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Abstract. In this paper, we establish strong and ∆-convergence theorems of modified three-step iterations
for total asymptotically nonexpansive mapping which is wider than the class asymptotically nonexpansive
mappings in the framework of CAT(0) spaces. Our results extend and generalize the corresponding results
of Chang et al. [Demiclosed principle and ∆-convergence theorems for total asymptotically nonexpansive
mappings in CAT(0) spaces, Appl. Math. Comput. 219(5) (2012) 2611-2617], Nanjaras and Panyanak
[Demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory
Appl. Vol. 2010, Art. ID 268780], and many others.

1. Introduction

As we know, iteration methods are numerical procedures which compute a sequence of gradually
accurate iterates to approximate the solution of a class of problems. Such methods are useful tools of
applied mathematics for solving real life problems ranging from economics and finance or biology to
transportation, network analysis or optimization. When we design iteration methods, we have to study
their qualitative properties such as: convergence, stability, error propagation, stopping criteria. This is
an active area of research, several well known scientists in the world paid and still pay attention to the
qualitative study of iteration methods; please, see: Ishikawa [23], Mann [29], Noor et al. [33–35], Ćiric et
al. [9–11, 14], Kirk and Shahzad [28], Ofoedu et al. [36, 37], Shahzad and Zegeye [42], Wan [45], Yao et al.
[48, 49]. Special emphasis is given to studies on CAT(0) spaces; Abbas et al. [2], Saluja [38–40], Shahzad
[41], Chang et al. [6], Panyanak et al. [17, 31, 32], Wu et al [46].

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic triangle in X is at
least as ’thin’ as its comparison triangle in the Euclidean plane. It is well known that any complete, simply
connected Riemannian manifold having non-positive sectional curvature is a CAT(0) space. Fixed point
theory in CAT(0) space has been first studied by Kirk (see [25, 26]). He showed that every nonexpansive
(single-valued) mapping defined on a bounded closed convex subset of a complete CAT(0) space always
has a fixed point. It is worth mentioning that the results in CAT(0) spaces can be applied to any CAT(k)
space with k ≤ 0 since any CAT(k) space is a CAT(m) space for every m ≥ k (see [4]).
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Nanjaras and Panyanak [31] proved the demiclosed principle for asymptotically nonexpansive map-
pings and gave the ∆-convergence theorem of the modified Mann iteration process for above mentioned
mappings in a CAT(0) space. In 2010, Y. Niwongsa and B. Panyanak [32] studied the Noor iteration scheme
in CAT(0) spaces and they proved some ∆ and strong convergence theorems for asymptotically nonex-
pansive mappings which extend and improve some recent results from the literature. In 2012, Chang et
al. [6] introduced the concept of total asymptotically nonexpansive mappings and proved the demiclosed
principle for said mapping in a CAT(0) space. Also, they established the ∆-convergence theorem of the
modified Mann iteration process for total asymptotically nonexpansive mappings in a CAT(0) space. Re-
cently, Başarir and Şahin [3] studied the modified S-iteration process, modified two-step iteration process
and established strong and ∆-convergence theorems for total asymptotically nonexpansive mappings in
the framework of CAT(0) spaces.

Algorithm 1. The sequence {xn} defined by x1 ∈ K and

yn = (1 − βn)xn ⊕ βnTnxn,

xn+1 = (1 − αn)Tnxn ⊕ αnTnyn, n ≥ 1, (1)

where {αn}
∞

n=1 and {βn}
∞

n=1 are appropriate sequences in (0,1) is called modified S-iterative sequence [1].
If Tn = T for all n ≥ 1, then Algorithm 1 reduces to the following.
Algorithm 2. The sequence {xn} defined by x1 ∈ K and

yn = (1 − βn)xn ⊕ βnTxn,

xn+1 = (1 − αn)Txn ⊕ αnTyn, n ≥ 1, (2)

where {αn}
∞

n=1 and {βn}
∞

n=1 are appropriate sequences in (0,1) is called S-iterative sequence [1].
Algorithm 3. The sequence {xn} defined by x1 ∈ K and

yn = (1 − βn)xn ⊕ βnTnxn,

xn+1 = (1 − αn)xn ⊕ αnTnyn, n ≥ 1, (3)

where {αn}
∞

n=1 and {βn}
∞

n=1 are appropriate sequences in [0,1] is called an Ishikawa iterative sequence [23];
please, see also Ćirić [7], and Ćirić and Ume [8].

