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On Topological Properties of the Hausdorff Fuzzy Metric Spaces
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Abstract. In the paper, necessary and sufficient conditions for two Hausdorff fuzzy metric spaces to
be homeomorphic are studied. Also, several properties of the Hausdorff fuzzy metric spaces, as F-
boundedness, separability and connectedness are explored.

1. Introduction

The concept of fuzzy metric has been introduced by many authors from different points of view [2, 3, 12,
14]. In particular, by generalizing the concept of probabilistic metric, Kramosil and Michalek [14] obtained
the concept of fuzzy metric with the help of continuous t-norms. To make the topology generated by a
fuzzy metric to be Hausdorff, George and Veeramani [3] modified in a slight but appealing way the concept
given by Kramosil and Michalek. Whereafter, Gregori and Romaguera [10] proved that the topological
space generated by a modified fuzzy metric is metrizable. The modified version of fuzzy metric is more
restrictive, but it determines the class of spaces that are tightly connected with the class of metrizable
topological spaces. So it is interesting to study the new version of fuzzy metric. Kočinac [13] studied some
selection properties of fuzzy metric spaces. A common fixed point theorem in M-complete fuzzy metric
spaces was proved by Kumar and Mihet [15]. Recently, Gregori et al. [6–11] gave much progress to the
study of fuzzy metric spaces. Other more contributions to the study of fuzzy metric spaces can be found in
[4, 5, 16–19, 21, 22].

In order to explore hyperspaces in given fuzzy metric spaces, Rodrı́guez-López and Romaguera [20]
constructed the Hausdorff fuzzy metric on the family of nonempty compact sets and discussed precom-
pactness, completeness and completion of the Hausdorff fuzzy metric spaces. Here, we construct another
type of the Hausdorff fuzzy metric on the family of nonempty compact sets that coincides with the type due
to Rodrı́guez-López and Romaguera [20]. Moreover, we investigate necessary and sufficient conditions for
two Hausdorff fuzzy metric spaces on the family of nonempty compact sets to be homeomorphic. Finally,
we explore several properties of the Hausdorff fuzzy metric spaces, as F-boundedness, separability and
connectedness.
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2. Preliminaries

Throughout the paper the letter N will denote the set of all natural numbers. Our basic reference for
general topology is [1].

Definition 2.1. ([3]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if it satisfies the
following conditions:

1. ∗ is associative and commutative;
2. ∗ is continuous;
3. a ∗ 1 = a for all a ∈ [0, 1];
4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Obviously, a ∗ b = a · b and a ∗ b = min{a, b} are two common examples of continuous t-norms.

Definition 2.2. ([3]) A 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an arbitrary set, ∗ is a continuous
t-norm and M is a fuzzy set on X × X × (0,∞) satisfying the following conditions for all x, y, z ∈ X and
s, t ∈ (0,∞):

1. M(x, y, t) > 0;
2. M(x, y, t) = 1 if and only if x = y;
3. M(x, y, t) = M(y, x, t);
4. M(x, y, t) ∗M(y, z, s) ