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Abstract. In this paper, we study two parametric weak and strong vector quasivariational inequality
problems of the Minty type. The stability properties of the exact solution sets and approximate solution
sets for these problems such as the upper semicontinuity, the lower semicontinuity, the Hausdorff lower
semicontinuity, the continuity and the Hausdorff continuity are obtained. The results presented in the
paper improve and extend the main results in the literature.

1. Introduction and Preliminaries

A vector variational inequality problem was first introduced and studied by Giannessi [15] in the setting
of finite-dimensional Euclidean spaces. Since then, many authors have investigated vector variational
inequality problems in abstract spaces, see [11–14, 18, 19, 23–25, 27–31] and the references therein. Semi-
continuity of the solution sets for parametric vector variational inequality problems is an important topic in
optimization theory and applications. Recently, the semicontinuity, especially the upper semicontinuity, the
lower semicontinuity and the Hausdorff lower semicontinuity of the solution sets for parametric optimiza-
tion problems [22, 33], parametric vector variational inequality problems [12, 13, 18, 21, 23–25, 27, 30, 31]
and parametric vector quasiequilibrium problems [1–8, 16, 17, 20, 26, 32] have been established by many
authors in different ways.

In 2007, Khanh and Luu [24] established the sufficient conditions for the exact solution sets and approx-
imate solution sets of parametric scalar quasivariational inequality problems with the stability properties
such as the upper semicontinuity and lower semicontinuity. Very recently, Lalitha and Bhatia [25] considered
a parametric scalar quasivariational inequality problem of the Minty type, and the upper semicontinuity,
lower semicontinuity, Hausdorff lower semicontinuity of the exact solution sets and approximate solution
sets for this problem were also obtained.
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Motivated by research works mentioned above, in this paper, we introduce two kinds of parametric
weak and strong generalized vector quasivariational inequality problems of the Minty type in Hausdorff
topological vector spaces. We also discuss the upper semicontinuity, lower semicontinuity, Hausdorff lower
semicontinuity, continuity and Hausdorff continuity of the exact solution sets and approximate solution
sets for these problems. Our results are new and extend corresponding results in the literature.

Let X,Y be two Hausdorff topological vector spaces and Γ,Λ be two topological vector spaces. Let C ⊂ Y
be a closed, convex and pointed cone with intC , ∅. The cone C induces a partial ordering in Y defined by

y ≥ x⇔ y − x ∈ C, ∀x, y ∈ Y,
y � x⇔ y − x < C, ∀x, y ∈ Y,
y < x⇔ y − x ∈ −intC, ∀x,y ∈ Y,
y ≮ x⇔ y − x < −intC, ∀x,y ∈ Y,

where intC denotes the interior of C.
Let L(X,Y) be the space of all linear continuous operators from X into Y, and A ⊂ X be a nonempty

subset. Let K1 : A × Γ → 2A,K2 : A × Γ → 2A and T : A × Γ → 2L(X,Y) be set-valued mappings, and let
H : L(X,Y) → L(X,Y), ψ : A × A × Λ → A be continuous single-valued mappings. Denoted by 〈z, x〉 the
value of a linear operator z ∈ L(X; Y) at x ∈ X, we always assume that 〈., .〉 is continuous.

Now we adopt the following notations (see [4, 16, 17]). Letters w, m and s are used for weak, middle
and strong, respectively, kinds of considered problems. For subsets M and N under consideration we adopt
the notations

(u, v) w M ×N means ∀u ∈M,∃v ∈ N,
(u, v) m M ×N means ∃v ∈ N,∀u ∈M,
(u, v) s M ×N means ∀u ∈M,∀v ∈ N

(u, v) w̄ M ×N means ∃u ∈M,∀v ∈ N and similarly for m̄, s̄.

Let α ∈ {w, m, s}, ᾱ ∈ {w̄, m̄, s̄} and for γ ∈ Γ, λ ∈ Λ, we consider the following parametric weak and
strong generalized vector quasivariational inequality problems of the Minty type (in short, (WMQVIP) and
(SMQVIP)), respectively.

(WMQVIP) Find x̄ ∈ K1(x̄, γ) such that (y, z)αK2(x̄, γ) × T(y, γ) satisfying

〈H(z), ψ(y, x̄, λ)〉 ≮ 0.

