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Abstract. We investigate a nonlocal boundary value spectral problem for an ordinary differential equation
in an interval. Such problems arise in solving the nonlocal boundary value problem for partial equations
by the Fourier method of variable separation. For example, they arise in solving nonstationary problems
of diffusion with boundary conditions of Samarskii-Ionkin type. Or they arise in solving problems with
stationary diffusion with opposite flows on a part of the interval. The boundary conditions of this problem
are regular but not strengthened regular. The principal difference of this problem is: the system of
eigenfunctions is comlplete but not forming a basis. Therefore the direct applying of the Fourier method is
impossible. Based on these eigenfunctions there is constructed a special system of functions that already
forms the basis. However the obtained system is not already the system of the eigenfunctions of the
problem. We demonstrate how this new system of functions can be used for solving a nonlocal boundary
value problem on the example of the Laplace equation.

1. Introduction

Investigations on spectral theory of ordinary differential operators begun from classical papers of J.
Liouville and Sh. Sturm. Fundamental works in the spectral theory of differential operators were the
papers by Birkhoff of 1908, where he introduced regular boundary conditions for the first time. The theory
was significantly developed by Tamarkin and Stone. These works led to a new wide scientific direction
having an enormous literature. We refer to [1, 2] for the extensive bibliography and the obtained results.

Despite the apparent simplicity, the spectral theory of ordinary differential operators is far from complete.
This applies even to the case of a second-order operator

Lu = u′′(x) + q(x)u

on the finite interval x ∈ (a, b) which is called Sturm-Liouville operator. Brief survey of results in the spectral
theory of the Sturm-Liouville operator is given in the recent paper by Makin [3].
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It is known that boundary conditions can be divided into three classes [4]:
- strengthened regular conditions;
- regular but not strengthened regular conditions;
- irregular conditions.
If the boundary conditions are strengthened regular then the system of root functions forms a Riesz

basis in L2(a, b). This statement was proved in [5, 6] and [7, Chapter XIX].
In the other cases the basis property of the systems of root functions is not guaranteed. The final

definition of classes of the boundary conditions for an operator of second order when the system of eigen-
and associated functions forms the basis, was given in [8].

In the present work we consider one model spectral problem for an operator of multiple differentiation.
Boundary conditions of the problem are regular but not strengthened regular. The system of eigenfunctions
of the problem is complete, minimal, almost normed, but does not form a basis in L2. On the basis of these
eigenfunctions we construct a special system having basis property in L2.

2. Statement of the Problem

Consider the spectral problem

−u′′(x) = λu(x), 0 < x < π;

u(0) = 0, u′(0) + u′(π) + αu(π) = 0,
(1)

where α > 0 is a fixed parameter.
This problem arises while solving a nonlocal boundary value problem for the Laplace equation by the

method of separation of variables. Let D = {(r, θ) : 0 < r < 1, 0 < θ < π} be a half-disc. Our goal is to find a
function u(r, ϕ) ∈ C0(D̄) ∩ C2(D) satisfying in D the equation

∆U = 0 (2)

with the boundary conditions

U(1, θ) = f (θ), 0 ≤ θ ≤ π, (3)

U(r, 0) = 0, r ∈ [0, 1], (4)

∂U
∂θ

(r, 0) +
∂U
∂θ

(r, π) + αU(r, π) = 0, r ∈ (0, 1). (5)

For α = 0 the problem (2) - (5) was considered in [9]. The difference of this problem (α > 0) is the
impossibility of direct applying of the Fourier method (separation of variables). Because the corresponding
spectral problem (1) for the ordinary differential equation has the system of eigenfunctions not forming a
basis.

One method of constructing the basis, based on the system of eigenfunctions of the problem

−ϑ′′(x) = λϑ(x), 0 < x < π;

ϑ(0) = 0, ϑ′(0) = ϑ′(π) + αϑ(π)

was suggested in [10]. The boundary conditions of this problem are regular but not strengthened regular
conditions. And the system of its eigenfunctions does not form the basis. But a special system of functions
built with help of these eigenfunctions will form the basis. And this fact is applied for the solution of a
nonlocal initial-boundary problem for the heat equation. It is used in [11] for the solution of a nonlocal
boundary value problem for the Helmholtz operator in a half-disc. And also it is used in [12] for the solution
of an inverse nonlocal boundary value problem for the heat equation.

