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Global Convergence of the Alternating Projection Method
for the Max-Cut Relaxation Problem
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Abstract. The Max-Cut problem is an NP-hard problem [15]. Extensions of von Neumann’s alternating
projections method permit the computation of proximity projections onto convex sets. The present paper
exploits this fact by constructing a globally convergent method for the Max-Cut relaxation problem. The
feasible set of this relaxed Max-Cut problem is the set of correlation matrices.

1. Introduction

Many important applications of optimization problems arise in which a function is to be minimized
subject to a certain matrix being positive semidefinite. Computational difficulties arise because at the
solution of such problems, the matrix eigenvalues tend to cluster. Problems of this type may be found in the
study of distance matrices [4], in the social sciences, multidimensional scaling [9], and in signal processing
and control [1, 2]. In this paper we discuss and establish the convergence of a method for solving a similar
problem which contains a linear objective function with certain constraints, specifically the relaxation of
the Max-Cut problem (RMC). In the process of solving RMC, we solve the correlation problem as an inner
loop inside the main algorithm. The correlation problem and RMC have the same constraints although the
objective function in the correlation problem is quadratic. The method is globally convergent as given in
Theorem 3.1.

Qi and Sun [18] investigate a Newton-type method for the nearest correlation matrix problem. In [8], new
and modified alternating projection methods are presented. These methods deal with the quadratic objective
function. In our paper, we deal with the RMC problem where the objective function is linear. Hence, the
projection method we are using is different and solves the linear objective function by constructing a
hyperplane and then uses the von Neumann alternating projection method between the hyperplane and
the intersections of the convex cones as an outer loop.

The Maximum Cut (MC) problem is a combinatorial optimization problem on undirected graphs with
weights on the edges. Given such a graph, the problem consists in finding a partition of set of vertices into
two parts that maximize the sum of the weights on edges that have one end in each part of the partition.
We consider the general case where the graph is complete and we require no restrictions on the type of
edge weights. Hence, negative or zero-edge weights are permitted. The MC problem has applications in
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circuit layout design and statistical physics, see e.g. [16]. The book of Deza and Laurent [11] presents many
theoretical results about the cut polytope.

It is well known that MC is an NP-complete problem and that it remains NP-complete for some restricted
versions. Nonetheless, some special cases can be solved efficiently. Barahona [6] proved that the polyhedral
relaxation obtained from the triangle inequalities yields exactly the optimal value of MC when the graph is
not contractible to K5, the complete graph on five vertices. RMC has been well studied in the literature, see
[11] and the references therein.

The nearest correlation matrix to a given data matrix was computed by Higham [14] using weighted
Frobenius norm to put more weight for certain accurately known entries. The normal cones of symmetric
positive semidefinite matricesP and the convex setU of matrices with ones in the diagonal were generalized
in [14] and originally given in [13]. A characterization of the problem solution is also given in [14]. The
problem can be relaxed and formed as semidefinite programming which may be solved by interior point
methods. However, when n is reasonably large, the direct use of interior point methods seems infeasible
[14]. In tackling this difficulty, an alternating projection method of Dykstra [12] was proposed by [14]. In
this paper we minimize a linear objective function over the set of correlation matrices i.e. RMC problem.

We complete this section with preliminaries and notations. Section 2 describes the Correlation and Max-
Cut Problem. We explain the relationship between these two problems. In addition, we present known and
new cones along with the normal cones of these cones. Section 3 presents the global convergent theorem
and several characterizations of the Max-Cut Problem in connection with alternating projection methods.
Finally, in Section 4, numerical comparisons are given.

1.1. Preliminaries and notations
Define the space of n × n symmetric matrices by Sn, X � 0 denotes that X is positive semidefinite, inner

product A • B := trace AB and the matrix norm‖.‖ is the Frobenius norm. Also, e denotes the vector of all
ones. For a given closed convex subset K of Sn, and a matrix A < K , it is well known that the proximity
map of A onto K is a unique matrix X ∈ K such that X is the nearest matrix to A in K and we write
X = PK (A). The proximity map is completely characterized by the requirement that

(Z − X) • (A − X) ≤ 0, ∀Z ∈ K .