(SMQVIP) Find x̄ ∈ K1(x̄, γ) such that (y, z)αK2(x̄, γ) × T(y, γ) satisfying

〈H(z), ψ(y, x̄, λ)〉 ≥ 0.

For each γ ∈ Γ, λ ∈ Λ, and let E(γ) := {x ∈ A | x ∈ K1(x, γ)}. We denote Ψα(γ, λ) and Ξα(γ, λ) are solution
sets of (WMQVIP) and (SMQVIP), respectively.

Throughout the article, we assume that Ψα(γ, λ) , ∅ and Ξα(γ, λ) , ∅ for each (γ, λ) in a neighborhood
of (γ0, λ0) ∈ Γ ×Λ.

Next, we recall some basic definitions and their properties.
Let X and Z be two topological vector spaces and G : X→ 2Z be a multifunction.

(i) G is said to be lower semicontinuous (lsc) at x0 if G(x0) ∩ U , ∅ for some open set U ⊆ Z implies the
existence of a neighborhood V of x0 such that G(x) ∩U , ∅,∀x ∈ V.

(ii) G is said to be upper semicontinuous (usc) at x0 if for each open set U ⊇ G(x0), there is a neighborhood
V of x0 such that U ⊇ G(x),∀x ∈ V.

(iii) G is said to be Hausdorff upper semicontinuous (H-usc) at x0 if for each neighborhood U of the origin in
Z, there exists a neighborhood V of x0 such that, G(x) ⊆ G(x0) + U,∀x ∈ V.

(iv) G is said to be Hausdorff upper semicontinuous (H-lsc) at x0 if for each neighborhood U of the origin in
Z, there exists a neighborhood V of x0 such that G(x0) ⊆ G(x) + U,∀x ∈ V.
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(v) G is said to be continuous at x0 if it is both lsc and usc at x0 and to be H-continuous at x0 if it is both
H-lsc and H-usc at x0.

Lemma 1.1. ([9, 10]). Let X and Z be two topological vector spaces and G : X→ 2Z be a multifunction.

(i) If G is usc at x0, then G is H-usc at x0. Conversely if G is H-usc at x0 and if G(x0) is compact, then G is usc at
x0;

(ii) If G is H-lsc at x0 then G is lsc at x0. The converse is true if G(x0) is compact;
(iii) If Z is compact and G is closed at x0, then G is usc at x0;
(iv) If G is usc at x0 and G(x0) is closed, then G is closed at x0;
(v) If G has compact values, then G is usc at x0 if and only if, for each net {xα} ⊆ X which converges to x0 and for

each net {yα} ⊆ G(xα), there are y0 ∈ G(x0) and a subnet {yβ} of {yα} such that yβ → y0.

2. Upper Semicontinuity of Solution Maps

In this section, we discuss the upper semicontinuity of the exact solution sets and approximate solution
sets for the problems (WMQVIP) and (SMQVIP).

Theorem 2.1. Assume for the problem (WMQVIP) that

(i) E is usc at γ0 and E(γ0) is compact;
(ii) in K1(A,Γ) × {γ0}, K2 is lsc;

(iii) T(y, .) is usc with compact values at γ0 if α = w (or α = m), and T is lsc in K2(K1(A,Γ),Γ) × {γ0} if α = s.

Then, Ψα is usc at (γ0, λ0). Moreover, Ψα(γ0, λ0) is compact and Ψα is closed at (γ0, λ0).

Proof. Since α = {w,m, s}, we have in fact three cases. Since the proof techniques are similar, we demonstrate
only the cases α = s. We first prove that Ψs is upper semicontinuous at (γ0, λ0). Indeed, suppose to
the contrary that Ψα is not usc at (γ0, λ0). Then there exist an open superset U of Ψs(γ0, λ0) and a net
{(γn, λn)} converging to {(γ0, λ0)} such that, for each n, there is xn ∈ Ψs(γn, λn), xn < U. Since E is usc
with compact values at γ0, we can assume that xn tends to x0 for some x0 ∈ E(γ0). If x0 < Ψs(γ0, λ0),
∃y0 ∈ K2(x0, γ0),∃z0 ∈ T(y0, γ0) such that

〈H(z0), ψ(y0, x0, λ0)〉 < 0.