The goal of the present work is to construct the basis from the system of the eigenfunctions of the
problem (1).
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3. Preliminaries

Let us present briefly the main definitions and facts which will be used in what follows. Let B be a
Banach space with the norm ‖ · ‖B, and let B∗ be its dual with the norm ‖ · ‖B∗ .

A system of elements
{
ϕk

}∞
k=0 is said to be closed in B if the linear span of this system is everywhere

dense in B; that is, any element of the space B can be approximated by a linear combination of elements of
this system with any accuracy in the norm of the space B.

A system of elements
{
ϕk

}∞
k=0 is said to be minimal in B if none of its elements belongs to the closure of

the linear span of the other elements of this system.
It is well known that a system

{
ϕk

}∞
k=0 is minimal if and only if there exists a biorthogonal system which

is dual to it, that is, a system of linear functionals
{
ψk

}∞
k=0 from B∗ such that

(ϕk, ψ j) = δk, j

for all k, j ∈ N. Moreover, if the initial system is simultaneously closed and minimal in B, then the
biorthogonal dual system is uniquely defined.

We say that a system
{
ϕk

}∞
k=0 is uniformly minimal in B, if there exists γ > 0 such that for all k ∈N,

dist{ϕk,Bk} ≥ γ‖ϕk‖B,

where Bk is the closure of the linear span of all elements ϕl with serial numbers l , k.
It is also well known that a closed and minimal system

{
ϕk

}∞
k=0 is uniformly minimal in B if and only if:

sup
k∈N
‖ϕk‖B‖ψk‖B∗ < ∞.

A system
{
ϕk

}∞
k=0 forms a basis of the space B if, for any element f ∈ B, there exists a unique expansion

of it in the elements of the system, that is, the series
∑
∞

k=0 fkϕk converges to f in the norm of the space B.
Any basis is a closed and minimal system in B, and, therefore, we can uniquely find its biorthogonal

dual system
{
ψk

}∞
k=0, and hence the expansion of any element of f with respect to the basis

{
ϕk

}∞
k=0 coincides

with its biorthogonal expansion, that is, fk = ( f , ψk) for all k ∈N.

4. On Eigenvalues and Eigenfunctions of the Problem

In a whole the constructing eigenvalues and eigenfunctions of the problem (1) is a simple task. Therefore
we omit some details of the calculations and present the main facts which we will use further.

We look for eigenvalues of the problem. Note that λ = 0 is not an eigenvalue, since problem (1) for this
value of λ has only the trivial solution.

Let λ , 0. The eigenfunction should have the form u(x) = sin
(√
λx

)
. By taking into account the nonlocal

boundary condition, we obtain two equations

cos
( √

λπ
2

)
= 0, cot

( √
λπ
2

)
= −

α
√
λ
.

Solutions of the first equation form a series of eigenvalues and eigenfunctions of the problem (1) of the
form

λ(1)
k = (2k + 1)2, uk1(x) = sin ((2k + 1) x) , k = 0, 1, 2, ....

The second equations can be represented as

cot
(
βπ

)
= −

α
2β
, β =

√
λ

2
.
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By βk denote roots of this equation. It is easy to show that they satisfy the inequalities 2k + 1 < 2βk <
2k + 2, k = 0, 1, 2, ..., and two-side estimates are carried out for δk = βk − k − 1/2, where k is large enough

α
π (2k + 1)

(
1 −

1
2k + 1

)
< δk = α

∣∣∣∣∣O (1
k

)∣∣∣∣∣ < α
π (2k + 1)

. (6)

Consequently there exists a second series of eigenvalues and eigenfunctions of the form

λ(2)
k = (2βk)2, uk2(x) = sin

(
2βkx

)
, k = 0, 1, 2, ...

Lemma 4.1. The system of eigenfunctions {uk1,uk2}
∞

k=0 of the problem (1) is complete and minimal, almost normed
but does not form even an ordinary basis in L2(0, π).

Proof. The completeness and minimality of the system follow from the regularity of boundary conditions
of the spectral problem (1). The limitation of norms is easily checked by direct calculation. However the
properties of the completeness and minimality are not enough for the basis property.

Really, consider scalar multiplications of pairs of eigenfunctions (uk1,uk2). By direct calculation, we find

(uk1,uk2) =

∫ π

0
sin((2k + 1) t) sin

(
2βkt

)
dt =

π
2

sin (2δkπ)
2δkπ

2k + 1
2k + 1 + δk

.