The normal cone toK at X is defined by

NK (X) = {B|B • X = sup
Z∈K

B • Z}.

Clearly X = PK (Y) if and only if Y − X ∈ NK (X), see e. g. [10].
The following theorem, due to Cheney et al [10], will be used in the next section.

Theorem 1.1. Let K1 and K2 be closed convex sets in a Hilbert space. If either of these sets is compact or finite
dimensional, and if the distance between the two sets is achieved, then for a given data matrix X1, the sequences
generated by Yk+1 = PK1 (Xk) and Xk+1 = PK2 (Yk+1) converge to matrices X̄ and Ȳ, respectively, such that ‖X̄ − Ȳ‖ =
infX∈K1,Y∈K2 ‖X − Y‖.

The method of Theorem 1.1 was investigated by von Neumann [21] and is referred to as the alternating
projection method. For more general types of convex sets, the matrix found by the method of Theorem 1.1
is not generally the nearer matrix to X1 in the intersection of the closed convex sets. Dykstra’s [12] observed
that if K1 is closed and convex and K2 is affine, then the modified alternating projection method which
corrected von Neumann algorithm is given by

Algorithm 1.2. Modified Alternating Projection Algorithm
Given X1
For j = 1, 2, 3, . . .

X j+1 = X j + [PK2 (PK1 (X j)) − PK1 (X j)].

The sequences PK2 (PK1 (X j)) and PK1 (X j) converge to the point inK1 ∩K2 nearest to X.
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2. The Max-Cut Problem

Define the closed convex cone of symmetric positive semidefinite matrices by

P = {X : X = XT,X � 0};

define the convex set of matrices with ones in the diagonal by

U = {X : diag X = e},

where diag returns a vector consisting of the diagonal elements of X, Diag(X) returns a diagonal matrix
with its diagonal formed from the vector given as its argument and define K = P ∩ U which is a closed
convex subset of Sn.

Given a symmetric matrix A, to find the nearest correlation matrix to A ∈ Sn is equivalent to solving the
problem

min ‖X − A‖2

s.t. X ∈ P ∩U. (1)

The normal cone toK at A is given by

NK (A) = {X ∈ Sn : (Y − A) • X ≤ 0, ∀ Y ∈ K}. (2)

The minimizing matrix say, X̄ for (1), is uniquely characterized by the condition

(Z − X̄) • (A − X̄) ≤ 0, ∀ Z ∈ K (3)

i.e. A − X̄ must belong to the normal cone ofK at A [13].
The following theorem gives the normal cone for P.

Theorem 2.1. ([13]) If the columns of Z are an orthonormal basis for the null space of A, and Λ is any symmetric
positive semidefinite matrix, then the normal cone for P, where A lies on the boundary of P, is the following:

NP(A) = {B ∈ Sn : B = − ZΛZT, Λ = ΛT, Λ � 0}. (4)

SinceU is a subspace, it is clear that

NU(A) = {D : A •D = sup
X∈U

X •D},

NU(A) = {D : off (D) = 0},

where off(X) = X − Diag(X). The computational success of Algorithm 1.2 depends crucially upon the
computational complexity of the relevant projections. In our setting, we need the projections PP ontoP and
PU ontoU. SinceU is the subspace consisting of all real symmetric matrices with ones in the diagonal,

PU(X) = off(X) + I,

that is, replacing the diagonal of the given matrix with ones in the diagonal. The projection onto P is well
known, see [14],

PP(X) = UΛ+UT,

where Λ+ is a diagonal matrix containing the eigenvalues of X with the negative ones replaced by zero.
Now, we explain the Max Cut Problem. Let G = (V,E) be an undirected weighted graph consisting of

the set of nodes V and the set of edges E. Let the given graph G have a vertex set {1, . . . ,n}. For S ⊆ V, let
δ(S) denote the set of edges with one end in S and the other not in S. Let wi j be the weight of edge i j, and
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assume that G is complete graph, otherwise set wi j = 0 for every edge i j not in E. The MC problem is to
maximize