By the lower semicontinuity of K2 at (x0, γ0), there exists yn ∈ K2(xn, γn) such that yn → y0. By the lower
semicontinuity of T at (y0, γ0), there exists zn ∈ T(yn, γn) such that zn → z0. Since xn ∈ Ψs(γn, λn), we have

〈H(zn), ψ(yn, xn, λn)〉 ≮ 0. (2.1)

On the other hand, by the continuity of ψ,H and 〈., .〉, it follows from (2.1) that

〈H(z0), ψ(y0, x0, λ0)〉 ≮ 0,

it is impossible. Hence, x0 belongs to Ψs(γ0, λ0) ⊆ U, which is again a contradiction, since xn < U, for all n.
Therefore, Ψs is usc at (γ0, λ0).

Now we prove that Ψs(γ0, λ0) is compact by checking its closedness. Let xn ∈ Ψs(γ0, λ0) converge to x0.
If x0 < Ψs(γ0, λ0), there exist y0 ∈ K2(x0, γ0) and z0 ∈ T(y0, γ0) such that

〈H(z0), ψ(y0, x0, λ0)〉 < 0. (2.2)

Proceeding similarly as before, we arrive at a contradiction to (2.2). Hence x0 ∈ Ψs(γ0, λ0). Therefore,
Ψs(γ0, λ0) is closed. The compactness of E(γ0) derives that of Ψs(γ0, λ0). By the condition (iv) of Lemma
1.1, it follows that Ψs is closed at (γ0, λ0). And so the proof is completed. �

The following example shows that the upper semicontinuity and the compactness of E are essential.
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Example 2.2. Let A = B = X = Y = R, Γ = Λ = [0, 1], C = R+, γ0 = 0, H be the identity map, K1,K2 :
A × Γ→ 2A,T : A × Γ→ 2L(X,Y) and ψ : A × A × Γ→ A be defined by

K1(x, γ) = (−γ − 1, γ]

ψ(y, x, γ) = {γ2 + γ + 2},

T(y, γ) = {
1

2γ+2 },

K2(x, γ) = [0, eγ
2+1],

Then, we have E(0) = (−1, 0] and E(γ) = (−γ − 1, γ],∀γ ∈ (0, 1]. We show that assumptions (ii) and (iii) of
Theorem 2.1 are fulfilled. But Ψα is neither usc nor closed at (0, 0). The reason is that E is not usc at 0 and
E(0) is not compact. In fact,

Ψα(γ, λ) =

(−1, 0], if γ = 0,
(−γ − 1, γ], if γ ∈ (0, 1].

The following example shows that all assumptions of Theorem 2.1 are satisfied.

Example 2.3. Let X = Y = R,A = B = [0, 3], Γ = Λ = [0, 1], C = R+, γ0 = 0, H be the identity map,
K1,K2 : A × Γ→ 2A,T : A × Γ→ 2L(X,Y) and ψ : A × A × Γ→ A be defined by

K1(x, γ) = K2(x, γ) = [0, 1],

ψ(y, x, γ) = {γ2 + γ},

T(y, γ) = {
1

ecos4 γ+sin2 γ+2
}.

We see that the all assumptions of Theorem 2.1 are satisfied. So, Ψα is both usc and closed at (0, 0). In fact,
Ψα(γ, λ) = [0, 1],∀γ ∈ [0, 1].

Theorem 2.4. Assume for the problem (SMQVIP) that
(i) E is usc at γ0 and E(γ0) is compact;

(ii) in K1(A,Γ) × {γ0}, K2 is lsc;
(iii) T(y, .) is usc with compact values at γ0 if α = w (or α = m), and T is lsc in K2(K1(A,Γ),Γ) × {γ0} if α = s.

Then, Ξα is usc at (γ0, λ0). Moreover, Ξα(γ0, λ0) is compact and Ξα is closed at (γ0, λ0).

Proof. We omit the proof since the technique is similar as that for Theorem 2.1 with suitable modifications.�

Remark 2.5. In the special case, if H is the identity map, Λ = Γ,C = R+, α = s andψ(y, x, γ) = y−x,K1(x, γ) =
K(x, γ) ∩ A,K2(x, γ) = K(x, γ) with K : A × Γ → 2A. Then, the problems (WMQVIP) and (SMQVIP) reduce
to the problem (MVI(γ)) studied in [25]. In this special case, Theorem 3.1 in [25] is a particular case of
Theorems 2.1 and 2.4.

The following example shows a case where the assumed compactness in Theorems 3.1 and 3.2 of [25] is
violated but the assumptions of Theorems 2.1 and 2.4 are fulfilled.

