ X′, and

(2) r(x) = x for all x ∈ X.
Then we say that (X, γn

X) is an HA-retract of (X′, γn
X′ ). Furthermore, we say that a point x ∈ X′ \ X is

HA-retractable.

In view of Theorem 4.7 and Corollary 3.15 and 5.4, an HA-retract is different from K-, M-, MA-, A-, k-,
KD-k-retracts in [14, 15, 20, 21].

Example 6.2. Consider the space (X′, γ3
X′ ) in Figure 5, where X′ = {xi|i ∈ [1, 6]Z}. Assume that X = X′\{x3, x5}

in Figure 5. Consider the map r : (X′, γ3
X′ ) → (X, γ3

X) given by r({x3, x5}) = {x4} and r(xi) = xi, i ∈ {1, 2, 4, 6}.
Then r is an HA-retraction.
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Figure 5: Configuration of an HA-retract from (X′, γ3
X′ ) onto (X, γ3

X).

Motivated by the digital isomorphic property of the several types of retracts in [14], we obtain the
following property of an HA-isomorphism.

Theorem 6.3. In HAC, let (X, γn
X) be an HA-retract of (X′, γn

X′ ) and let h : (X′, γn
X′ ) → (Y, γn1

Y ) be an HA-
isomorphism. Then h((X, γn

X)) is an HA-retract of (Y, γn1
Y ).

Proof. Let r : (X′, γn
X′ )→ (X, γn

X) be an HA-retraction. Then h◦r◦h−1 : (Y, γn1
Y )→ h((X, γn

X)) is an HA-retraction
because the composition of HA-maps is also an HA-map.

In topology [4], we recall the following: Let (X′,T′) be a topological space and (X,T) a subspace of
(X′,T′). Then (X,T) is a retract of (X′,T′) if and only if every continuous map f : (X,T) → (Y,T1) has a
continuous map F : X′ → Y such that F|X = f for any (Y,T1) [4]. Even though an HA-map need not be an
H-continuous map, motivated by this approach, we need to study an extension problem of an HA-map.

Theorem 6.4. In HAC, (X, γn
X) is an HA-retract of (X′, γn

X′ ) if and only if every HA-map f : (X, γn
X)→ (Y, γn1

Y ) has
an HA-map F : (X′, γn

X′ )→ (Y, γn1
Y ) such that F|X = f for any (Y, γn1

Y ).

Proof. Let r : (X′, γn
X′ ) → (X, γn

X) be an HA-retraction and f : (X, γn
X) → (Y, γn1

Y ) an HA-map. Then the
composition F := f ◦ r : (X′, γn

X′ )→ (Y, γn1
Y ) is an HA-map which is an extension of f .

Conversely, suppose that every HA-map f : (X, γn
X) → (Y, γn1

Y ) has an extension F : (X′, γn
X′ ) → (Y, γn1

Y )
for every (Y, γn1

Y ) as an HA-map. Then the identity map 1(X,γn
X) has an extension r : (X′, γn

X′ )→ (X, γn
X) as an

HA-map. Thus (X, γn
X) is an HA-retract of (X′, γn

X′ ).

Let us consider an example guaranteeing Theorem 6.4, as follows:

Example 6.5. Let us consider the map f : (X, γ2
X) → (Y, γY) given by f ({x0, x1, x4}) = {1}, f (x2) = 2, f (x3) = 3

(Figure 6). Then it is clear that f is an HA-map. Then there is no extension map f : (X′, γ2
X′ ) → (Y, γY),

where X′ = X ∪ {(1, 1, 3)} because there is no HA-retraction from (X′, γ2
X′ ) to (X, γ2

X).
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Figure 6: Non-existence of an HA-extension of the given map f to X′.

7. Summary and Further Works

Our goal was to develop a new topology, called as H-topology, for studying nD digital spaces (or nD
digital images). Thus the paper has developed the new H-topology which can be used to study digital
nD images. Besides, we have developed several notions such as an H-adjacency, an HA-map, an HA-
isomorphism and so forth. We have also proved that an HA-map is different from a K-continuous map,
a digitally k-continuous map and a K-adjacency map in [19] (see the property (3.6)). Comparing these
notions on H-topology with those on K-topology, they have their own merits and utilities depending on the
situations (see Theorems 3.14, 4.7 and 5.2, Corollary 3.15, and Remarks 5.3 and 5.5). We observed that an
HA-map is not compatible with the several continuous maps in [11]. In HAC we have studied an extension
problem of an HA-map and its properties, which is different from the earlier retracts in [14].
As further works, owing to (Z3, γ3), for an M-topological space (X, γ2

X), we can develop the notion of a
homotopy on (X, γ2

X) in an algebraic topological approach [36] which can be used for compressing digital
images and doing an HA-homotopic thinning.
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