ω(δ(S)) =
∑

i j∈δ(S)

wi j

over all S ⊆ V. Let the vector v ∈ {±1}n represent any cut in the graph via the interpretation that the sets
{i : vi = +1} and {i : vi = −1} form a partition of the vertex set of the graph. Then we can formulate MC as

max 1
4

∑
i j(1 − viv j)wi j = 1

4 vTLv
s.t. v2

i = 1, i = 1, . . . ,n,

where L = Diag(We) −W is the Laplacian of the graph G. Consider the change of variables X := vvT. Then
an equivalent formulation for MC is

min Q • X
s.t. diag(X) = e

rank(X) = 1
X � 0, X ∈ Sn,

(5)

where Q = − 1
4 L. Therefore, the maximum cut can be produced by minimizing Q • X, then adding the

constant eTQe, and finally dividing by 4. The constraint rank(X) = 1 makes the problem unconvex. In the
next section we will relax the problem and remove the rank constraint.

3. Global Convergence for MC Relaxation Problem

The feasible set of (5), without the rank constraint, is given by P ∩ U. Hence the max-cut relaxation
problem is given by

min f (X) := X •Q
s.t. X ∈ P ∩U. (6)

The idea to solve the problem is to take account of the function f (X) by defining the hyperplane in Sn,

Lτ = {Y ∈ Sn : f (Y) = τ}

where τ is chosen such that

τ < inf
X∈K

f (X)

Suppose X0 is an arbitrary matrix in Sn and carry out the method of alternating projections between the
setsK and Lτ, as in Theorem 1.1.

Theorem 3.1. (Convergence theorem) If the distance betweenK and Lτ is attained, that is there exist X ∈ K and
Y ∈ Lτ such that ‖X−Y‖ = infU∈K ,V∈Lτ ‖U−V‖, then the sequences {Xk} and {Yk} generated by Theorem 1.1 converge
to X ∈ K and Y ∈ Lτ, respectively. Also, the sequence {Xk} converges to the solution of problem (5). Moreover, the
values of f (Xk) decrease strictly monotonically to the minimal value of f (X).

Proof. The convergence of the two sequences {Xk} and {Yk} follows from Theorem 1.1. Set X = lim
k→∞

Xk,Y =

lim
k→∞

Yk. Let X = PK (Y), then from the characterization of the projection map (3), we obtains

(X − Y) • (X − Z) ≤ 0, ∀ Z ∈ K . (7)
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Now Y = PLτ (X), where PLτ (.) is the projection onto Lτ which is easy to compute by

Y = PLτ (X) = X +
τ −Q • X
‖Q‖2

Q, (8)

and −Q is in the normal cone toK at X. So from (7),[
X −

(
X +

τ −Q • X
‖Q‖2

Q
)]
• [X − Z] ≤ 0 ∀ Z ∈ K

⇒ [(Q • X − τ) Q] • [X − Z] ≤ 0 ∀ Z ∈ K
⇒ (Q • X − τ)[Q • (X − Z)] ≤ 0, ∀ Z ∈ K .

But τ < min
Z∈K

Q • Z, hence Q • X − τ ≥ 0. Therefore,

Q • (X − Z) ≤ 0 ∀ Z ∈ K or Q • X ≤ Q • Z, ∀ Z ∈ K .

Thus X solves (6). Start with Xk and project Yk = PLτ (Xk) and Xk+1 = PK (Yk), hence we generate Yk, Xk+1,
and Yk+1. It follows from the unique character of proximity maps onto convex sets that unless X = Xk = Xk+1
we have

‖Xk+1 − Yk‖ < ‖Xk − Yk‖,

and unless Y = Yk = Yk+1, we have

‖Xk+1 − Yk+1‖ < ‖Xk+1 − Yk‖.

Thus

‖Xk+1 − Yk+1‖ < ‖Xk − Yk‖. (9)

But

Xk+1 − Yk+1 = Xk+1 −

[
Xk+1 +

τ −Q • Xk+1

‖Q‖2
Q
]

=
Q • Xk+1 − τ

‖Q‖2
Q.

