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Abstract. We define the non-exterior square graph Γ̂G which is a graph associated to a non-cyclic finite
group with the vertex set G \ Ẑ(G), where Ẑ(G) denotes the exterior centre of G, and two vertices x and y
are joined whenever x ∧ y , 1, where ∧ denotes the operator of non-abelian exterior square. In this paper,
we investigate how the group structure can be affected by the planarity, completeness and regularity of this
graph.

1. Preliminaries and Known Results

There is a wide history which associate a graph to a group or a ring. All of them investigate the algebraic
structure of the group using the associated graph. Neumann, Marchionna Tibiletti and Segev in [13, 14, 20]
defined the commuting graph of a group G, whose vertices are the non-identity elements of G and two
vertices are connected provided that their commutator is trivial. In the other direction, some authors tried
to obtain results concerning graphs associated to conjugacy classes of groups (see Bertram [3]). Abdollahi et
al. [1] assigned the non-commuting graph ΓG to an arbitrary non-abelian group G by the vertex set G \Z(G)
and two elements join by an edge whenever they do not commute. We are trying to use these ideas for
another notion of commuting elements of the group. At first let us recall some concepts which are useful.
The non-abelian exterior square G ∧ G of a group G is the group generated by the symbols 1 ∧ h subject to
the relations

11′ ∧ h = (11′ ∧1 h)(1 ∧ h), 1 ∧ hh
′

= (1 ∧ h) (h1 ∧h h
′

) and 1 ∧ 1 = 1

for all 1, 1′, h, h′ ∈ G, where 11′ = 11′1−1. This construction was introduced by Brown and Loday in [4]. It
is known that there exists a group homomorphism κ̂ : G ∧ G → G′ sending 1 ∧ h to [1, h] with the kernel
which is isomorphic to M(G), the Schur multiplier of the group G. The reader can find an introduction to
Schur multiplier in [11] and [12]. Recall that a group G is called capable if G � E/Z(E) for a group E. It was
proved by Ellis in [5, Theorem 4] that G is capable if and only if the exterior center subgroup, namely

Ẑ(G) = {1 ∈ G : 1 ∧ x = 1 for all x ∈ G}
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is trivial. It is clear that Ẑ(G) = ∩x∈GĈG(x), in which

ĈG(x) = {a ∈ G | a ∧ x = 1}

is the exterior centralizer (see [19]). As we mentioned earlier, there are many different ways to associate
a graph to a group. Here we assign a graph Γ̂G to the group G by considering the following way: take
G \ Ẑ(G) as the vertices of Γ̂G and join two distinct vertices x and y whenever x∧ y , 1. This is what we call
non-abelian exterior graph of the group G.

Throughout the paper graphs are simple which means they are undirected with no multiple edges and
we consider finite groups only. All the notations and terminologies about the graphs are standard (for
instance see [9]). In the current context, for a given finite group G, the planar and complete non-exterior
square graphs are completely described, also the regularity of a graph associated to all finite nilpotent
groups are given. It is interesting to verify for a finite non-cyclic group G, whether there is a group H
such that Γ̂G � Γ̂H, provided that |G| = |H|. This conjecture will be verified here when one of the groups
is the dihedral group D2n of order 2n or the number of vertices is prime. Among the other results, some
connections between the graph and the exterior degree (see [7, 16–18]) will appear in the text. Moreover,
we prove that Γ̂G1 � Γ̂G2 if |Ẑ(G1)| = |Ẑ(G2)| and G1/Ẑ(G1) � G2/Ẑ(G2) for two arbitrary groups G1 and G2.
This is a so called result of invariance via weak forms of isoclinism (see [8, 10]).

2. Non-Exterior Square Graph

In this section, we introduce the non-exterior square graph. The structure of the group is verified when
the non-exterior square graph is planar, complete or regular.

Definition 2.1. Let G be a non-cyclic group. We assign non-exterior square graph, Γ̂G, to the group G such that
two distinct vertices x, y ∈ G \ Ẑ(G) join by an edge if x ∧ y , 1.

Some facts can be easily obtained from this definition. Perhaps the most important is that ΓG, the non-
commuting graph of G is a subgraph of Γ̂G. This helps us to use the properties of ΓG to know more about
Γ̂G. Note that ΓG is precisely the null graph when G is abelian, but the same holds for Γ̂G if and only if G is
cyclic; hence for non-cyclic abelian groups the non-exterior square graph must be studied independently.