Example 2.6. Let X = Y = R, Λ = Γ = [0, 1], C = R+,A = B = [0, 3), γ0 = 0, H be the identity map,
K1 = K2 = K : A × Γ→ 2A,T : A × Γ→ 2L(X,Y) and ψ : A × A × Γ→ A be defined by

K1(x, γ) = K2(x, γ) = K(x, γ) = [
1
2
,

3
2

],

ψ(y, x, γ) = {x − y},
T(y, γ) = {1}.

It is clear that the assumptions of Theorems 2.1 and 2.4 are fulfilled, and hence Ψα and Ξα are usc and
closed at (0, 0), although A is not compact. In fact, Ψα(γ, λ) = Ξα(γ, λ) = { 32 },∀γ ∈ [0, 1].
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Next, we consider the approximate solution sets for the problems (WMQVIP) and (SMQVIP).
For each γ ∈ Γ, λ ∈ Λ and ε ∈ C. We denote the approximate solution sets of (WMQVIP) and (SMQVIP)

by Ψ̃α(γ, λ, ε) and Ξ̃α(γ, λ, ε), respectively, i.e.,

Ψ̃α(γ, λ, ε) := {x̄ ∈ E(γ) | (y, z)αK2(x̄, γ) × T(y, γ), 〈H(z), ψ(y, x̄, λ)〉 + ε ≮ 0},

Ξ̃α(γ, λ, ε) := {x̄ ∈ E(γ) | (y, z)αK2(x̄, γ) × T(y, γ), 〈H(z), ψ(y, x̄, λ)〉 + ε ≥ 0}.

Theorem 2.7. Assume for the problem (WMQVIP) that all conditions in Theorem 2.1 are satisfied.
Then, Ψ̃α is usc at (γ0, λ0, ε). Moreover, Ψ̃α(γ0, λ0, ε) is compact and Ψ̃α is closed at (γ0, λ0, ε), for all ε ∈ C.

Proof. We consider only the cases α = s. We first prove that Ψ̃s is upper semicontinuous at (γ0, λ0, ε).
Suppose to the contrary that Ψ̃s is not usc at (γ0, λ0, ε). Then the are an open superset V of Ψ̃s(γ0, λ0, ε) and
a net {(γn, λn, εn)} converging to {(γ0, λ0, ε)} in Γ × Λ × C such that, for each n, there is xn ∈ Ψ̃s(γn, λn, εn),
xn < V . Since E is usc with compact values at γ0, we can assume that xn tends to x0 for some x0 ∈ E(γ0). If
x0 < Ψ̃s(γ0, λ0, ε), ∃y0 ∈ K2(x0, γ0),∃z0 ∈ T(y0, γ0) such that

〈H(z0), ψ(y0, x0, λ0)〉 + ε < 0.

By the lower semicontinuity of K2,T at (x0, γ0) and (y0, γ0), ∀y0 ∈ K2(x0, γ0),∀z0 ∈ T(y0, γ0) there exist
yn ∈ K2(xn, γn), zn ∈ T(yn, γn) such that yn → y0, zn → z0. Since xn ∈ Ψ̃s(γn, λn, εn), we have

〈H(zn), ψ(yn, xn, λn)〉 + εn ≮ 0. (2.3)

Let id : C→ C be the identity map. By the continuity of ψ,H and 〈., .〉, it follows that 〈., .〉+ id is continuous.
So, (2.3) implies that

〈H(z0), ψ(y0, x0, λ0)〉 + ε ≮ 0,

it is impossible. Hence, x0 belongs to Ψ̃s(γ0, λ0, ε) ⊆ V, which is again a contradiction, since xn < V, for all
n. Therefore, Ψ̃s is usc at (γ0, λ0, ε).

Now we prove that Ψ̃s(γ0, λ0, ε) is compact and Ψ̃s is closed at (γ0, λ0, ε). By using the argument is the
same as in Theorem 2.1, the proof is completed. �

The following example shows that the lower semicontinuity assumption of K2 in Theorem 2.7 is essential.