Similarly,

Xk − Yk =
Q • Xk − τ

‖Q‖2
Q.

Hence from (9),

Q • Xk > Q • Xk+1,

thus establishing the strict monotonic decreasing in the function values.

Now, we explain algorithm for solving the Max Cut problem

Algorithm 3.2. Given any data matrix F, let F(0) = F

For k = 1, 2, ...
B(k+1) = PLr (F

(k))
For l = 1, 2, ...

A(0) = B(k+1)

A(l+1) = A(l) + PUPP(A(l)) − PP(A(l))
F(k+1) = PUPP(A(∗))

where A∗ is the solution for the inner iteration.
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The following theorem provides a necessary and sufficient condition for optimality in terms of the
normal cones of P andU.

Theorem 3.3. Let X ∈ K . Then X solves (6) if and only if −Q ∈ NK (X).

Proof. Suppose that X solves (6). Carry out one iteration of the alternating projection method obtaining
X = PK (PLτ (X)). If X , X, then by the convergence theorem, Q • X < Q • X. Since Q • X has minimal trace
inK , this is a contradiction and thus we have that X = PK (PLτ (X)). Recall

Y = PLτ (X) = X +
τ −Q • X
‖Q‖2

Q.

Then X is the nearest matrix in K to Y. Hence Y − X ∈ NK (X). But Y − X is a positive multiple of −Q, so
−Q ∈ NK (X).

Conversely, suppose that −Q ∈ NK (X). Projecting X onto Lτ results in a Y whose nearest matrix in K is
X. Thus X is a fixed point of Xk+1 = PK (PLτ (Xk)), and so X solves (6) by the convergence theorem.

We conclude by proving that the rate of convergence of the alternating projection method is very slow;
it is in fact sublinear [7].

Lemma 3.4. Let {Xk} be generated by the alternating projection method and let X be a solution to (6). Then

(Xk+1 − Xk) • (Xk+1 − X) ≤ 0.

Proof. Obviously,[
Xk+1 − PLτ (Xk)

]
• [Xk+1 − Z] ≤ 0 ∀ Z ∈ K .

So, putting Z = X, we have

0 ≥
[
Xk+1 − PLτ (Xk)

]
•

[
Xk+1 − X

]
=

[
Xk+1 −

(
Xk +

τ −Q • Xk

‖Q‖2
Q
)]
•

[
Xk+1 − X

]
=

(
Xk+1 − Xk) • (Xk+1 − X

)
+

[
Q • Xk − τ

‖Q‖2
Q
]
•

[
Xk+1 − X

]
.

Hence,

(Xk+1 − Xk) • (Xk+1 − X) ≤
Q • Xk − τ

‖Q‖2
Q • (X − Xk+1) ≤ 0.

Theorem 3.5. Let Xk and X be as in the above lemma. Then

‖Xk+1 − X‖ ≤ ‖Xk − X‖.

Proof.

‖Xk+1 − X‖2 = ‖Xk+1 − Xk + Xk − X‖2

= ‖Xk+1 − Xk‖
2 + ‖Xk − X‖2 + 2(Xk+1 − Xk) • (Xk − X)

= ‖Xk+1 − Xk‖
2 + ‖Xk − X‖2

+ 2(Xk+1 − Xk) •
[
(Xk+1 − X) + (Xk − Xk+1)

]
= ‖Xk+1 − Xk‖

2 + ‖Xk − X‖2 + 2(Xk+1 − Xk) • (Xk+1 − X)
+ 2(Xk+1 − Xk) • (Xk − Xk+1).
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By Lemma 7, the third term is nonpositive. Thus,

‖Xk+1 − X‖2 ≤‖Xk+1 − Xk‖
2 + ‖Xk − X‖2 + 2(Xk+1 − Xk) • (Xk − Xk+1)

<‖Xk − X‖2.

Unless Xk+1 = Xk, the inequality will decrease the function values in the distance to the optimal matrix.