It is obvious that de1(x) = |G| − |ĈG(x)| for every vertex x ∈ V(Γ̂G). In general, ĈG(x) is a subgroup of G
for any x ∈ V(Γ̂G) (see [19]). Since x < Ẑ(G) we conclude that [G : ĈG(x)] ≥ 2 and this implies that Γ̂G is a
Hamiltonian graph.

Theorem 2.2. For a non-cyclic group G, the diameter of Γ̂G is 2. Also the girth of Γ̂G equals to 3.

Proof. Suppose x and y are two non-adjacent vertices of G, so there exist vertices x′, y′ ∈ G such that x∧x′ , 1
and y ∧ y′ , 1. If x meets y′ or y joins x′, then we have nothing to prove. Thus, assume x ∧ y′ = 1 and
y ∧ x′ = 1. Clearly, x′y′ is a vertex which is adjacent to x and y. Hence, the assertion follows. Moreover, if
{x, y} is an edge then {x, y, xy} is a triangle.

We recall [4, Proposition 10] as below, which is an essential tool in the next contribution.

Lemma 2.3. Let G1 and G2 be arbitrary groups. If Gab
1 and Gab

2 are abelianizations of G1 and G2 then

(G1 × G2) ∧ (G1 × G2) � (G1 ∧ G1) × (G2 ∧ G2) × (Gab
1 ⊗ Gab

2 ).

In particular, when the exponent of Gab
1 and Gab

2 are coprime then (G1 × G2) ∧ (G1 × G2) � (G1 ∧ G1) × (G2 ∧ G2).

The necessary and sufficient conditions for non-commuting graph ΓG to be planar are given in [1]. Here we
would like to state a similar one for Γ̂G.

Theorem 2.4. Γ̂G is planar if and only if G � S3,Q8 or C2 × C2.
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Proof. First assume that G is a non-abelian group. As mentioned ΓG is a subgraph of Γ̂G. Only three groups
are candidates for the planarity of Γ̂G, which are Q8, D8 and S3 (see [1, Proposition 2.3]). But only Q8 and
S3 have planar non-exterior square graphs. Now let G be an abelian p-group of order pn. The associated
graph to G is not planar if it has K5 as a subgraph. If such a subgraph exists, then the degree of each vertex
of this subgraph must be at least 4. Thus, if we have pn

− pn−1
≥ 4, then such a subgraph exists, which

shows p ≥ 3 or p = 2 and n ≥ 3. Therefore the only non-cyclic abelian p-group with planar non-exterior
square graph is C2 ×C2. If G is an abelian group which is not a p-group, then G � Sp1 × · · · × Spk is a primary
decomposition of G in its primary components, where Spi is Sylow pi subgroups of order pαi

i by the classical
theorem. Clearly, Γ̂Spi

’s are subgraphs of Γ̂G. We claim Γ̂G is planar if k = 1 and Sp1 � C2 × C2. Suppose
k ≥ 2 , then Sp1 � C2 × C2 and Spi � Cpi for i ≥ 2. For every element x = (x1, · · · , xk) ∈ G, ĈG(x) =

∏k
i=1 ĈSpi

(xi)
by Lemma 2.3. Therefore, |ĈG(x)| = 2p

2
· · · p

k
= |G|/2 and de1(x) = |G|/2. Similarly, the graph is planar if

de1(x) = 2p
2
· · · p

k
≤ 4, then we have k = 1.

Complete graphs are well known, so the conditions to have complete graphs become interesting.

Theorem 2.5. The non-exterior square graph associated to the group G is complete if and only if G is an elementary
abelian 2-group.

Proof. Let Γ̂G be a complete graph. It is clear that the degree of each vertex of the graph is |G| − |Ẑ(G)| − 1 =

|G| − |ĈG(x)|. Thus, |ĈG(x)| = 2 and the order of every vertices of the graph is 2. Conversely, if G is an
elementary abelian 2-group, then |Ẑ(G)| = 1 and |ĈG(x)| = 2 for all x ∈ G \ Ẑ(G) by [17, Example 3.3]. Hence
the result follows.