Example 2.8. Let A = B = X = Y = R, Γ = Λ = [0, 1], C = R+, ε ∈ R+, γ0 = 0, H be the identity map,
K1,K2 : A × Γ→ 2A,T : A × Γ→ 2L(X,Y) and ψ : A × A ×Λ→ A be defined by

K2(x, γ) =

{−5, 0, 5}, if γ = 0,
{0, 5}, if γ , 0,

ψ(y, x, γ) = {x + y + γ},

T(y, γ) = {1},
K1(x, γ) = [0, 5],

Then E(γ) = [0, 5],∀γ ∈ [0, 1]. Hence, E is usc at 0 and E(0) is compact, assumption (iii) is satisfied. For each
ε ≥ 0, we have

Ψ̃α(γ, λ, ε) =

[5 − ε, 5] ∩ [0, 5], if γ = 0,
[0, 5], if γ ∈ (0, 1].

Therefore, Ψ̃α is not usc at (0, 0, ε). The reason is that K2 is not lsc at (x, 0).
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By using similar argument as in the proof of Theorem 2.7, we can prove the following result.

Theorem 2.9. Assume for the problem (SMQVIP) that all conditions in Theorem 2.4 are satisfied.
Then, Ξ̃α is usc at (γ0, λ0, ε). Moreover, Ξ̃α(γ0, λ0, ε) is compact and Ξ̃α is closed at (γ0, λ0, ε), for all ε ∈ C.

Remark 2.10. Note that, our Theorems 2.7 and 2.9 are different from Theorems 3.4 and 3.5 in [25]. However,
if we let ε is a fixed non-negative real number together with Remark 2.5 (i). Then, Theorems 3.4 and 3.5 in
[25] are particular cases of Theorems 2.7 and 2.9. The following example shows that in this special case, the
assumptions of Theorems 2.7 and 2.9 are satisfied, but Theorems 3.4 and 3.5 in [25] cannot be applied.

Example 2.11. Let X = Y = R,A = B = [0, 2), Γ = Λ = [0, 1], C = R+, γ0 = 0, and let ε ≥ 0 be fixed, H be the
identity map, K1,K2 : A × Γ→ 2A,T : A × Γ→ 2L(X,Y) and ψ : A × A × Γ→ A be defined by

K1(x, γ) = K2(x, γ) = [0, 1],
ψ(y, x, γ) = y − x − γ,
T(y, γ) = {1},

Then E(γ) = [0, 1],∀γ ∈ [0, 1]. We see that the assumptions of Theorems 2.7 and 2.9 are satisfied. So, Ψ̃α and
Ξ̃α are both usc and closed at (0, 0, ε). But Theorems 3.4 and 3.5 in [25] cannot be applied. The reason is A
is not compact. In fact, for a fixed ε ≥ 0, we have

Ψ̃α(γ, λ, ε) = Ξ̃α(γ, λ, ε) =

[0, ε] ∩ [0, 1], if γ = 0,
[0, ε − γ] ∩ [0, 1], if ε ≥ γ > 0.

3. Lower Semicontinuity of Solution Maps

In this section, we discuss the lower semicontinuity and the Hausdorff lower semicontinuity of the exact
solution sets and approximate solution sets for the problems (WMQVIP) and (SMQVIP).

Theorem 3.1. Assume for the problem (WMQVIP) that

(i) E is lsc at γ0;
(ii) ∀x0 ∈ K1(x0, γ0), ∀(xn, γn, λn)→ (x0, γ0, λ0) and

(y, z)αK2(x0, γ0) × T(y, γ0) satisfying 〈H(z), ψ(y, x0, λ0)〉 ≮ 0

implies that there exists a positive integer n, such that

(y, z)αK2(xn, γn) × T(y, γn) satisfying 〈H(z), ψ(y, xn, λn)〉 ≮ 0.

Then Ψα is lsc at (γ0, λ0).

Proof. Similar arguments can be applied to three cases. We present only the proof for the cases where
α = s. Suppose that Ψα is not lsc at (γ0, λ0). Then there exist x0 ∈ Ψs(γ0, λ0) and a net {(γn, λn)} converging
to (γ0, λ0) such that, for all x′n ∈ Ψs(γn, λn), the net {x′n} cannot converge to x0. Since E is lsc at γ0, there is
xn ∈ E(γn), xn → x0. By the above contradiction assumption, without loss of generality, we can assume that
xn < Ψs(γn, λn), for all n, i.e., ∃yn ∈ K2(xn, γn),∃zn ∈ T(yn, γn)

〈H(zn), ψ(yn, xn, λn)〉 < 0. (3.1)

Since x0 ∈ Ψs(γ0, λ0), ∀z ∈ T(y, γ0),∀y ∈ K2(x0, γ0), we have

〈H(z), ψ(y, x0, λ0)〉 ≮ 0.
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Since (xn, γn, λn)→ (x0, γ0, λ0) and by the condition (ii), there exists n, such that ∀z ∈ T(y, γn),∀y ∈ K2(xn, γn)

〈H(z), ψ(y, xn, λn)〉 ≮ 0.

which contradicts (3.1). Therefore, Ψs is lsc at (γ0, λ0). �

The following example shows that the lower semicontinuity of E is essential.