If βn = 0 for all n ≥ 1, then Algorithm 3 reduces to the following.
Algorithm 4. The sequence {xn} defined by x1 ∈ K and

xn+1 = (1 − αn)xn ⊕ αnTnxn, n ≥ 1, (4)

where {αn}
∞

n=1 is a sequence in (0,1) is called a Mann iterative sequence [29]; please, see also [12, 13].
Motivated and inspired by [1] and some others, we modify iteration scheme (1) as follows.
Algorithm 5. The sequence {xn} defined by x1 ∈ K and

zn = (1 − γn)xn ⊕ γnTnxn

yn = (1 − βn)xn ⊕ βnTnzn,

xn+1 = (1 − αn)Tnxn ⊕ αnTnyn, n ≥ 1, (5)

where {αn}
∞

n=1, {βn}
∞

n=1, {γn}
∞

n=1 are appropriate sequences in (0,1) is called modified three-step iterative
sequence. Iteration scheme (5) is independent of modified Noor iteration [30], modified Ishikawa iteration
and modified Mann iteration schemes.

If γn = 0 for all n ≥ 1, then Algorithm 5 reduces to the Algorithm 1.
Iteration procedures in fixed point theory are lead by the considerations in summability theory. For

example, if a given sequence converges, then we don’t look for the convergence of the sequence of its
arithmetic means. Similarly, if the sequence of Picard iterates of any mapping T converges, then we don’t
look for the convergence of other iteration procedures.

The three-step iterative approximation problems were studied extensively by Noor [33, 34], Glowinsky
and Le Tallec [20], and Haubruge et al [21]. It has been shown [20] that three-step iterative scheme gives
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better numerical results than the two step and one step approximate iterations. Thus we conclude that
three step scheme plays an important and significant role in solving various problems, which arise in pure
and applied sciences.

Motivated by Chang et al. [6], Başarir and Şahin [3] and some others, in this paper, we establish strong
and ∆-convergence theorems of modified three-step iteration process for total asymptotically nonexpansive
mappings in the framework of CAT(0) spaces. Our results extend and generalize the corresponding results
of [3, 6, 31, 32] many others.

2. Preliminaries and Lemmas

Let (X, d) be a metric space and K a nonempty subset of X. Let T : K → K be a mapping. A point
x ∈ K is called a fixed point of T if Tx = x and we denote by F(T) the set of fixed points of T, that is,
F(T) = {x ∈ K : Tx = x}.

Definition 2.1. Let (X, d) be a metric space and K a nonempty subset of X. Then T : K→ K is said to be
(1) nonexpansive if d(Tx,Ty) ≤ d(x, y) for all x, y ∈ K;
(2) asymptotically nonexpansive [18] if there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

d(Tnx,Tny) ≤ kn d(x, y) for all x, y ∈ K and n ≥ 1;
(3) uniformly L-Lipschitzian if there exists a constant L > 0 such that d(Tnx,Tny) ≤ L d(x, y) for all x, y ∈ K

and n ≥ 1;
(4) semi-compact if for a sequence {xn} in K with limn→∞ d(xn,Txn) = 0, there exists a subsequence {xnk } of

{xn} such that xnk → p ∈ K.
(5) a sequence {xn} in K is called approximate fixed point sequence for T (AFPS in short) if limn→∞ d(xn,Txn) =

0.

Chang et al. [6] defined the concept of total asymptotically nonexpansive mapping as follows.

Definition 2.2 ([6] Definition 2.1). Let (X, d) be a metric space, K be its nonempty subset and let T : K→ K
be a mapping. T is said to be a total asymptotically nonexpansive mapping if there exist non-negative real
sequences {µn}, {νn} with µn → 0, νn → 0 and a strictly increasing continuous function ζ : [0,∞) → [0,∞)
with ζ(0) = 0 such that

d(Tnx,Tny) ≤ d(x, y) + νnζ(d(x, y)) + µn

for all x, y ∈ K and n ≥ 1.

Remark 2.3. From the definitions given above, it follows that each nonexpansive mapping is an asymp-
totically nonexpansive mapping with the constant sequence {kn} = {1}, ∀n ≥ 1, each asymptotically non-
expansive mapping is a total asymptotically nonexpansive mapping with µn = 0, νn = kn − 1 for all n ≥ 1,
ζ(t) = t, t ≥ 0 and each asymptotically nonexpansive mapping is a uniformly L-Lipschitzian mapping with
L = supn≥1{kn}.

We now give the definition and some basic properties of CAT(0) space. For this purpose, we consider
(X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x to y) is
a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y and d(c(t), c(t′)) = |t − t′| for all
t, t′ ∈ [0, l]. In particular, c is an isometry, and d(x, y) = l. The image α of c is called a geodesic (or metric)
segment joining x and y. We say that X is (i) a geodesic space if any two points of X are joined by a geodesic
and (ii) uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X, which we will
denote by [x, y], called the segment joining x to y.

A geodesic triangle4(x1, x2, x3) in a geodesic metric space (X, d) consists of three points in X (the vertices of
4) and a geodesic segment between each pair of vertices (the edges of4). A comparison triangle for the geodesic
triangle 4(x1, x2, x3) in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in R2 such that dR2 (xi, x j) = d(xi, x j) for
i, j ∈ {1, 2, 3}. Such a triangle always exists (see [4]).
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CAT(0) space. A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate
size satisfy the following CAT(0) comparison axiom.