4. Numerical Results

In this section numerical problems are obtained from the data given by [20]. These sets of problems are
taken from various souses, some are randomly generated instances, others come from a statistical physics
application. The size of these problems are n = 60, 80 and 100. We refer to [19] for a description of the data
set. Later, in this section, the Algorithm 3.2 was compared for several smaller interesting problems with
the result of Anjos [5].

There exist several methods for solving the Max Cut problems, see [17, 19] and the references therein,
some of these methods find it difficult to solve the unrelaxed problems, in all cases they failed to find the
optimal solutions except for view problems and if it does solve the problems it take a very long time. In
Algorithm 3.2 we find the global optimal solution for all the relaxed problems in much less time. The Max
Cut problems are always very hard to solve, Rendl et. al. [19] generated a random graph with edge weight
equals to 1 and edge probability equals to 1

2 on n = 25 vertices and they shows that the random Max Cut
instance much harder to maxims. Also smaller problem is not necessarily imply that the problem can be
solved easily.

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

25

tau

C
P

U
 −

 m
in

ut
es

g05_60.5
g05_80.5
g05_100.5
pm1s_80.5
pm1d_80.5
pm1s_100.5
pm1d_100.5
pw01_100.5
w01_100.5
w05_100.5
w09_100.5

Figure 1: Numerical comparisons for selected problems the CPU time with different τ.

In our tests we used CORE i7 with 256 GB of memory. Algorithm 3.2 is coded and implemented in
Matlab 7. We report aggregated results from 130 test problems and more than 100 hours of computing time.
The average computation time for all the problems is approximately 5 minutes. However, some problems



S. Al-Homidan / Filomat 31:3 (2017), 737–746 744

may take more time and some may solved within one minute. While solving unrelaxed problem may take
several hours.

0 1000 2000 3000 4000 5000 6000 7000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

tau

In
er

 It
er

at
io

ns

g05_60.5
g05_80.5
g05_100.5
pm1s_80.5
pm1d_80.5
pm1s_100.5
pm1d_100.5
pw01_100.5
w01_100.5
w05_100.5
w09_100.5

Figure 2: Numerical comparisons for selected problems the total number of inner iterations time with different τ.

Figure 1 and 2 investigates the effect of varying τ. It shows the outcome from Algorithm 3.2 for selected
problems. We choice problem number 5 from most of the sets for comparisons reasons. For each problem
we start with τ just satsify condition

τ < inf
X∈K

Q • X (10)

and then we increase τ by some numbers to investigate the best τ that give the minimum computed
time. From the figures, it is clear that small τ increases the total number of iterations performed by the
von Neumann algorithm, while a bigger τ decreases the total number of inner iterations and the number
of outer iterations which are very cheap to calculate using the projection (8) which costs approximately n
multiplications while one inner iteration costs approximately 2

3 n3 multiplications. Hence, it is recommended
to increase τ to be very large, much larger than the boundary of condition (10). It is also noticed that if the
condition (10) very close to bound then solving the problem mat take several hours, then increasing τ will
decrease the computational time exponentially. At some point we must stop otherwise the total number of
inner itaration will start incease again. Figure 1 shows for selected problems the CPU time with different τ.
Clearlly increasing τ up to some point, which is lowest point of the curve, give the best choice of τ. Table 1
give the best selected τ for each problem. Figure 2 shows the total number of inner iterations with different
τ.