Example 3.2. Let X = Y = R,A = B = [0, 1], Γ = Λ = [0, 1], C = R+, γ0 = 0, H be the identity map,
K1,K2 : A × Γ→ 2A,T : A × Γ→ 2L(X,Y) and ψ : A × A ×Λ→ A be defined by

K1(x, γ) =

{− 1
2 , 0,

1
2 }, if γ = 0,

{0, 1
2 }, if γ , 0,

ψ(y, x, λ) = γ + cos4(γ) + sin2(γ),

T(y, γ) = {3γ
2+3
},

K2(x, γ) = [0,
1
2

],

Then, K2 is usc with compact values in A × {γ0} and the assumptions (ii) and (iii) of Theorem 3.1 are
fulfilled. But Ψα is not lsc at (0, 0). The reason is that E is not lsc at 0. In fact,

Ψα(γ, λ) =

{0, 1
2 }, if γ ∈ (0, 1],

{−
1
2 , 0,

1
2 }, if γ = 0.

The following example shows that all assumptions of Theorem 3.1 are satisfied.

Example 3.3. Let A = B = X = Y = R, Γ = Λ = [0, 1], C = R+, γ0 = 0, H be the identity map, K1,K2 :
A × Γ→ 2A,T : A × Γ→ 2L(X,Y) and ψ : A × A ×Λ→ A be defined by

K1(x, γ) =

[0, 1], if γ = 0,
[−1, 2], if γ , 0,

ψ(y, x, γ) = {γ + sin4(γ) + cos2(γ)},

T(y, γ) = {
1

2γ2+2
},

K2(x, γ) = [0, 1].

We have E(γ) = [−1, 2] for all γ ∈ (0, 1] and E(0) = [0, 1]. It is not hard to see that (i)-(iii) in Theorem 3.9 are
satisfied and, according to Theorem 3.1, Ψα is lsc at (0, 0). In fact, Ψα(γ, λ) = [−1, 2] for all γ ∈ (0, 1] and
Ψα(0, 0) = [0, 1]).

Theorem 3.4. Assume for the problem (SMQVIP) that

(i) E is lsc at γ0;
(ii) ∀x0 ∈ K1(x0, γ0), ∀(xn, γn, λn)→ (x0, γ0, λ0) and

(y, z)αK2(x0, γ0) × T(y, γ0) satisfying 〈H(z), ψ(y, x0, λ0)〉 ≥ 0

implies that there exists a positive integer n, such that

(y, z)αK2(xn, γn) × T(y, γn) satisfying 〈H(z), ψ(y, xn, λn)〉 ≥ 0.

Then Ξα is lsc at (γ0, λ0).
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Proof. We omit the proof since the technique is similar as that for Theorem 3.1 with suitable modifications.�

Next, we study the Hausdorff lower semicontinuity of the exact solution sets for the problems (WMQVIP)
and (SMQVIP).

Theorem 3.5. Impose the assumptions of Theorem 3.1 and the following additional conditions:

(iii) K2 is lsc in K1(A,Γ) × {γ0} and E(γ0) is compact;
(iv) T(y, .) is usc with compact values at γ0 if α = w (or α = m), and T is lsc in K2(K1(A,Γ),Γ) × {γ0} if α = s.

Then Ψα is H-lsc at (γ0, λ0).

Proof. Similar arguments can be applied to three cases. We consider only the cases α = s. Using the similar
argument as in the last part of proof of Theorem 2.1, we have Ψs(γ0, λ0) is compact. Appling Theorem 3.1,
we obtain the lower semicontinuity property of Ψs. The Hausdoff lower semicontinuity of Ψs is derived
directly from condition (ii) of Lemma 1.1. �

The following shows that the compactness of E in Theorem 3.5 is essential.