Here we wish to deal with the regularity of the non-exterior square graph of an abelian p-group. First we
state the necessity of the graph to be regular.

Theorem 2.6. Let G be an abelian p-group for which Γ̂G is a regular graph. Then G � Cpk ⊕ C(n)
p where k ≥ 1,

n ≥ 0 and C(n)
p is an elementary abelian p-group of rank n.

Proof. We know that G �
⊕t

i=1 Cpαi , where α1 ≥ . . . ≥ αt. Now suppose by contrary that α2 > 1. Lemma 2.3
implies G∧G �

⊕
i> j Cpαi ⊗Cpα j . Let {x1, . . . , xt} be a generating set for G with o(xi) = pαi . It is easy to see that

G∧G = 〈xi∧x j|i > j〉 and o(xi∧x j) = pα j . Since G has regular non-exterior square graph, |ĈG(x1)| = |ĈG(px1)|.
If 1 =

∑t
i=1 aixi is an arbitrary element of ĈG(x1), then 0 = x1 ∧ 1 = x1 ∧

∑t
i=1 aixi =

∑t
i=2 ai(x1 ∧ xi). Therefore

pαi |ai for i > 1 and hence ĈG(x1) = 〈x1〉 which is of order pα1 . The same argument for ĈG(px1) implies
1 =
∑t

i=1 aixi ∈ ĈG(px1) if and only if pαi |pai, so ĈG(px1) = 〈x1, pα2−1x2, . . . , pαt−1xt〉. Since α2 > 1, we have
|ĈG(px1)| ≥ pα1+1 which is a contradiction. So α2 = 1 and the result holds.

Now we prove the converse of the above theorem.

Theorem 2.7. The family of abelian p-groups G � Cpk ⊕ C(n)
p where k ≥ 1 and n ≥ 0 have regular non-exterior

square graphs.

Proof. Let G � Cpk ⊕ C(n)
p and {x1, . . . , xn+1} be a generating set for G. Suppose o(x1) = pk and the others have

order p. If k = 1, then G is an elementary abelian p-group and we have nothing to prove. Now let k > 1.
We know that Ẑ(G) = 〈px1〉 by [6, Proposition 18 (ii)], therefore G/Ẑ(G) is an elementary abelian p-group
of rank n + 1 generated by {x̄1, . . . , x̄n+1}. We finish by proving ĈḠ(x̄) = 〈x̄〉 for any x ∈ G \ Ẑ(G). It implies
ĈG(x) = 〈Ẑ(G), x〉 which is of order pk. Since G/Ẑ(G) may be regarded as vector space over a field with p
elements, each element belongs to some basis. Therefore it is enough to check that ĈG(xi) = 〈xi〉, but this
follows from the fact that G/Ẑ(G) is an elementary abelian p-group.

We are in a position to determine all abelian groups which have regular non-exterior square graphs.
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Theorem 2.8. Let G be an abelian group. Γ̂G is regular if and only if Γ̂Sp is regular for each Sylow p-subgroup Sp
of G.

Proof. Since G is an abelian group we can decompose it into the direct sum of its Sylow pi-subgroups Spi as
G � Sp1 ⊕· · ·⊕Spk ,where {p1, . . . , pk} is the set of all prime divisors of |G|. Now let Spi have the regular exterior
graph for each i, 1 ≤ i ≤ k. By Lemma 2.3, we deduce ĈG(x) =

∏k
i=1 ĈSpi

(xi) for each x = (x1, . . . , xk) ∈ G. Thus
Γ̂G is regular too. Conversely, if Γ̂G is regular then ĈG(xi) = ĈSpi

(xi) for each i, 1 ≤ i ≤ k and each xi ∈ Spi .
Hence Γ̂Spi

is regular.

In the above theorem the restriction on G to be abelian is used only to decompose it into the direct sum of
its Sylow subgroups. We use only the fact that the Sylow subgroups have coprime orders so the following
theorem can be proved by analogy.

Theorem 2.9. Let G be a group which has a decomposition G =
∏k

i=1 Gi in which Gi’s have coprime orders. Then
Γ̂G is regular if and only if Γ̂Gi is regular for each i, 1 ≤ i ≤ k.

In particular, nilpotent groups admit a primary decomposition. Therefore the following result is true.