Taking into account that ‖uk1‖ =
√
π/2, and lim

k→∞
‖uk2‖ =

√
π/2, we get that the angle between the normed

eigenvectors tends to zero:

lim
k→∞

( uk1

‖uk1‖
,

uk2

‖uk2‖

)
L2(0,π)

= 1. (7)

Such systems can not form the unconditional basis. We show it more detailed.
The problem

−v′′ (x) = λv (θ) , 0 < x < π;

v (0) + v (π) = 0, v′ (π) + αv (π) = 0
(8)

is conjugated to the problem (1). The system of the eigenfunctions of this problem is biorthogonal to the
system {uk1,uk2}

∞

k=0 :

vk1 (x) = 2
π

{
sin ((2k + 1) x) − 2k+1

α cos ((2k + 1) x)
}

vk2 (x) = Ck2

{
sin

(
2βkx

)
−

2βk

α cos
(
2βkx

)}
, k = 0, 1, 2, ...,

k = 0, 1, 2, .... (9)

The constant Ck2 are taken from the biorthogonal relations (uk2, vk2) = 1. Since we will not use the explicit
form of the biorthogonal system, then we do not present here the explicit form of constant Ck2.

Due to biorthogonality of the system, the equations

(uk1, vk1) = 1, (uk2, vk1) = 0, k = 0, 1, 2, ....

are valid.
It follows that (uk1 − uk2, vk1) = 1. Using the Cauchy-Bunyakovsky inequality, we get the estimate from

the bottom

‖vk1‖ ≥ (‖uk1 − uk2‖)
−1 .

Since ‖uk1‖ =
√
π/2, and lim

k→∞
‖uk2‖ =

√
π/2, then from here and from (7) it is easy to obtain

lim
k→∞
‖uk1‖ ‖vk1‖ = ∞.

That is, the necessary condition of the basis property does not hold.
Lemma is proved.
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It is necessary to note the fact, that the system of eigenfunctions {uk1,uk2}
∞

k=0 does not have the basis, also
follows from more general facts [8].

5. Forming the Basis

Now from elements of the system {uk1,uk2}
∞

k=0 we construct a new system which will be a basis in L2(0, π).
We introduce new functions

ϕ2k (x) = uk1 (x) ,
k = 0, 1, 2, ....

ϕ2k+1 (x) = (uk2 (x) − uk1 (x)) (2δk) −1,
(10)

Let us show that the constructed system is a Riesz basis in L2(0, π).
The biorthogonal system to (10) has the form:

ψ2k (x) = vk2 (x) + vk1 (x) ,

ψ2k+1 (x) = 2δkvk2 (x) , k = 0, 1, 2, ....

This system is constructed from the eigenfunctions of the problem (8) conjugated to (1).
Let us show that the constructed additional system has the basis property.

Lemma 5.1. The system of functions
{
ϕk (x)

}∞
k=0 forms a Riesz basis in L2 (0, π).

Proof. Since this system is constructed from the eigenfunctions of the problem with regular boundary
conditions and with the help of non-degenerated linear combinations, then the completeness and minimality
of the system do not change.

Let us prove asymptotic quadratic closeness of the system
{
ϕk (x)

}∞
k=0 to the system forming the Riesz

basis. As such we choose the system of eigen- and associated functions of a problem of the Samarskii-Ionkin
type:

−w′′ (x) = λw (x) , 0 < x < π;

w (0) = 0, w′ (0) + w′ (π) = 0.

The boundary conditions of this problem are not strengthened regular. All the eigenvalues of this problem,
except zero values, are multiple: λ(1)

k = λ(2)
k = (2k + 1) 2, k = 0, 1, 2, .... The eigenfunctions w2k and the

associated functions w2k+1 of the problem form the Riesz basis in L2 (0, π) and have the form:

w2k (x) = sin ((2k + 1) x) , k = 0, 1, 2, ...; w2k+1 (x) = x cos ((2k + 1) x) .

We need to show that the series converges

∞∑
k=0

∥∥∥ϕk − wk

∥∥∥2
< ∞.

It is evident that ϕ2k − w2k = 0. For odd numbers we have:

ϕ2k+1 (x) =
sin

(
2βkx

)
− sin ((2k + 1) x)

2δk
=

sin (δkx)
δkx

x cos ((2k + 1 + δk) x) .