Example 3.6. Let A = B = X = R2,Y = R, Γ = Λ = [0, 1], C = R+, γ0 = 0, H be the identity map,
K1,K2 : A × Γ→ 2A,T : A × Γ→ 2L(X,Y) and ψ : A × A ×Λ→ A be defined by

K1(x, γ) = K2(x, γ) = {(x1, λx4
1)}, x = (x1, x2) ∈ R2,

ψ(y, x, γ) = {2γ4 + sin2(γ)},

T(y, γ) = {21+γ4+cos4(γ)
}.

We have E(0) = {x ∈ R2
| x2 = 0} and E(γ) = {x ∈ R2

| x2 = γx4
1)},∀γ ∈ (0, 1]. It is easy to see that all

assumptions of Theorem 3.5 are satisfied, but the compactness of E(0) is not satisfied. Direct computations
give Ψα(0, 0) = {(x1, x2) ∈ R2

| x2 = 0} and Ψα(γ, λ) = {x ∈ R2
| x2 = γx4

1)},∀γ ∈ (0, 1] is not Hausdorff lower
semicontinuous at (0, 0).

Using the similar argument as in the proof of Theorem 3.5, we obtain the following result.

Theorem 3.7. Impose the assumptions of Theorem 3.4 and the following additional conditions:

(iii) K2 is lsc in K1(A,Γ) × {γ0} and E(γ0) is compact;
(iv) T(y, .) is usc with compact values at γ0 if α = w (or α = m), and T is lsc in K2(K1(A,Γ),Γ) × {γ0} if α = s.

Then Ξα is H-lsc at (γ0, λ0).

Remark 3.8. In the special case studied in Remark 2.5, Theorems 3.1 and 3.4 extend Theorem 4.1 in [25].
Theorems 3.5 and 3.7 extend Corollary 4.1 in [25].

Theorem 3.9. Suppose that all conditions in Theorems 2.1 and 3.1 (Theorem 3.5, respectively) are satisfied. Then,
Ψα is both continuous (H-continuous, respectively) and closed at (γ0, λ0).

Theorem 3.10. Suppose that all conditions in Theorems 2.4 and 3.4 (Theorem 3.7, respectively) are satisfied. Then,
Ξα is both continuous (H-continuous, respectively) and closed at (γ0, λ0).

Now, we study the semicontinuity of the approximate solution sets for the problems (WMQVIP) and
(SMQVIP).

Theorem 3.11. Assume for the problem (WMQVIP) that

(i) E is lsc at γ0;
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(ii) ∀x0 ∈ K1(x0, γ0), ∀(xn, γn, λn, εn)→ (x0, γ0, λ0, ε) and

(y, z)αK2(x0, γ0) × T(y, γ0) satisfying 〈H(z), ψ(y, x0, λ0)〉 + ε ≮ 0

implies that there exists a positive integer n, such that

(y, z)αK2(xn, γn) × T(y, γn) satisfying 〈H(z), ψ(y, xn, λn)〉 + εn ≮ 0.

Then Ψ̃α is lsc at (γ0, λ0, ε), for all ε ∈ intC.

Proof. We present only the proof for the cases where α = s. Suppose that Ψ̃α is not lsc at (γ0, λ0, ε). Then,
there exist x0 ∈ Ψ̃s(γ0, λ0, ε) and a net {(γn, λn, εn)} converging to (γ0, λ0, ε) such that, for all x′n ∈ Ψ̃s(γn, λn, εn),
the net {x′n}does not converge to x0. Since E is lsc atγ0, there is xn ∈ E(γn), xn → x0. By the above contradiction
assumption, we conclude that xn < Ψ̃s(γn, λn, εn), for all n, i.e., ∃yn ∈ K2(xn, γn),∃zn ∈ T(yn, γn)

〈H(zn), ψ(yn, xn, λn)〉 + εn < 0. (3.2)

Since x0 ∈ Ψ̃s(γ0, λ0, ε), ∀z ∈ T(y, γ0),∀y ∈ K2(x0, γ0), we have

〈H(z), ψ(y, x0, λ0)〉 + ε ≮ 0.

Since (xn, γn, λn, εn) → (x0, γ0, λ0, ε) and by the condition (ii), there exists n, such that ∀z ∈ T(y, γn),∀y ∈
K2(xn, γn)

〈H(z), ψ(y, xn, λn)〉 + εn ≮ 0.

which contradicts (3.2). Therefore, Ψ̃s is lsc at (γ0, λ0, ε). �

The following example shows that all assumptions of Theorem 3.11 are satisfied.

