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Abstract. We compare the perturbation classes for closed semi-Fredholm and Fredholm operators with
dense domain acting between Banach spaces with the corresponding perturbation classes for bounded
semi-Fredholm and Fredholm operators. We show that they coincide in some cases, but they are different
in general. We describe several relevant examples and point out some open problems.

1. Introduction

We are interested in the perturbation classes for the classesF+,F− andF of upper semi-Fredholm, lower
semi-Fredholm and Fredholm closed operators with dense domain, and for the respective subclasses Φ+,
Φ− and Φ of bounded operators.

LetA be a class of closed operators with dense domain between Banach spaces. Given Banach spaces X
and Y, letA(X,Y) denote the component ofA in CD(X,Y), formed by the operators inAwith domain dense
in X and range in Y. We write just A(X) in the case X = Y. When A(X,Y) , ∅, we define the components
of the perturbation class PA as follows:

PA(X,Y) := {K ∈ L(X,Y) : for each T ∈ A(X,Y), T + K ∈ A},

where L(X,Y) is the set of all bounded operators from X into Y.
Kato [21, Theorem 5.2] proved that PF+ contains the strictly singular operators SS, Vladimirskii [28,

Corollary 1] proved that PΦ− contains the strictly cosingular operators SC, and the latter result can be
easily extended to PF−. The question whether the perturbation classes for bounded (or closed) upper
and lower semi-Fredholm operators coincide with the strictly singular and strictly cosingular operators,
respectively, was raised in [10, page 74], and also in [25, 26.6.12] and [27, Section 3] for Φ+ and Φ−. It is called
the perturbation classes problem for semi-Fredholm operators. The perturbation class PF was studied in [20],
showing that it coincides with the strictly singular or the strictly cosingular operators in some cases. For
pairs of spaces X,Y such that Φ(X,Y) is non-empty, PF (X,Y) = PΦ(X,Y) and coincides with the inessential
operators.
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The first and third authors were supported in part by MICINN (Spain), Grant MTM2013-45643.
Email addresses: paiena@unipa.it (Pietro Aiena), chiyom01@kanagawa-u.ac.jp (Muneo Chō), manuel.gonzalez@unican.es
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Weis [30] obtained a positive answer to the perturbation classes problem for F+(X,Y) and F−(X,Y) for
many pairs X,Y of Banach space (see Theorem 3.1), and assuming the existence of H.I. and Q.I. Banach spaces
(Definition 2.1), proved that the answer is negative in general. The existence of H.I. and Q.I. spaces was
proved several years later by Gowers and Maurey [19]. Some partial positive answers to the perturbation
classes problem for bounded semi-Fredholm operators were obtained in [4, 5, 22, 29]. Later it was proved
in [14] that the answer is negative in general (see [9] and [13] for other negative answers), and additional
partial positive answers were recently obtained in [9, 16–18].

The negative answers for F+ and F− obtained by Weis are not relevant for bounded semi-Fredholm
operators because for the pairs of spaces he considered, the components of Φ+ and Φ− are empty, so the
perturbation classes are not defined. Moreover there are separable spaces X and Y for which PΦ+(X) ,
SS(X) and PΦ−(Y) , SC(Y) (see [14]), while Weis proved that for Z separable PF+(Z) = SS(Z) and
PF−(Z) = SC(Z). So the perturbation classes problem for bounded semi-Fredholm operators is very
different from the corresponding problem for closed operators.

In this paper we give some results and examples that are relevant to the perturbation classes problem for
closed operators, and point out to some questions that remain open. In Section 2 we introduce the concepts
of H.I. and Q.I. Banach spaces, we include some characterizations of these spaces that will be needed later,
and show that H.I. spaces are subspaces of `∞ (see [7, Introduction]) and Q.I. spaces are quotients of `1
when they admit a separable quotient. We also include a brief account of the results of Weis [30] for closed
operators. In Section 3 we begin by studying conditions on pairs of spaces X, Y implying that F+(X,Y),
F−(X,Y) and F (X,Y) are non-empty, and we give an example X for which F (X) = Φ(X). We show that
PF (X,Y) = In(X,Y), the inessential operators, when Φ(X,Y) is non-empty, but there are cases in which
PF (X,Y) , In(X,Y). We also give some conditions implying F+(X,Y) , SS(X,Y) or F−(X,Y) , SC(X,Y),
and show concrete examples of spaces satisfying these conditions.