Let 4 be a geodesic triangle in X, and let 4 ⊂ R2 be a comparison triangle for 4. Then 4 is said to satisfy
the CAT(0) inequality if for all x, y ∈ 4 and all comparison points x, y ∈ 4,

d(x, y) ≤ dR2 (x, y). (6)

Complete CAT(0) spaces are often called Hadamard spaces (see [24]). If x, y1, y2 are points of a CAT(0) space
and y0 is the midpoint of the segment [y1, y2] which we will denote by (y1⊕y2)/2, then the CAT(0) inequality
implies

d2
(
x,

y1 ⊕ y2

2

)
≤

1
2

d2(x, y1) +
1
2

d2(x, y2) −
1
4

d2(y1, y2). (7)

Inequality (7) is the (CN) inequality of Bruhat and Tits [5]. The above inequality was extended in [17] as

d2(z, αx ⊕ (1 − α)y) ≤ αd2(z, x) + (1 − α)d2(z, y) − α(1 − α)d2(x, y) (8)

for any α ∈ [0, 1] and x, y, z ∈ X.
Let us recall that a geodesic metric space is a CAT(0) space if and only if it satisfies the (CN) inequality

(see [2, p.163]). Moreover, if X is a CAT(0) metric space and x, y ∈ X, then for any α ∈ [0, 1], there exists a
unique point αx ⊕ (1 − α)y ∈ [x, y] such that

d(z, αx ⊕ (1 − α)y) ≤ αd(z, x) + (1 − α)d(z, y), (9)

for any z ∈ X and [x, y] = {αx ⊕ (1 − α)y : α ∈ [0, 1]}.
A subset K of a CAT(0) space X is convex if for any x, y ∈ K, we have [x, y] ⊂ K.
In the sequel, we need the following definitions and useful lemmas to prove our main results of this

paper.

Lemma 2.4 ([32]). Let X be a CAT(0) space.
(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = t d(x, y) and d(y, z) = (1 − t) d(x, y). (A)

We use the notation (1 − t)x ⊕ ty for the unique point z satisfying (A).
(ii) For x, y ∈ X and t ∈ [0, 1], we have

d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z).

Let {xn} be a bounded sequence in a closed convex subset K of a CAT(0) space X. For x ∈ X, set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) =
{
x ∈ X : r({xn}) = r(x, {xn})

}
.

It is known that, in a CAT(0) space, A({xn}) consists of exactly one point; please, see [15], Proposition 7.
We now recall the definition of ∆-convergence and weak convergence (⇀) in CAT(0) space.

Definition 2.5 ([27]). A sequence {xn} in a CAT(0) space X is said to ∆-converge to x ∈ X if x is the unique
asymptotic center of {xn} for every subsequence {un} of {xn}.

In this case we write ∆-limn xn = x and call x is the ∆-limit of {xn}.
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Recall that a bounded sequence {xn} in X is said to be regular if r({xn}) = r({un}) for every subsequence
{un} of {xn}. In the Banach space it is known that, every bounded sequence has a regular subsequence;
[19], Lemma 15.2.

Since in a CAT(0) space every regular sequence ∆-converges, we see that every bounded sequence in X
has a ∆-convergent subsequence; noticed in [27], p. 3690.

Lemma 2.6 ([2]). Given {xn} ⊂ X such that {xn} ∆-converges to x and given y ∈ X with y , x, then

lim sup
n

d(xn, x) < lim sup
n

d(xn, y).

In a Banach space the above condition is known as the Opial property.
Now, recall the definition of weak convergence in a CAT(0) space.

Definition 2.7 ([22]). Let K be a closed convex subset of a CAT(0) space X. A bounded sequence {xn} in K
is said to converge weakly to q ∈ K if and only if Φ(q) = infx∈K Φ(x), where Φ(x) = lim supn→∞ d(xn, x).

Note that {xn}⇀ q if and only if AK{xn} = {q}.
Nanjaras and Panyanak [31] established the following relation between ∆-convergence and weak con-

vergence in a CAT(0) space:

Lemma 2.8 ([31], Proposition 3.12). Let {xn} be a bounded sequence in a CAT(0) space X and let K be a closed
convex subset of X which contains {xn}. Then

(i) ∆-limxn = x implies xn ⇀ x.
(ii) The converse of (i) is true if {xn} is regular.

Lemma 2.9 ([17], Lemma 2.8). If {xn} is a bounded sequence in a CAT(0) space X with A({xn}) = {x} and {un} is a
subsequence of {xn} with A({un}) = {u} and the sequence {d(xn,u)} converges, then x = u.

Lemma 2.10 ([16], Proposition 2.1). If K is a closed convex subset of a CAT(0) space X and if {xn} is a bounded
sequence in K, then the asymptotic center of {xn} is in K.