Example 3.12. Let A = B = X = Y = [0, 1], Γ = Λ = [0, 1], C = R+, ε ∈ intR+, γ0 = 0, H be the identity map,
K1,K2 : A × Γ→ 2A,T : A × Γ→ 2L(X,Y) and ψ : A × A ×Λ→ A be defined by

K1(x, γ) = K2(x, γ) = [0, 1],

ψ(y, x, γ) = {22γ−ε2
−cos2(γ)

},

T(y, γ) = {
1

eγ+1 }.

We have E(γ) = [0, 1] for all γ ∈ [0, 1]. We see that the assumptions of Theorem 3.11 are satisfied. So, Ψ̃α is
lsc at (0, 0, ε). In fact, Ψ̃α(γ, λ, ε) = [0, 1] for all γ ∈ [0, 1].

By using similar argument as in the proof of Theorem 3.11, we can prove the following result.

Theorem 3.13. Assume for the problem (SMQVIP) that

(i) E is lsc at γ0;
(ii) ∀x0 ∈ K1(x0, γ0), ∀(xn, γn, λn, εn)→ (x0, γ0, λ0, ε) and

(y, z)αK2(x0, γ0) × T(y, γ0) satisfying 〈H(z), ψ(y, x0, λ0)〉 + ε ≥ 0

implies that there exists a positive integer n, such that

(y, z)αK2(xn, γn) × T(y, γn) satisfying 〈H(z), ψ(y, xn, λn)〉 + εn ≥ 0.
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Then Ξ̃α is lsc at (γ0, λ0, ε), for all ε ∈ intC.

Theorem 3.14. Impose the assumptions of Theorem 3.11 and the following additional conditions:

(iii) K2 is lsc in K1(A,Γ) × {γ0} and E(γ0) is compact;
(iv) T(y, .) is usc with compact values at γ0 if α = w (or α = m), and T is lsc in K2(K1(A,Γ),Γ) × {γ0} if α = s.

Then Ψ̃α is H-lsc at (γ0, λ0, ε), for all ε ∈ intC.

Proof. Similar arguments can be applied to three cases. We consider only the cases α = s. The similar argu-
ment as in the last part of proof of Theorem 2.7, we also have Ψ̃s(γ0, λ0) is compact. From the Theorem 3.11
implies the lower semicontinuity of Ψ̃s. The Hausdoff lower semicontinuity of Ψ̃s is direct from condition
(ii) of Lemma 1.1. �

The following example shows that all assumptions of Theorem 3.14 are satisfied.

Example 3.15. Let A = B = X = Y = R, Γ = Λ = [0, 1], C = R+, ε ∈ intR+, γ0 = 0, H be the identity map,
K1,K2 : A × Γ→ 2A,T : A × Γ→ 2L(X,Y) and ψ : A ×Λ→ A be defined by

K1(x, γ) =

[ 1
2 , 1], if γ = 0,

[0, 2], if γ , 0,

ψ(y, x, γ) = {γ2 + 2γ + 1 + ε2
− ε + cos2(γ)},

T(y, γ) = {1},
K2(x, γ) = [0, 1].

We have E(0) = [ 1
2 , 1] and E(γ) = [0, 2] for all γ ∈ (0, 1]. It is easy to see that the assumptions of Theorem

3.14 are satisfied. So, Ψ̃α is Hausdorff lower semicontinuous at (0, 0, ε). In fact, Ψ̃α(0, 0, ε) = [ 1
2 , 1] and

Ψ̃α(γ, λ, ε) = [0, 2] for all γ ∈ (0, 1].

Similarly, we have the following result.

Theorem 3.16. Impose the assumptions of Theorem 3.13 and the following additional conditions:

(iii) K2 is lsc in K1(A,Γ) × {γ0} and E(γ0) is compact;
(iv) T(y, .) is usc with compact values at γ0 if α = w (or α = m), and T is lsc in K2(K1(A,Γ),Γ) × {γ0} if α = s.

Then Ξ̃α is H-lsc at (γ0, λ0, ε), for all ε ∈ intC.

Remark 3.17. In the special case considered in Remark 2.5, Theorems 3.11 and 3.13 are different from
Theorem 4.5 in [25]. Moreover, even for this special case, Theorems 3.9, 3.10, 3.14 and 3.16 are new.
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