An operator T ∈ CD(X,Y) is upper semi-Fredholm if its kernel N(T) is finite-dimensional and its range R(T)
is closed; T is lower semi-Fredholm if R(T) is finite-codimensional (hence closed in Y [26, Theorem IV.5.10]);
and T is Fredholm if it is upper and lower semi-Fredholm.

An operator T ∈ L(X,Y) is strictly singular if given a closed infinite-dimensional subspace E of X the
composition TJE is never an isomorphism, where JE is the embedding operator of E into X; T is strictly
cosingular if given a closed infinite-codimensional subspace F of Y the composition QFT is never surjective,
where QF is the quotient operator onto Y/F; and T is inessential if IX − AT ∈ Φ(X) for every A ∈ L(Y,X). We
refer to [1] or [15] for an exposition of the perturbation theory for bounded semi-Fredholm operators, and
to [11] for the case of closed operators.

2. Preliminary Results

Let X and Y be Banach spaces and let T : D(T) ⊂ X→ Y be a closed operator. We consider the associated
graph norm ‖ · ‖T defined on D(T) by ‖x‖T := ‖x‖ + ‖Tx‖. Then XT :=

(
D(T), ‖ · ‖T

)
is a Banach space and,

denoting jT : XT → X the natural embedding, TjT ∈ L(XT,Y). These concepts are useful because, given
T ∈ CD(X,Y) and A ∈ L(X,Y), T + A ∈ CD(X,Y) and XT+A is isomorphic to XT. Moreover T ∈ F+(X,Y)
iff TjT ∈ Φ+(XT,Y), and T ∈ F−(X,Y) iff TjT ∈ Φ−(XT,Y). So we can derive many results for closed semi-
Fredholm operators from the corresponding results for bounded operators. For example, Vladimirskii’s
result mentioned in the introduction.

Recall that a Banach space X is indecomposable if it does not contain a pair of closed, infinite-dimensional
subspaces M and N such that X = M ⊕N.

Definition 2.1. A Banach space X is called H.I. if every closed subspace of X is indecomposable. The space X is
called Q.I. if every quotient of X is indecomposable.

It is easy to show that X∗ Q.I. (H.I.) implies X H.I. (Q.I.), and that the converse implications are valid for
reflexive spaces. The existence of infinite-dimensional reflexive H.I. and Q.I. Banach spaces was proved in
[19].
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The following result was obtained by Weis [30, 2.3 Corollary]. We give a sketch of the proof for
completeness.

Proposition 2.2. Let Y be a Banach space.

(a) The space Y is H.I. if and only if L(Y,Z) = Φ+(Y,Z) ∪ SS(Y,Z) for every Banach space Z.

(b) The space Y is Q.I. if and only if L(X,Y) = Φ−(X,Y) ∪ SC(X,Y) for every Banach space X.

Proof. (a) For the direct implication, let T ∈ L(Y,Z) \
(
Φ+(Y,Z) ∪ SS(Y,Z)

)
. Since T < SS we can find an

infinite-dimensional closed subspace M of X and C > 0 such that ‖Tm‖ ≥ 2C‖m‖ for each m ∈M; and T < Φ+

implies the existence of an infinite-dimensional closed subspace N of X such that ‖Tn‖ ≤ C‖n‖ for each
n ∈ N. Thus given norm one vectors m ∈M and n ∈ N we have C ≤ ‖T‖ ‖m + n‖, which implies M∩N = {0}
and M + N is closed. Then M + N is not indecomposable, hence X is not H.I.