Lemma 2.11 ([6], Theorem 3.8). Let K be closed convex subset of a complete CAT(0) space X and let T : K → K
be a total asymptotically nonexpansive and uniformly L-Lipschitzian mapping. Let {xn} be a bounded sequence in K
such that limn→∞ d(xn,Txn) = 0 and ∆ − limn→∞ xn = p. Then Tp = p.

Lemma 2.12 ([44]). Suppose that {an}, {bn} and {rn} are sequences of nonnegative real numbers such that an+1 ≤

(1 + bn)an + rn for all n ≥ 1. If
∑
∞

n=1 bn < ∞ and
∑
∞

n=1 rn < ∞, then limn→∞ an exists.

3. The Main Results

Now, we prove the following lemma using modified three-step iteration scheme (5) needed in the sequel.

Lemma 3.1. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let T : K → K be a total
asymptotically nonexpansive and uniformly L-Lipschitzian mapping with F(T) , Ø. Suppose that {xn} is defined by
the iteration process (5).

If the following conditions are satisfied:
(i)

∑
∞

n=1 µn < ∞,
∑
∞

n=1 νn < ∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
Then limn→∞ d(xn, p) and limn→∞ d(xn,F(T)) exist for all p ∈ F(T).
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Proof. Let p ∈ F(T). From (5) and Lemma 2.1(ii), we have

d(zn, p) = d((1 − γn)xn ⊕ γnTnxn, p)
≤ γn d(Tnxn, p) + (1 − γn)d(xn, p)
≤ γn[d(xn, p) + νn(d(xn, p)) + µn] + (1 − γn)d(xn, p)
≤ γn[d(xn, p) + νnM1d(xn, p) + µn] + (1 − γn)d(xn, p)
= γn(1 + M1νn)d(xn, p) + γnµn + (1 − γn)d(xn, p)
≤ γn(1 + M1νn)d(xn, p) + γnµn

+(1 − γn)(1 + M1νn)d(xn, p)
≤ (1 + M1νn)d(xn, p) + µn. (10)

Again using (5), (10) and Lemma 2.1(ii), we have

d(yn, p) = d((1 − βn)xn ⊕ βnTnzn, p)
≤ βn d(Tnzn, p) + (1 − βn)d(xn, p)
≤ βn[d(zn, p) + νn(d(zn, p)) + µn] + (1 − βn)d(xn, p)
≤ βn[d(zn, p) + νnM1d(zn, p) + µn] + (1 − βn)d(xn, p)
= βn(1 + M1νn)d(zn, p) + βnµn + (1 − βn)d(xn, p)
≤ βn(1 + M1νn)[(1 + M1νn)d(xn, p) + µn] + βnµn

+(1 − βn)d(xn, p)
= βn(1 + M1νn)2d(xn, p) + βn(1 + M1νn)µn + βnµn

+(1 − βn)d(xn, p)
≤ βn(1 + M1νn)2d(xn, p) + βn(1 + M1νn)µn + βnµn

+(1 − βn)(1 + M1νn)2d(xn, p)
≤ (1 + M1νn)2d(xn, p) + (2 + M1νn)µn. (11)

Now using (5), (11) and Lemma 2.1(ii), we get

d(xn+1, p) = d((1 − αn)Tnxn ⊕ αnTnyn, p)
≤ αn d(Tnyn, p) + (1 − αn)d(Tnxn, p)
≤ αn[d(yn, p) + νn(d(yn, p)) + µn] + (1 − αn)[d(xn, p)

+νn(d(xn, p)) + µn]
≤ αn[d(yn, p) + νnM1d(yn, p) + µn] + (1 − αn)[d(xn, p)

+νnM1d(xn, p) + µn]
= αn(1 + M1νn)d(yn, p) + (1 − αn)(1 + M1νn)d(xn, p) + µn

≤ αn(1 + M1νn)[(1 + M1νn)2d(xn, p) + (2 + M1νn)µn]
+(1 − αn)(1 + M1νn)d(xn, p) + µn

≤ αn(1 + M1νn)3d(xn, p) + αn(1 + M1νn)(2 + M1νn)µn

+(1 − αn)(1 + M1νn)3d(xn, p) + µn

≤ (1 + M1νn)3d(xn, p) + 3µn(1 + M1νn)
= (1 + An)d(xn, p) + Bn, (12)

where An = 3M1νn + 3M2
1ν

2
n + M3

1ν
3
n and Bn = 3µn(1 + M1νn). Since by the assumption of the theorem∑

∞

n=1 µn < ∞ and
∑
∞

n=1 νn < ∞, it follows that
∑
∞

n=1 An < ∞ and
∑
∞

n=1 Bn < ∞. Equation (12) implies that

d(xn+1,F(T)) ≤ (1 + An)d(xn,F(T)) + Bn. (13)

Hence from Lemma 2.12, (12) and (13), we get limn→∞ d(xn, p) and limn→∞ d(xn,F(T)) both exist.
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Theorem 3.2. Let X, K, T, {xn} satisfy the hypothesis of Lemma 3.1. Then the sequence {xn} converges strongly to a
fixed point of T if and only if lim infn→∞ d(xn,F(T)) = 0, where d(x,F(T)) = inf{d(x, p) : p ∈ F(T)}.