Corollary 2.10. A nilpotent group G has a regular non-exterior square graph if and only if all its Sylow p-subgroups
have regular non-exterior square graphs.

Considering the last corollary, after abelian groups, p-groups are the best candidates to deal with the
regularity of the non-exterior square graph. In the class of p-groups, perhaps the simplest ones are extra
special p-groups, which are completely described by the following result.

Theorem 2.11. In the class of extra special p-groups the only one which has a non-regular non-exterior square
graph is the group D8.

Proof. First consider the non-capable extra special p-groups. By a result of Ellis [6, Proposition 7], we have

G ∧ G � G/G′ ∧ G/G′, and Ĉ G
G′

(xG′) =
ĈG(x)G′

G′ =
ĈG(x)

G′ for each x ∈ G because G′ = Z(G) = Ẑ(G) ⊆ ĈG(x).

But G/G′ is an elementary abelian p-group so |Ĉ G
G′

(xG′)| = p and hence |ĈG(x)| = p2. One can see that the
only capable groups in the class of the extra special p-groups are D8 and E1 (extra special p-groups of order
p3 and exponent p). The graph of D8 is not regular (see Example 3.1 in [17]). Moreover the proof of [15,
Lemma 2.3] shows that |ĈG(x)| = p for all x ∈ E1 and the proof is completed.

A dominating set for a graph Γ is a subset D of V(Γ) such that every vertex which does not belong to D
joins to at least one member of D by some edge. The domination number γ(G) is the number of vertices in a
smallest dominating set for Γ. There is no efficient algorithm to find a smallest dominating set for a given
graph but it has a vast application. In the following result, we state some facts about the dominating set
of the non-exterior square graph which are also valid for non-commuting graph so we omit the proof here
(see Abdollahi [1] for more details).
If {x} is a dominating set for a non-exterior square graph, Γ̂G associated to a non-cyclic group G, then
Ẑ(G) = 1, x2 = 1 and ĈG(x) = 〈x〉. Moreover, a subset S of V(Γ̂G) is a dominating set if and only if
ĈG(S) ⊆ Ẑ(G) ∪ S. It is clear that if G = 〈X〉 is a non-cyclic group, then X \ Ẑ(G) is a dominating set for Γ̂G.

Proposition 2.12. The domination number of Γ̂G for every non-abelian simple group G, is less than or equal to 2.

Proof. Since G is non-abelian simple group, it is a 2-generator group (see [2]). By the simplicity of G we
have Ẑ(G) = 1 and X ∩ Ẑ(G) = ∅. This implies the result.

Trivially two isomorphic groups have isomorphic non-exterior square graphs. It is also true for other ways
of associating a graph to a group. But the converse of this problem is interesting and it is worthy to answer
the following question.

Question 2.13. When a group is uniquely determined by its non-exterior square graph?
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Theorem 2.14. Let G and H be two non-cyclic groups with Γ̂G � Γ̂H and |V(Γ̂G)| prime. Then |G| = |H|.

Proof. Assume that the number of vertices of Γ̂G is p, where p is prime. Then |Ẑ(G)| = 1 or p. If |Ẑ(G)| = p
then G/Ẑ(G) � C2 which is impossible, because G/Ẑ(G) is capable but C2 is not. Thus |Ẑ(G)| = 1. By a
similar argument we should have |Ẑ(H)| = 1 and the result follows.

This allows us to recognize S3 by its non-exterior square graph

Corollary 2.15. Let G be a non-cyclic group and Γ̂G � Γ̂S3 . Then G � S3.

The next lemma is useful to answer the above question for some groups. Moreover, it shows that if a
non-exterior square graph associated to a non-cyclic group is isomorphic to another non-exterior square
graph then the second graph must be associated to a non-cyclic group too. In fact we are eager to answer
to this question.

Question 2.16. Which properties of the group are inherited via the isomorphic non-exterior square graphs?

Lemma 2.17. Let G be a non-cyclic group. If Γ̂G � Γ̂H, then H is also non-cyclic and |Ẑ(H)| divides
(|G| − |Ẑ(G)|, |G| − |ĈG(x)|, |ĈG(x)| − |Ẑ(G)|) for every x ∈ G \ Ẑ(G).

Proof. It is straightforward.

Theorem 2.18. Let G be the dihedral group of order 2m. If Γ̂G � Γ̂H for some group H, then |G| = |H|.