For the converse implication, assume that Y is not H.I. Then we can find two infinite-dimensional closed
subspaces M and N of Y such that that M ∩N = {0} and M + N is closed. The quotient map QM : Y→ Y/M
is neither Φ+ nor SS.

(b) For the direct implication, let T ∈ L(X,Y) \
(
Φ−(X,Y) ∪ SC(X,Y)

)
. Since T < SC we can find an

infinite-codimensional closed subspace M of X and C > 0 such that QMT(BX) ⊃ 2CBY/M (equivalently,
‖T∗y∗‖ ≥ 2C‖y∗‖ for each y∗ ∈ M⊥); and T < Φ− implies the existence of an infinite-codimensional closed
subspace N of X such that QNT(BX) ⊂ CBY/N. It is not difficult to check that M + N = Y (equivalently,
M⊥ ∩N⊥ = {0} and M⊥ + N⊥ is closed). Then

X/(M ∩N) = M/(M ∩N) ⊕N/(M ∩N).

Thus X/(M ∩N) is not indecomposable, hence X is not Q.I.
For the converse implication, assume that Y is not Q.I. Then we can find two infinite-codimensional

closed subspaces M and N of Y such that M + N = X. The embedding map JM : M → Y is neither Φ− nor
SC.

The characterizations of Proposition 2.2 allow us to derive some information on the size of H.I. and Q.I.
Banach spaces.

Proposition 2.3. (a) Every H.I. space is isomorphic to a subspace of `∞.

(b) Every Q.I. space admitting an infinite-dimensional separable quotient is isomorphic to a quotient of `1.

Proof. (a) Let X be a H.I. Banach space and let M be an infinite-dimensional closed separable subspace of
X. We take a dense sequence (mk) in the unit sphere of M. The Hahn-Banach theorem allows us to find a
sequence (x∗k) in the unit sphere of X∗ such that 〈mk, x∗k〉 = 1 for all k.

The expression S(x) := (〈x, x∗k〉) defines S ∈ L(X, `∞) with ‖S‖ = 1. Since the restriction of S to M is an
isomorphism, S < SS; hence S ∈ Φ+ by Proposition 2.2, and adding a finite number of terms to the sequence
(x∗k) we can make S injective; hence X is isomorphic to a subspace of `∞.

(b) Let Y be a Q.I. Banach space, let N be a closed subspace of Y such that Y/N is infinite-dimensional
and separable, and let QN : Y → Y/N denote the quotient map. Taking a dense sequence (zk) in the unit
sphere of Y/N, we can find a bounded sequence (yk) in Y such that QN(yk) = zk for each k.

Let (en) denote the unit vector basis of `1. The expression T(ek) := yk (k ∈ N) defines an operator
T ∈ L(`1,Y) such that QNT is surjective, hence T < SC. By Proposition 2.2 we have T ∈ Φ−, and adding a
finite number of terms to the sequence (yk) we can make T surjective; hence Y is isomorphic to a quotient
of `1.

It is not known if every infinite-dimensional Banach space admits an infinite-dimensional separable
quotient. We refer to [24] for a survey on this problem. Recently, a positive answer was obtained in [6] for
dual spaces.
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Problem 2.4. Is it possible to find examples of non-separable Q.I. Banach spaces?

Note that, by Proposition 2.3, if non-separable Q.I. spaces exist, they do not admit infinite-dimensional
separable quotients. Moreover, examples of non-separable H.I. spaces have been obtained in [7].

3. Perturbation Classes

Recall that a Banach space Y is called weakly compactly generated (WCG for short) if it contains a weakly
compact subset that generates a subspace dense in Y. Separable spaces and reflexive spaces are WCG, but
`∞ is not WCG. We say a Banach space X is QSQ if every infinite-dimensional quotient of X admits an
infinite-dimensional separable quotient. It is not known if there exists a Banach space which is not QSQ.

The following result contains the answers to the perturbation classes problem obtained in [30].