Proof. The necessity is obvious.
To prove the converse, suppose that lim infn→∞ d(xn,F(T)) = 0. As proved in Lemma 3.1, for all p ∈ F(T),

limn→∞ d(xn,F(T)) exists. Thus by the hypothesis limn→∞ d(xn,F(T)) = 0.
Next, we show that {xn} is a Cauchy sequence in K. With the help of inequality 1 + x ≤ ex, x ≥ 0. For any

integer m ≥ 1, therefore from (9), we have

d(xn+m, p) ≤ (1 + An+m−1)d(xn+m−1, p) + Bn+m−1

≤ eAn+m−1 d(xn+m−1, p) + Bn+m−1

≤ eAn+m−1 [eAn+m−2 d(xn+m−2, p) + Bn+m−2] + Bn+m−1

≤ e(An+m−1+An+m−2)d(xn+m−2, p) + eAn+m−1 [Bn+m−2 + Bn+m−1]
≤ . . .

≤

(
e
∑n+m−1

k=n Ak
)
d(xn, p) +

(
e
∑n+m−1

k=n Ak
) n+m−1∑

k=n

Bk

≤

(
e
∑
∞

n=1 An
)
d(xn, p) +

(
e
∑
∞

n=1 An
) n+m−1∑

k=n

Bk

= W d(xn, p) + W
n+m−1∑

k=n

Bk, (14)

where W = e
∑
∞

n=1 An .

Since limn→∞ d(xn,F(T)) = 0, without loss of generality, we may assume that a subsequence {xnk } of {xn}

and a sequence {pnk } ⊂ F(T) such that d(xnk , pnk )→ 0 as k → ∞. Then for any ε > 0, there exists kε > 0 such
that

d(xnk , pnk ) <
ε

4W
and

∞∑
k=nkε

Bk <
ε

4W
, (15)

for all k ≥ kε.
For any m ≥ 1 and for all n ≥ nkε , by (14), we have

d(xn+m, xn) ≤ d(xn+m, pnk ) + d(xn, pnk )

≤ W d(xn, pnk ) + W
∞∑

k=nkε

Bk

+W d(xn, pnk ) + W
∞∑

k=nkε

Bk

= 2W d(xn, pnk ) + 2W
∞∑

k=nkε

Bk

< 2W.
ε

4W
+ 2W.

ε
4W

= ε. (16)

This proves that {xn} is a Cauchy sequence in K. Thus, the completeness of X implies that {xn} must be
convergent. Assume that limn→∞ xn = z. Since K is closed, therefore z ∈ K. Next, we show that z ∈ F(T).
Since limn→∞ d(xn,F(T)) = 0 we get d(z,F(T)) = 0, closedness of F(T) gives that z ∈ F(T). Thus {xn} converges
strongly to a point in F(T). This completes the proof.
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Lemma 3.3. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let T : K → K be
a uniformly continuous and total asymptotically nonexpansive mapping with F(T) , Ø. Suppose that {xn} is
defined by the iteration process (5). Let {αn} and {βn} be sequences in (0, 1) such that lim infn→∞ αn(1 − αn) > 0,
lim infn→∞ βn(1 − βn) > 0 and lim infn→∞ γn(1 − γn) > 0.

If the following conditions are satisfied:
(i)

∑
∞

n=1 µn < ∞,
∑
∞

n=1 νn < ∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
Then limn→∞ d(Txn, xn) = 0.

Proof. Let p ∈ F(T). Then by Lemma 3.1, we have limn→∞ d(xn, p) exists, so we can assume that limn→∞ d(xn, p) =
a, where a > 0. We claim that limn→∞ d(Txn, xn) = 0.

Since {xn} is bounded, there exists R > 0 such that {xn}, {yn}, {zn} ⊂ BR(p) for all n ≥ 1. Using (1) and (8),
we have

d2(zn, p) = d2((1 − γn)xn ⊕ γnTnxn, p)
≤ γnd2(Tnxn, p) + (1 − γn)d2(xn, p)
−γn(1 − γn)d(Tnxn, xn)

≤ γn[d(xn, p) + νn(d(xn, p)) + µn]2 + (1 − γn)d2(xn, p)
−γn(1 − γn)d(Tnxn, xn)

≤ γn[d(xn, p) + νnM1d(xn, p) + µn]2 + (1 − γn)d2(xn, p)
−γn(1 − γn)d(Tnxn, xn)

= γn[(1 + νnM1)d(xn, p) + µn]2 + (1 − γn)d2(xn, p)
−γn(1 − γn)d(Tnxn, xn)