Proof. It can be easily seen that there is a non-identity element of G like x such that |ĈG(x)| = 2 and Ẑ(G) = 1.
Thus, there is y ∈ H such that |ĈG(x)| − |Ẑ(G)| = |ĈH(y)| − |Ẑ(H)| = 2− 1 = 1 and since |Ẑ(H)| | |ĈH(y)|we have
|Ẑ(H)| = 1 and the assertion is clear.

Analogously to AC-groups we introduce CE-groups as follows.

Definition 2.19. A group G is called exterior CE-group whenever ĈG(x) is cyclic for every x ∈ G \ Ẑ(G).

Lemma 2.20. The following conditions are equivalent for a group G.

(i) G is CE-group.

(ii) If x ∧ y = 1, then ĈG(x) = ĈG(y), whenever x, y ∈ G \ Ẑ(G).

(iii) If x ∧ y = x ∧ z = 1, then y ∧ z = 1, whenever x ∈ G \ Ẑ(G).

(iv) If A and B are subgroups of G and Ẑ(G) < ĈG(A) ≤ ĈG(B) < G, then ĈG(A) = ĈG(B).

Proof. Suppose (i) and x ∧ y = 1. Since y ∈ ĈG(x) so for every t ∈ ĈG(x) we have t ∧ y = 1 and (ii) follows.
If we consider (ii) and t, t′ ∈ ĈG(x) then t ∧ t′ = 1 and this proves (i). Now, (ii) and x ∧ y = x ∧ z = 1
imply ĈG(x) = ĈG(y) = ĈG(z) and (iii). It is easy to see that (iii) is equivalent to (ii). Let t1, t2 ∈ ĈG(x) and
A = 〈t1, t2〉,B = 〈t1〉. Obviously, ĈG(A) = ĈG(B) by (iv). As t1 ∈ ĈG(B) so t1∧t2 = 1 and (i) follows. Finally, we
will show that (iii) implies (iv). Suppose (iii) and A,B subgroups of G such that Ẑ(G) < ĈG(A) < ĈG(B) < G.
Consider the elements u ∈ A, v ∈ B \ Ẑ(G), x ∈ ĈG(A) \ Ẑ(G) and y ∈ ĈG(B) \ ĈG(A), so x ∧ u = x ∧ v = 1 and
by (iii) we get u ∧ v = 1. This implies u ∧ y = 1 which is a contradiction. Hence the assertion is clear.

The next corollary follows by Lemma 2.20 directly.

Corollary 2.21. If G is a non-cyclic CE-group, then γ(Γ̂G) ≤ 2.

Theorem 2.22. Let G and H be non-cyclic groups. If Γ̂G � Γ̂H, then Γ̂G×A � Γ̂H×B for every cyclic groups A and
B with the same order such that (|G|, |A|) = 1 and (|H|, |B|) = 1.
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Proof. Assume φ : V(Γ̂G)→ V(Γ̂H) is the isomorphism, which is induced on the set of vertices by the given
graph isomorphism, and ψ : A → B is a bijection. Therefore, it is easy to see that α : (1, a) 7→ (φ(1), ψ(a))
induces a graph isomorphism between Γ̂G×A and Γ̂H×B.

In the above theorem (|G|, |A|) = 1 and (|H|, |B|) = 1 are essential conditions. Because, G = C2 × C4 and
H = Q8 have isomorphic graphs but Γ̂H×C4 and Γ̂G×C4 are not isomorphic. The next definition helps to get
more information about a group from its non-exterior square graph.

Definition 2.23. A non-cyclic group G is called F̂-group if for each x, y ∈ G \ Ẑ(G), ĈG(x) , ĈG(y) implies
ĈG(x) 1 ĈG(y) and ĈG(y) 1 ĈG(x).

The following proposition is directly obtained from the definition of F̂-group and the concept of isomor-
phism between graphs.

Proposition 2.24. Let S be a non-cyclic F̂-group. If G is a group such that Γ̂G � Γ̂S, then G is an F̂-group.

Now we are going to state some relations between this graph and the exterior degree. We recall that for a
group G the commutativity degree d(G) and the exterior degree d̂(G) were defined by the ratios

d(G) =
|{(x, y) ∈ G × G : [x, y] = 1}|

|G|2
, d̂(G) =

|{(x, y) ∈ G × G : x ∧ y = 1}|
|G|2

.