Theorem 3.1. [30, Theorems 3.1 and 3.6; Corollaries 3.2 and 3.7]

(a) Suppose that Y is an infinite-dimensional WCG space.
Then PF+(X,Y) = SS(X,Y) for every X for which F+(X,Y) , ∅ if and only if Y is not H.I.

(b) Suppose that X is an infinite-dimensional QSQ space.
Then PF−(X,Y) = SC(X,Y) for every Y for which F−(X,Y) , ∅ if and only if Y is not Q.I.

(c) Suppose that every separable subspace of X is contained in a separable complemented subspace. Then PF+(X) =
SS(X).

(d) Suppose that X is QSQ. Then PF−(X) = SC(X).

Observe that a WCG space satisfies the conditions in parts (c) and (d) of Theorem 3.1. We do not know
the answer to the following questions:

Problem 3.2. (1) Is it possible to find X such that PF+(X) , SS(X)?

(2) Is it possible to find Y such that PF−(Y) , SC(Y)?

Note that there are many examples of Banach spaces failing the conditions in part (c) of Theorem 3.1,
but no space is known failing the conditions in part (d). So the first one of the previous problem seems
much more accessible than the second one.

Remark 3.3. Let X and Y be Banach spaces. It immediately follows from the definitions of the classes that, when
PΦ+(X,Y), PΦ−(X,Y) and PΦ(X,Y) are defined, they contain PF+(X,Y), PF−(X,Y) and PF (X,Y), respectively.
Thus

- PΦ+(X,Y) = SS(X,Y) implies PF+(X,Y) = SS(X,Y),

- PΦ−(X,Y) = SC(X,Y) implies PF−(X,Y) = SC(X,Y), and

- Φ(X,Y) , ∅ implies PF (X,Y) = In(X,Y).

In order to study the components of PF+, PF− and PF , we need to know when they are defined; i.e.,
for which spaces the components of F+, F− and F are non-empty. For bounded semi-Fredholm operators,
there are useful criteria: Φ+(X,Y) , ∅ if and only if X is isomorphic to a closed subspace of Y up to a
finite-dimensional subspace. Indeed, given T ∈ Φ+(X,Y), each closed complement of N(T) is isomorphic to
R(T), a closed subspace of Y. Similarly, Φ−(X,Y) , ∅ if and only if Y is isomorphic to a quotient of X up to a
finite-dimensional subspace, and Φ(X,Y) , ∅ if and only if Y is isomorphic to X up to a finite-dimensional
subspace. In the case of F+, F− and F we do not have similar criteria. Next we give several results and
examples that provide some information.
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Example 3.4. We have F (c0, `∞) , ∅.

Proof. Indeed, the expression T(xn) := (xn/n) defines an injective operator with dense range T ∈ L(`∞, c0),
and S := T−1

∈ F (c0, `∞).

Proposition 3.5. Suppose that X is non-separable and Y is separable. Then F+(X,Y) = ∅.

Proof. Suppose that there exists S ∈ F+(X,Y). Given a closed complement M of N(S) in X, M∩D(S) is dense
in M. Thus restricting S we obtain an injective operator S0 ∈ F+(M,Y), and T := S−1

0 ∈ L(R(S),M) has dense
range, which is impossible because R(S) is separable and M is non-separable.

Note that Example 3.4 shows that the hypothesis of Proposition 3.5 does not imply F−(Y,X) = ∅.
Let us see that F (X,Y) , ∅ in many cases. Recall that a sequence (x∗n) in the dual of a Banach space X is

called total when 〈x, x∗n〉 = 0 for all n implies x = 0. Note that, when Y is separable or isomorphic to a closed
subspace of `∞, the dual space Y∗ contains a total sequence.

Proposition 3.6. Given two infinite-dimensional Banach spaces X and Y, if X is separable and Y∗ contains a total
sequence then F (X,Y) , ∅.

Proof. It was proved in [12] that the hypothesis implies the existence of a compact, injective operator
K ∈ L(Y,X) with dense range. Thus T := K−1

∈ F (X,Y).

Contrasting with Proposition 3.6, we have the following result.