≤ (1 + νnM1)2γnd2(xn, p) + (1 + νnM1)2(1 − γn)d2(xn, p)
+γn[2(1 + νnM1)µnd(xn, p) + µ2

n] − γn(1 − γn)d(Tnxn, xn)
≤ (1 + νnM1)2d2(xn, p) + γn[2(1 + νnM1)µnd(xn, p) + µ2

n]
−γn(1 − γn)d(Tnxn, xn)

≤ d2(xn, p) + aνn + bµn − γn(1 − γn)d(Tnxn, xn), (17)

for some a, b > 0. This implies that

d2(zn, p) ≤ d2(xn, p) + aνn + bµn, (18)

Again from (1) and (8), we have

d2(yn, p) = d2((1 − βn)xn ⊕ βnTnzn, p)
≤ βnd2(Tnzn, p) + (1 − βn)d2(xn, p)
−βn(1 − βn)d2(Tnzn, xn)

≤ βn[d(zn, p) + νn(d(zn, p)) + µn]2 + (1 − βn)d2(xn, p)
−βn(1 − βn)d2(Tnzn, xn)

≤ βn[d(zn, p) + νnM1d(zn, p) + µn]2 + (1 − βn)d2(xn, p)
−βn(1 − βn)d2(Tnzn, xn)

= βn[(1 + νnM1)d(zn, p) + µn]2 + (1 − βn)d2(xn, p)
−βn(1 − βn)d2(Tnzn, xn)

≤ βn(1 + νnM1)2d2(zn, p) + (1 − βn)(1 + νnM1)2d2(xn, p)
+βn[2µn(1 + νnM1)d(zn, p) + µ2

n]
−βn(1 − βn)d2(Tnzn, xn). (19)
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Substituting (18) into (19), we have

d2(yn, p) ≤ βn(1 + νnM1)2[d2(xn, p) + aνn + bµn]
+(1 − βn)(1 + νnM1)2d2(xn, p)
+βn[2µn(1 + νnM1)d(zn, p) + µ2

n]
−βn(1 − βn)d2(Tnzn, xn)

≤ d2(xn, p) + fνn + 1µn

−βn(1 − βn)d2(Tnzn, xn), (20)

for some f , 1 > 0.
This implies that

d2(yn, p) ≤ d2(xn, p) + fνn + 1µn. (21)

Finally, from (1) and (8), we have

d2(xn+1, p) = d2((1 − αn)Tnxn ⊕ αnTnyn, p)
≤ αnd2(Tnyn, p) + (1 − αn)d2(Tnxn, p)
−αn(1 − αn)d2(Tnxn,Tnyn)

≤ αn[d(yn, p) + νn(d(yn, p)) + µn]2 + (1 − αn)[d(xn, p)
+νn(d(xn, p)) + µn]2

− αn(1 − αn)d2(Tnxn,Tnyn)
≤ αn[d(yn, p) + νnM1d(yn, p) + µn]2 + (1 − αn)[d(xn, p)

+νnM1d(xn, p) + µn]2
− αn(1 − αn)d2(Tnxn,Tnyn)

= αn[(1 + νnM1)d(yn, p) + µn]2 + (1 − αn)[(1 + νnM1)d(xn, p)
+µn]2

− αn(1 − αn)d2(Tnxn,Tnyn)
≤ αn(1 + νnM1)2d2(yn, p) + (1 + νnM1)2(1 − αn)d2(xn, p)

+2µnαn(1 + νnM1)d(yn, p) + 2µn(1 − αn)(1 + νnM1)d(xn, p)
+µ2

n − αn(1 − αn)d2(Tnxn,Tnyn)
≤ αn(1 + νnM1)2d2(yn, p) + (1 + νnM1)2(1 − αn)d2(xn, p)

+2µn(1 + νnM1)R + µ2
n − αn(1 − αn)d2(Tnxn,Tnyn). (22)

Substituting (21) into (22), we obtain

d2(xn+1, p) ≤ αn(1 + νnM1)2[d2(xn, p) + fνn + 1µn]
+(1 + νnM1)2(1 − αn)d2(xn, p) + µ2

n

+2µn(1 + νnM1)R − αn(1 − αn)d2(Tnxn,Tnyn)
≤ d2(xn, p) + Mνn + Nµn

−αn(1 − αn)d2(Tnxn,Tnyn), (23)

for some M, N > 0.
Equation (23) yields

αn(1 − αn)d2(Tnxn,Tnyn) ≤ d2(xn, p) − d2(xn+1, p) + Mνn + Nµn.

Since
∑
∞

n=1 νn < ∞,
∑
∞

n=1 µn < ∞, we have

αn(1 − αn)d2(Tnxn,Tnyn) < ∞.

This implies by lim infn→∞ αn(1 − αn) > 0 that

lim
n→∞

d(Tnxn,Tnyn) = 0.
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Now, consider (20), we have

d2(yn, p) ≤ d2(xn, p) + fνn + 1µn

−βn(1 − βn)d2(Tnzn, xn). (24)

Equation (24) yields

βn(1 − βn)d2(Tnzn, xn) ≤ d2(xn, p) − d2(yn, p) + fνn + 1µn.