Table 1 give the relaxed bound, the CPU time, the total of inner and outer iterations and the best selected
τ, we list 3 problems from each set. TNI gives the total number of inner iterations and NI the number of
outer iterations. For complete solutions of all 130 problems please see [3]. The bounds given in this paper
are not the optimal solutions for the unrelaxed problem but it will be an advantage to use them find a
method which uses our method to find the soluton of the unrelaxed problem.
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problem # f (X) NI TNI CPU τ
g05 60.0 275.02285402 34 26642 1.26 9000
g05 60.5 271.29420682 54 35044 1.5 9000
g05 60.9 274.9441569 42 36410 2.05 9000
g05 80.0 475.46030442 41 24879 2.43 11000
g05 80.5 473.75631548 69 31704 3.37 11000
g05 80.9 471.83089745 70 36722 3.56 11000
g05 100.0 731.75822963 85 43905 8.33 12500
g05 100.5 732.33068617 76 45881 8.58 12500
g05 100.9 731.19457271 72 33896 6.44 12500
pm1d 80.0 134.98668521 50 29607 3.16 1500
pm1d 80.5 145.25239459 62 42775 4.37 1500
pm1d 80.9 147.15689061 40 31181 3.22 1500
pm1d 100.0 202.69328708 65 37455 7.47 1500
pm1d 100.5 255.36017874 46 37802 7.28 1500
pm1d 100.9 235.33057099 63 34454 6.5 1500
pm1s 80.0 45.1439087 106 56299 6.05 400
pm1s 80.5 49.3473099 78 75106 8.59 400
pm1s 80.9 41.00091878 54 44397 4.5 400
pm1s 100.0 71.61682376 148 64768 12.58 400
pm1s 100.5 72.33169722 72 54991 11.09 400
pm1s 100.9 71.76003032 54 80579 16.23 1000
pw01 100.0 1062.71250132 130 87050 17.58 9500
pw01 100.5 1097.79280385 52 53646 10.48 9500
pw01 100.9 1057.10682942 69 60809 12.31 9500
pw05 100.0 4213.84641064 75 49255 9.46 70000
pw05 100.5 4186.73398514 67 33501 6.39 70000
pw05 100.9 4152.43711568 61 40825 8.19 70000
pw09 100.0 6902.98627894 49 37047 7.17 250000
pw09 100.5 6895.09994666 50 38752 7.37 250000
pw09 100.9 6932.00957882 45 34285 6.4 250000
w01 100.0 370.44261467 65 106449 21.43 4500
w01 100.5 368.57114436 63 74160 15.18 4500
w01 100.9 408.04063483 56 79108 15.55 4500
w05 100.0 959.02391716 48 53121 10.36 7500
w05 100.5 935.86156701 62 46196 9.06 7500
w05 100.9 1008.69531291 32 38845 7.37 7500
w09 100.0 1250.15107577 51 31510 6.41 8000
w09 100.5 1366.82281955 47 31198 6.32 8000
w09 100.9 1204.89027608 53 29245 5.43 8000

Table 1: Numerical comparisons for selected problems the total number of inner iterations time with different τ.

Graph −µ − f (X) TNI NI
C5 4 4.52254255 699 10
K5 6 6.25 72 4
A(G) 9.28 9.604 873 11
AW2

9 12 13.5 1119 14
Pet. (n = 10) 12 12.5 1345 26
Anjos (n = 12) 88 90.3919 125053 1513

Table 2: Relaxed and unrelaxed numerical solutions for some small problems.
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Now we compare several interesting problems with the result of Anjos [5]. The relaxed problem (6) is
solved using Matlab 7. The results are summarized in Table 2 and we find that it is identical to the result
in [5] for f (X). If τ is chosen to satsify the condition 10, the sets K and Lτ are disjoint. It is recommended
to increase τ to be close to the boundary of the condition (10). Therefore from (10), for the small problems
in Table 2, the choice τ = −100 is recommended. In Table 2, µ gives the optimal value of the unrelaxed
problem (5).

The test problems in Table 2 are as follows:

1. The first line of results corresponds to solve a 5-cycle with unit edge-weights.
2. The second line corresponds to the complete graph on 5 vertices with unit edge-weights.
3. The third line corresponds to the graph defined by the weighted adjacency matrix given by [5]:

A(G) =


0 1.52 1.52 1.52 0.16

1.52 0 1.60 1.60 1.52
1.52 1.60 0 1.60 1.52
1.52 1.60 1.60 0 1.52
0.16 1.52 1.52 152. 0

 .
4. The fourth line corresponds to the graph antiweb AW2

9 with unit edge weights.
5. The fifth line corresponds to a gragh with 10 vertices; it is the Petersen graph with unit edge-weights.
6. The sixth is a graph with 12 vertices given by [5].
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