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Abstract. We study affine Bessel sequences in connection with the spectral theory and the multishift
structure in Hilbert space. We construct a non-Besselian affine system {un(x)}∞n=0 generated by continuous
periodic function u(x). The result is based on Nikishin’s example concerning convergence in measure. We
also show that affine systems {un(x)}∞n=0 generated by any Lipchitz function u(x) are Besselian.

1. Introduction

Sequence of functions {un(x)}∞n=0 ⊂ L2(Ω) is said to be Besselian if there exists B > 0 such that ∀ f ∈ L2(Ω)∑
∞

n=0 |( f ,un)|2 ≤ B‖ f ‖22.
It is known that there exist functional sequences {un(x)}∞n=0 ⊂ L∞(Ω) such that under the condition of

‖un‖∞ ≤ A‖un‖2, n = 0, 1, . . . , (1)

we have that {un(x)}∞n=0 are Besselian. On the other hand (1) is the neccessary condition for Besselian
property or Riesz basicity in number of cases.

Example 1.1. Every functional sequence from the following one-parameter family{
u0(x) = x, uk0(x) = sin 2πkx, ũk1(x) =

1
4πk

x cos 2πkx + C sin 2πkx
}∞

k=1
, C ∈ R,

consists of root functions from the Samarsky-Ionkin spectral problem (e.g. [1]){
u′′(x) + λu(x) = 0, 0 < x < 1,
u(0) = 0, u′(0) = u′(1).

Every sequence from the one-parameter family is Besselian and elements of each such sequence satisfy the uniform
estimate ‖un‖∞ ≤ A‖un‖2. If C = 0, the sequence forms an unconditional basis in L2(0, 1), else if C , 0, it does
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not form a basis. As it follows from the results of [2], only uniformly bounded functional sequences can form Riesz
bases consisting of eigenfunctions of one-dimensional self-adjoint Schrödinger operator with summable potential and
discrete spectrum.

Example 1.2. Let H2(T) be a Hardy space consisting of all functions u ∈ L2(T) in the form of u(x) =
∑
∞

n=0 cneinx,∑
∞

n=0 |cn|
2 < ∞. An operator V is called shift if Vu(x) = eixu(x). Assume that un(x) = Vnu(x) = u(x)einx, n = 0, 1, . . . .

It is well-known that a sequence of functions {un(x)}∞n=0 is Besselian if and only if u ∈ L∞(T).

Additional conditions formulated in terms of {un(x)}∞n=0 system coefficients space that provide Besselian
property for general sequences of functions and for affine sequences (or affine systems) of functions in
particular, are given in the paper [3]. In section 2 we show that additional conditions cannot be omitted in
case of affine systems of functions; we also construct an affine system {un(x)}∞n=0 consisting of continuous
functions that does not form a Besselian sequence. The construction of this affine system is based on
Nikishin’s example [4] to Ulyanov’s problem [5]. We consider the class of affine functions because there
is a deep-rooted analogy to systems from the Example 2. Walsh type affine systems are introduced in the
article [6]. We define them as follows:

Let the function u(x), x ∈ R, satisfy the following conditions:

u ∈ L2(0, 1),
∫ 1

0
u(x) dx = 0, u(x + 1) = u(x).

We denote the space of such functions as L2
0(0, 1), then we can define the following operators:

W0u(x) = u(2x), W1u(x) = r(x)u(2x), (2)

where

r(x) =

1, x ∈ [m,m + 1/2)
−1, x ∈ [m + 1/2,m + 1)

is the periodic Haar–Rademacher–Walsh function.
For arbitrary multi-index α = (α0, . . . , αk−1), k = 0, 1, . . . consisting only of ones and zeros we consider

the operator product Wα = Wα0 . . .Wαk−1 (Wαk−1 is the first to act, Wα0 is the last; if k = 0, empty product is
the identity operator). For any positive integer n ∈N by its binary expansion n =

∑k−1
ν=0 αν2ν + 2k we assume

u0(x) ≡ 1, un(x) = uα(x) = Wαu(x) = rα0 (x) . . . rαk−1 (2k−1x)u(2kx) = u(2kx)
k−1∏
ν=0

rανν (x),

where rk(x) = r(2kx), k = 0, 1, . . . , are the Rademacher functions.

Definition 1.3. The sequence of functions {un(x)}∞n=0 is called Walsh type affine system of functions generated by
u(x).

Applying these operators to the function w(x) = r(x) we can obtain the classic Walsh-Paley system
{wn(x)}∞n=0.

There is a structural analogy between affine systems and systems from the Example 2. A shift V in
Hilbert space H can be defined as follows: an isometry V : H → H is called a shift if there exists vector e ∈ H
such that system {Vne}∞n=0 forms an orthonormal basis in H. Every shift V : H → H is unitary equivalent to the
multiplication operator Vu(x) = eixu(x) in Hardy space H2(T).