Since
∑
∞

n=1 νn < ∞,
∑
∞

n=1 µn < ∞, d(xn, p) ≤ R and d(yn, p) ≤ R for all n, we have

βn(1 − βn)d2(Tnzn, xn) < ∞.

This implies by lim infn→∞ βn(1 − βn) > 0 that

lim
n→∞

d(Tnzn, xn) = 0. (25)

Next, consider (17), we have

d2(zn, p) ≤ d2(xn, p) + aνn + bµn − γn(1 − γn)d(Tnxn, xn). (26)

Equation (26) yields

γn(1 − γn)d2(Tnxn, xn) ≤ d2(xn, p) − d2(zn, p) + aνn + bµn.

Since
∑
∞

n=1 νn < ∞,
∑
∞

n=1 µn < ∞, d(xn, p) ≤ R and d(zn, p) ≤ R for all n, we have

γn(1 − γn)d2(Tnxn, xn) < ∞.

This implies by lim infn→∞ γn(1 − γn) > 0 that

lim
n→∞

d(Tnxn, xn) = 0. (27)

Now, we have

d(Tnyn, xn) ≤ d(Tnyn,Tnxn) + d(Tnxn, xn)
→ 0 as n→∞. (28)

Again, note that

d(xn, yn) ≤ βnd(xn,Tnzn)→ 0 as n→∞. (29)

By the definitions of xn+1 and yn, we have

d(xn, xn+1) ≤ d(xn,Tnyn)
≤ d(xn,Tnxn) + d(Tnxn,Tnyn)
≤ d(xn,Tnxn) + d(xn, yn) + νn(d(xn, yn)) + µn

≤ d(xn,Tnxn) + d(xn, yn) + νnM1d(xn, yn) + µn

≤ d(xn,Tnxn) + (1 + νnM1)d(xn, yn) + µn

→ 0 as n→∞. (30)
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By (27), (29) and uniform continuity of T, we have

d(xn,Txn) ≤ d(xn, xn+1) + d(xn+1,Tn+1xn+1)
+d(Tn+1xn+1,Tn+1xn) + d(Tn+1xn,Txn)

≤ d(xn, xn+1) + d(xn+1,Tn+1xn+1)
+d(xn+1, xn) + +νn+1(d(xn+1, xn)) + µn+1

+d(Tn+1xn,Txn)
≤ d(xn, xn+1) + d(xn+1,Tn+1xn+1)

+d(xn+1, xn) + νn+1M1d(xn+1, xn) + µn+1

+d(Tn+1xn,Txn)
= (2 + νn+1M1)d(xn+1, xn) + d(xn+1,Tn+1xn+1)

+d(Tn+1xn,Txn)→ 0 as n→∞. (31)

This completes the proof.

Now, we are in a position to prove the ∆-convergence and strong convergence theorems.

Theorem 3.4. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let T : K → K be
a uniformly continuous and total asymptotically nonexpansive mapping with F(T) , Ø. Suppose that {xn} is
defined by the iteration process (5). Let {αn} and {βn} be sequences in (0, 1) such that lim infn→∞ αn(1 − αn) > 0,
lim infn→∞ βn(1 − βn) > 0 and lim infn→∞ γn(1 − γn) > 0.

If the following conditions are satisfied:
(i)

∑
∞

n=1 µn < ∞,
∑
∞

n=1 νn < ∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
Then the sequence {xn} ∆-converges to a fixed point of T.

Proof. Let ωw(xn) :=
⋃

A({un}) where the union is taken over all subsequences {un} of {xn}. We can complete
the proof by showing that ωw(xn) ⊆ F(T) and ωw(xn) consists of exactly one point. Let u ∈ ωw(xn), then there
exists a subsequence {un} of {xn} such that A({un}) = {u}. By Lemma 2.10, there exists a subsequence {vn} of
{un} such that ∆ − limn vn = v ∈ K. Hence v ∈ F(T) by Lemma 2.11. Since by Lemma 3.1, limn→∞ d(xn, v)
exists, so by Lemma 2.9, v = u, i.e., ωw(xn) ⊆ F(T).

To show that {xn} ∆-converges to a fixed point of T, it is sufficient to show that ωw(xn) consists of exactly
one point.

Let {wn} be a subsequence of {xn} with A({wn}) = {w} and let A({xn}) = {x}. Since w ∈ ωw(xn) ⊆ F(T) and
by Lemma 3.1, limn→∞ d(xn,w) exists. Again by Lemma 2.9, we have x = w ∈ F(T). Thus ωw(xn) = {x}. This
shows that {xn} ∆-converges to a fixed point of T. This completes the proof.

As a consequence of Theorem 3.4, we obtain the following.

Corollary 3.5. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let T : K → K be a
uniformly continuous and total asymptotically nonexpansive mapping with F(T) , Ø. Suppose that {xn} is defined
by the iteration process (1). Let {αn} and {βn} be sequences in (0, 1) such that lim infn→∞ αn(1 − αn) > 0 and
lim infn→∞ βn(1 − βn) > 0.