Proposition 3.7. There exists a space Xak such that F (Xak) = Φ(Xak).

Proof. Avilés and Koszmider [8] proved the existence of a Banach space Xak such that every injective
T ∈ L(Xak) is surjective. Suppose that there exists an unbounded S ∈ F (Xak). Since D(S) = R( jS) is not closed,
it follows from [26, Theorem IV.5.10] that D(S) is infinite-codimensional in Xak. Taking a closed complement
X0 of N(T) in Xak, we have that D(S0) := D(S) ∩ X0 is dense in X0 [11, IV.2.8 Lemma]. So by restricting S we
obtain an injective unbounded operator S0 ∈ F (X0,Xak). Since D(S0) is infinite-codimensional in X0, we can
take a finite-dimensional subspace M of X0 with dim M = dim Xak/R(S0) such that M ∩ D(S0) = {0}. Thus
we can extend S0 to D(S1) := D(S)⊕M, obtaining an injective and surjective operator S1 ∈ F (X0,Xak). Since
S−1

1 defines an injective operator in L(Xak) which is not surjective, we get a contradiction.

We do not know if there are similar examples for F+ and F−.

Problem 3.8. Is it possible to find infinite-dimensional spaces X and Y such that F+(X) = Φ+(X) and F−(Y) =
Φ−(Y)?

We have a good description of the components of PΦ in some cases.

Proposition 3.9. Suppose that Φ(X,Y) , ∅. Then

PΦ(X,Y) = PF (X,Y) = In(X,Y).

Proof. For the equality PΦ(X,Y) = In(X,Y) we refer to [1, Theorem 7.23]. It remains to show that PF (X,Y)
contains In(X,Y).

Let T ∈ F (X,Y) and A ∈ In(X,Y). Then TjT ∈ Φ and AjT ∈ In, which implies (T + A) jT ∈ Φ, hence
T + A ∈ F .

When Φ(X,Y) = ∅, the components of PF andIn can be different. Let XGM denote the separable reflexive
H.I. space obtained in [19].

Example 3.10. Let us denote Z := XGM × XGM. Then F (Z,XGM) is nonempty and PF (Z,XGM) = L(Z,XGM) ,
In(Z,XGM).
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Proof. It follows from Proposition 3.6 thatF (Z,XGM) , ∅. Moreover XGM indecomposable implies Φ(Z,XGM) =
∅.

Let T ∈ F (Z,XGM) and A ∈ L(Z,XGM). Since TjT ∈ Φ(XT,XGM) and XGM is H.I., the space XT is also
H.I. Moreover R( jT) = D(T) is not closed because T is unbounded. Then jT < Φ+; hence jT ∈ SS by
Proposition 2.2. Thus (T + A) jT = TjT + AjT ∈ Φ because TjT ∈ Φ+ and AjT ∈ SS ⊂ In. Hence T + A ∈ F ,
and the equality is proved.

Since the operator A : XGM × XGM → XGM defined by A(x, y) = y is not inessential, L(Z,XGM) ,
In(Z,XGM).

Recall that an operator T acting between reflexive Banach spaces belongs to SS, SC, In, F+, F−, Φ+ or
Φ− if and only if the conjugate operator T∗ belongs to SC, SS, In, F−, F+, Φ− or Φ+, respectively.

Let us see that components of PΦ+ and PΦ− can be different from those PF+ and PF−.

Example 3.11. Let Y be a closed subspace of XGM with Y and XGM/Y infinite-dimensional, and let Z := XGM × Y.
Then

(a) PF+(Z) = SS(Z) , PΦ+(Z);

(b) PF−(Z∗) = SC(Z∗) , PΦ−(Z∗).

Proof. (a) The space Z is separable. So the equality follows from part (c) of Theorem 3.1. The inequality was
proved in [14].

(b) It follows from (a) because Z is reflexive.