It is clear that for a non-abelian group G, d̂(G) ≤ d(G) and whenever the equality holds they named G a
unidegree group (see [17] for more details). Moreover, it was proved that every unidegree group is unicentral
which means Z(G) = Ẑ(G). Easily, by using the notion of exterior degree we can obtain the number of edges
of the non-exterior square graph

|E(Γ̂G)| =
|G|2(1 − d̂(G))

2
.

We present the following lower bound for d̂(G) by using the graph theoretical properties.

Theorem 2.25. Let Γ̂G be the non-exterior square graph. Then we have

d̂(G) ≥
2|Ẑ(G)|
|G|

−
|Ẑ(G)|2

|G|2
−
|Ẑ(G)|
|G|2

+
1
|G|
.

Proof. It is clear that for every graph, the number of edges is at most n(n − 1)/2 where n is the number of
vertices. The proof can be easily deduced by the formula for the number of edges.

Theorem 2.26. The non-exterior square graph of a unidegree capable non-cyclic group cannot be complete.

Proof. We know that d(G) =
k(G)
|G| = d̂(G), where k(G) is the number of conjugacy classes of G. If Γ̂G is complete

then we should have k(G) < 3 which is a contradiction.

Now, we recall the star graph as a tree on n vertices in which one vertex has degree n− 1 and the others have
degree 1.

Theorem 2.27. There is no group with non-exterior square star graph.

Proof. Suppose such a graph exists. Then for pendant vertex x we have de1(x) = |G| − |ĈG(x)| = 1. Thus
[G : ĈG(x)] = |G|/(|G| − 1) which is a contradiction.

The above theorem and the degree-edge formula show there is no group with d̂(G) = 1 + 4/|G|2 − 2/|G|. We
remind that a complete bipartite graph is a bipartite graph such that every pair of graph vertices in the two
sets are adjacent.

Theorem 2.28. There is no group with non-exterior square complete bipartite graph.
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Proof. By contrary, assume that we have non-exterior square complete bipartite graph. It is clear that there
is a vertex x such that de1(x) = |G| − |ĈG(x)| ≤ (|G| − |Ẑ(G)|)/2. Moreover, |Ẑ(G)|q = |ĈG(x)| for some q ∈ Z.
Hence |G| ≤ |Ẑ(G)|(2q − 1) and so [G : ĈG(x)] ≤ (2 − (1/q)) < 2 which is a contradiction.

In the following theorem we prove that if there are two groups with the same order and isomorphic exterior
central factors then their non-exterior square graphs are isomorphic. Although, we can see that the most of
groups which are satisfying in the above conditions might be isomorphic but we believe that it is possible
to find an example of non-isomorphic groups.

Theorem 2.29. Let G1 and G2 be two groups with G1

Ẑ(G1)
� G2

Ẑ(G2)
. If |Ẑ(G1)| = |Ẑ(G2)|, then Γ̂G1 � Γ̂G2 .

Proof. By hypothesis, there is an isomorphism α : G1/Ẑ(G1) → G2/Ẑ(G2) which maps 1iẐ(G1) to 1′i Ẑ(G2),
where {11, · · · , 1k} and {1′1, · · · , 1

′

k} are transversal sets of Ẑ(G1) and Ẑ(G2) respectively. Clearly, |G1 \ Ẑ(G)| =
|G2 \ Ẑ(G)|. Moreover, θ : Ẑ(G1)→ Ẑ(G2) is a one to one correspondence and so we may define the bijection
ψ : G1 \ Ẑ(G1)→ G2 \ Ẑ(G2) between the vertices of the graphs such that 1iz 7−→ 1′iθ(z). A result of Ellis [6,
Proposition 7] implies G1 ∧ G1 � G2 ∧ G2. Thus ψ is our favorite map which preserves edges. Hence, the
result is concluded.

In the following we present an example of two groups which satisfies the conditions of the above theorem
but they are not isomorphic.

Example 2.30. Suppose that G1 = D8 and G2 = C4 × C2. Then we can see that Ẑ(G1) � C2 by [17, Example 3.1]
and Ẑ(G2) � C2, but G1 and G2 are not isomorphic.
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