Thus it is not difficult to get the estimate
∣∣∣ϕ2k+1 (x) − w2k+1 (x)

∣∣∣ ≤ Cδk. From here and from the asymptotics
(6) for δk we have the asymptotic inequality

∣∣∣ϕ2k+1 − w2k+1

∣∣∣ ≤ C1/k, where C1 does not depend on k.
The obtained inequality provides the quadratic closeness of the system

{
ϕk (x)

}∞
k=0 and the Riesz basis

{wk (x)}∞k=0. Lemma is proved.
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Further on, by standard methods it is not difficult to justify that if the function f (x) ∈ C2[0, π] and satisfies
the boundary conditions of the problem (1), then its Fourier series by the system

{
ϕk (x)

}∞
k=0 converges

uniformly.
We can calculate that

−ϕ′′2k (x) = λ(1)
k ϕ2k (x) ,

−ϕ′′2k+1 (x) = λ(2)
k ϕ2k+1 (x) +

λ(2)
k −λ

(1)
k

2δk
ϕ2k (x) .

(11)

Using these formulas, it is possible to apply the method of separation of variables for solving problems of
the type (2) - (5).

6. Usage of the Obtained Results for Solving of the Nonlocal Boundary Equation

We can write any solution of problem (2) - (5) in the form of a biorthogonal series

u (r, θ) =

∞∑
k=0

Rk (r)ϕk (θ) , (12)

where

Rk (r) =
(
u (r, ·) , ψk (·)

)
≡

∫ π

0
u (r, θ)ψk (θ) dθ.

Functions (12) satisfy the boundary conditions (4) and (5).
Substituting (12) into equation (2) and the boundary conditions (3), taking into account (11), for finding

unknown functions Rk(r) we obtain following problems:

r2R′′2k+1(r) + rR′2k+1(r) − λ(2)
k R2k+1(r) = 0,

r2R′′2k(r) + rR′2k(r) − λ(1)
k R2k(r) =

λ(2)
k −λ

(1)
k

2δk
R2k+1(r),

(13)

with the boundary conditions Rk(1) = fk, where fk are the Fourier coefficients of the expansion of the
function f (θ) into the biorthogonal series by

{
ϕk (θ)

}∞
k=0.

The regular solution of (13) exists, is unique and can be written in the explicit form:

R2k+1(r) = f2k+1r
√
λ(2)

k ,

R2k(r) = f2kr
√
λ(1)

k + f2k+1
1

2δk

(
r
√
λ(2)

k − r
√
λ(1)

k

)
.

(14)

Substituting (14) into (12), we obtain a formal solution of the problem:

u(r, θ) =
∑
∞

k=0 f2kr2k+1 sin ((2k + 1)θ) +
∑
∞

k=0 f2k+1
1

2δk
[r2βk sin

(
2βkθ

)
− r2k+1 sin ((2k + 1)θ)]. (15)

Theorem 6.1. If f (θ) ∈ C2[0, π], f (0) = 0, f ′(0) = − f ′(π) + α f (π), then there exists a unique classical solution
u(r, θ) ∈ C0(D̄) ∩ C2(D) of the problem (2)-(5).

Proof. The uniqueness of the classical solution of the problem follows from the maximum principle and the
Zaremba-Giraud principle for the Laplace equation. The formal solution of the problem is shown in the
form of (15). In order to make sure that these functions are really the desired solutions, we need to verify
the applicability of the superposition principle. For it we need to show the convergence of the series, the
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possibility of termwise differentiation, and to prove the continuity of these functions on the boundary of
the half-disk.

The possibility of differentiating the series (15) any number of times at r < 1 is an obvious consequence of
the convergence of power series and two-sided estimates (6) for δk. Let us justify the uniform convergence
of the series (12) at r ≤ 1. For this we use the sign of the uniform convergence of Weierstrass.

By direct calculation it is easy to see that the series (15) is majorized by the series C1(| f0| + | f1| + | f2| + ...).
This series converges due to the requirements of the theorem imposed on f (θ). Since all the terms of the
series (15) are continuous functions, then the function u(r, θ) is continuous in the boundary domain D̄.

The proof of the theorem is complete.

7. Conclusion

Thus, in the present work we have investigated the nonlocal boundary value spectral problem (1) for an
ordinary differential equation in an interval (0, π). The boundary conditions of this problem are regular but
not strengthened regular. The difference of this problem is: the system of eigenfunctions {uk1,uk2}

∞

k=0 of the
problem (1) is complete and minimal, almost normed but does not form even an ordinary basis in L2(0, π).

Based on these eigenfunctions {uk1,uk2}
∞

k=0 we have constructed a special system of functions
{
ϕk (x)

}∞
k=0

that already forms a Riesz basis in L2 (0, π).
This fact is used for solving the nonlocal boundary value problem (2) - (5).
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