The Banach space XAT obtained in [7] is non-separable and H.I. Thus it contains no infinite-dimensional
separable complemented subspace; hence it is not WCG. We have PΦ+(XAT) = SS(XAT) by Proposition 2.2,
hence PF+(XAT) = SS(XAT). However, if X0 is a closed subspace of XAT with X0 and XAT/X0 infinite-
dimensional, then PΦ+(XAT × X0) , SS(XAT × X0) by the results of [14].

Problem 3.12. Is PF+(XAT × X0) = SS(XAT × X0)?

The next result is the key to show that, in some cases, PF+(X,Y) , SS(X,Y) or PF−(X,Y) , SC(X,Y). It
will be obtained by applying some ideas in the proof of Theorem 3.1.

Proposition 3.13. Let X and Y be Banach spaces.

(a) Suppose that the space Y is H.I., Φ+(X,Y) = ∅ and F+(X,Y) , ∅. Then PF+(X,Y) = L(X,Y).

(b) Suppose that the space X is Q.I., Φ−(X,Y) = ∅ and F−(X,Y) , ∅. Then PF−(X,Y) = L(X,Y).

Proof. (a) Let S ∈ F+(X,Y) and T ∈ L(X,Y). Since SjS ∈ Φ+(XS,Y) and Y is H.I., the space XS is H.I.
Moreover R( jS) is not closed because S is unbounded. Then jS < Φ+; hence jS ∈ SS by Proposition 2.2.
Thus (S + T) jS = SjS + TjS ∈ Φ+ because SjS ∈ Φ+ and TjS ∈ SS. Then S + T ∈ F+, hence T ∈ PF+.

(b) Let S ∈ F−(X,Y) and T ∈ L(X,Y). Again R( jS) is not closed because S is unbounded; thus jS < Φ−.
Since X is Q.I., jS ∈ SC by Proposition 2.2. Thus (S + T) jS = SjS + TjS ∈ Φ− because SjS ∈ Φ− and TjS ∈ SC.
Then S + T ∈ F−, hence T ∈ PF−.

Remark 3.14. The conditions Φ+(X,Y) = ∅ and Φ−(X,Y) = ∅ in Proposition 3.13 are necessary:

(1) If Y is H.I. and Φ+(X,Y) , ∅ then X is H.I., and it follows from Proposition 2.2 that PΦ+(X,Y) = SS(X,Y),
hence PF+(X,Y) = SS(X,Y).

(2) If X is Q.I. and Φ−(X,Y) , ∅ then Y is Q.I., and it follows from Proposition 2.2 that PΦ−(X,Y) = SC(X,Y),
hence PF−(X,Y) = SC(X,Y).

The following examples are obtained using some ideas in the proof of Theorem 3.1.
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Example 3.15. Let us denote Z := X×XGM, with X and infinite-dimensional, reflexive and separable Banach space.
Then

(a) F+(Z,XGM) , ∅ and PF+(Z,XGM) , SS(Z,XGM);

(b) F−(X∗GM,Z
∗) , ∅ and PF−(X∗GM,Z

∗) , SC(X∗GM,Z
∗).

Proof. (a) Since XGM and Z are separable, F+(Z,XGM) , ∅ follows from Proposition 3.6. The other part is
a consequence of Proposition 3.13 because Z not H.I. implies Φ+(Z,XGM) = ∅, and we have L(Z,XGM) ,
SS(Z,XGM) because the operator T : X × XGM → XGM defined by T(x, y) = y is not strictly singular.

(b) Since the space XGM is reflexive, these properties can be derived by duality from those proved in
(a).

The spaces in Example 3.15 satisfy Φ+(Z,XGM) = ∅ and Φ−(X∗GM,Z
∗) = ∅, and these equalities were

important in order to show that PF+(Z,XGM) , SS(Z,XGM) and PF−(X∗GM,Y) , SC(X∗GM,Y). So the
following questions arise.

Problem 3.16. (1) Can we have PF+(X,Y) , SS(X,Y) when Φ+(X,Y) , ∅?

(2) Can we have PF−(X,Y) , SC(X,Y) when Φ−(X,Y) , ∅?
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