If the following conditions are satisfied:
(i)

∑
∞

n=1 µn < ∞,
∑
∞

n=1 νn < ∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
Then the sequence {xn} ∆-converges to a fixed point of T.

Proof. The proof of Corollary 3.5 immediately follows from Theorem 3.4 by taking γn = 0 for all n ≥ 1. This
completes the proof.
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Theorem 3.6. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let T : K → K be
a uniformly continuous and total asymptotically nonexpansive mapping with F(T) , Ø. Suppose that {xn} is
defined by the iteration process (5). Let {αn} and {βn} be sequences in (0, 1) such that lim infn→∞ αn(1 − αn) > 0,
lim infn→∞ βn(1 − βn) > 0 and lim infn→∞ γn(1 − γn) > 0.

Suppose the following conditions are satisfied:
(i)

∑
∞

n=1 µn < ∞,
∑
∞

n=1 νn < ∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
If Tm is semi-compact for some m ∈N, then the sequence {xn} converges strongly to a fixed point of T.

Proof. By Lemma 3.3, limn→∞ d(xn,Txn) = 0. Since T is uniformly continuous, we have

d(xn,Tmxn) ≤ d(xn,Txn) + d(Txn,T2xn) + · · · + d(Tm−1xn,Tmxn)→ 0

as n→ ∞. That is, {xn} is an AFPS for Tm. By the semi-compactness of Tm, there exists a subsequence {xn j }

of {xn} and p ∈ K such that lim j→∞ xn j = p. Again, by the uniform continuity of T, we have

d(Tp, p) ≤ d(Tp,Txn j ) + d(Txn j , xn j ) + d(xn j , p)→ 0 as j→∞.

That is p ∈ F(T). By Lemma 3.1, d(xn, p) exists, thus p is the strong limit of the sequence {xn} itself. This
shows that the sequence {xn} converges strongly to a fixed point of T. This completes the proof.

Senter and Dotson [43] introduced the concept of Condition (A) as follows.

Definition 3.7 ([43]). A mapping T : K → K is said to satisfy Condition (A) if there exists a non-decreasing
function f : [0,∞) → [0,∞) with f (0) = 0 and f (r) > 0 for all r > 0 such that d(x,Tx) ≥ f (d(x,F(T))), for all
x ∈ K.

As an application of Theorem 3.2, we establish another strong convergence result employing Condition
(A).

Theorem 3.8. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let T : K → K be
a uniformly continuous and total asymptotically nonexpansive mapping with F(T) , Ø. Suppose that {xn} is
defined by the iteration process (5). Let {αn} and {βn} be sequences in (0, 1) such that lim infn→∞ αn(1 − αn) > 0,
lim infn→∞ βn(1 − βn) > 0 and lim infn→∞ γn(1 − γn) > 0.

Suppose the following conditions are satisfied:
(i)

∑
∞

n=1 µn < ∞,
∑
∞

n=1 νn < ∞;
(ii) there exists a constant M1 > 0 such that ζ(r) ≤M1r, r ≥ 0.
If T satisfies Condition (A), then the sequence {xn} converges strongly to a fixed point of T.

Proof. By similar argument as in the proof of Lemma 3.1, we have that limn→∞ d(xn,F(T)) exists. Again by
Lemma 3.3, we know that limn→∞ d(xn,Txn) = 0. So Condition (A) guarantees that limn→∞ f (d(xn,F(T))) = 0.
Since f is a non-decreasing function and f (0) = 0, it follows that limn→∞ d(xn,F(T)) = 0. Therefore, Theorem
3.2 implies that {xn} converges strongly to a fixed point of T. This completes the proof.

Remark 3.9. Theorem 3.4 extends Theorem 5.7 of Nanjaras and Panyanak [31] and Theorem 3.5 of Niwongsa
and Panyanak [32] to the case of more general class of asymptotically nonexpansive mapping and modified
three-step iteration scheme considered in this paper.

Remark 3.10. Theorem 3.4 also extends Theorem 3.5 of Chang et al. [6] to the case of modified three-step
iteration scheme considered in this paper.

Remark 3.11. Theorem 3.4 contains Theorem 4 of Başarir and Şahin [3] since the modified three-step
iteration scheme reduces to the modified S-iteration scheme.
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4. Conclusion

In this paper, we establish some ∆ and strong convergence theorems using iteration scheme (5) for more
general class of asymptotically nonexpansive mappings and modified three-step iteration scheme (5) which
contains modified S-iteration scheme in the framework of CAT(0) spaces and also give its application. The
results presented in this paper extend and generalize the previous work from the current existing literature
(see, for example, [3, 31, 32, 47] and many others).

Acknowledgement. This work is dedicated to Professor Ljubomir Ćirić for his distinguished contribu-
tion to iteration theory.
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