The multishift structure in Hilbert space is introduced in the paper [7]. A multishift is a shift extended
into the case of two non-commutating operators and is defined as follows: an isometry pair W0 and W1 from
Hilbert space H is called a multishift if there exists vector e ∈ H such that the family of vectors {Wαe}α∈A forms
an orthonormal basis in H, where A =

⋃
∞

k=0{0, 1}
k is the family of all multi-indexes α = (α0, . . . , αk−1), αν = 0 or

1, 0 ≤ ν ≤ k − 1, Wα = Wα0 . . .Wαk−1 . Every multishift W0,W1 : H → H is unitary eqivalent to the pair of
operators (2) in L2

0(0, 1) space.
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2. Main Result

Theorem 2.1. There exists a continuous periodical function u(x) that generates non-Besselian Walsh type affine
system {un(x)}∞n=0 in L2(0, 1) space.

Consider this in comparison to the following results:

Theorem 2.2. Let a periodical function u(x) satisfy the Lipchitz condition |u(x)−u(y)| ≤ L|x− y|α, 0 < α ≤ 1. Then
the Walsh type affine system {un(x)}∞n=0 is Besselian in L2(0, 1) space.

Example 2.3. A system {un(x)}∞n=0 is called convergence system in measure for `2 if series
∑
∞

n=0 anun(x) converges in
measure for {an}

∞

n=0 ∈ `
2. E.M. Nikishin [4] constructed the example of function u ∈ L2

0(0, 1) ∩ C[0, 1] such that the
functional system {u(2kx)}∞k=0 generated by u(x) is not a convergence system in measure for `2. There was also obtained

the function f ∈ L2(0, 1) such that
∑
∞

k=0 |
∫ 1

0 f (x)u(2kx) dx|2 = ∞. Thus {u(2kx)}∞k=0 is not Besselian in L2(0, 1) space.

This example proves the Theorem 1 because u(2kx) = Wk
0u(x), k = 0, 1, . . . contains in Walsh type affine

system {un}
∞

n=0 , so {un}
∞

n=0 with its part is not Besselian. Here follows the proof of Theorem 2.

Proof. Consider Fourier-Walsh series u =
∑
∞

n=1(u,wn)wn for the function u ∈ L2
0(0, 1). Using the natural

bijection between the positive integer set N and the family A, we represent the series in the form of
u =

∑
α∈A(u,wα)wα. Let |α| = k be the length of a multi-index α = (α0, . . . , αk−1). Assume that

Uk =
(∑
|α|=k

|(u,wα)|2
)1/2

=
(2k+1

−1∑
n=2k

|(u,wn)|2
)1/2

, k = 0, 1, . . . .

For any finite sequence {cn}n∈N = {cβ}β∈A we have

∞∑
n=1

cnun =
∑
β∈A

cβWβu =

∞∑
k=0

∑
|α|=k

∑
β∈A

cβ(u,wα)WβWαw.

Note that for any fixed k = 0, 1, . . . , the {WβWαw}|α|=k,β∈A family is orthonormal because it consists of
pairwise different Walsh functions. Therefore, by Parseval’s identity,∥∥∥∥∥ ∞∑

n=1

cnun

∥∥∥∥∥ ≤ ∞∑
k=0

∥∥∥∥∥∑
|α|=k

∑
β∈A

cβ(u,wα)WβWαw
∥∥∥∥∥ =

∞∑
k=0

(∑
|α|=k

|(u,wα)|2
∑
β∈A

|cβ|2
)1/2

,

we obtain the estimate∥∥∥∥∥ ∞∑
n=1

cnun

∥∥∥∥∥ ≤ U
( ∞∑

n=1

|cn|
2
)1/2

, (3)

where U =
∑
∞

k=0 Uk is constant. Then we show that for a Lipchitz function u(x) we have U < ∞. It is evident
that Walsh functions {wn}

2k+1
−1

n=2k and Haar functions {hn}
2k+1
−1

n=2k from k-th block are connected by an orthogonal

transform. Thus
∑2k+1

−1
n=2k |(u,wn)|2 =

∑2k+1
−1

n=2k |(u, hn)|2. For Fourier-Haar coefficients indexed by n = 2k + j,
j = 0, . . . , 2k

− 1 we have:

|(u, hn)| ≤ 2k/2
∫ ( j+1/2)2−k

j2−k
|u(x) − u(x + 2−k−1)| dx ≤

2k/2L
2k+12α(k+1)

,
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then Uk ≤
L/2

2α(k+1) and U ≤ L/2
2α−1 . Besselian property for the system {un}

∞

n=0 follows from the estimate (3) in a
common way: ( ∞∑

n=1

|( f ,un)|2
)1/2

= sup
|
∑
∞

n=1 cn( f ,un)|
(
∑
∞

n=1 |cn|
2)1/2

≤ ‖ f ‖ · sup
‖
∑
∞

n=1 cnun‖

(
∑
∞

n=1 |cn|
2)1/2

≤ U‖ f ‖.

Finally,
∞∑

n=0

|( f ,un)|2 ≤ (1 + U2)‖ f ‖2.

Remark 2.4. Walsh type affine systems are connected with Haar-type affine systems (systems of dilates and translates
of one function). Conditions for Besselian property, Riesz basicity and basicity in Lp(0, 1) spaces, 1 ≤ p < ∞, are
obtainted in papers [3], [8], [9].
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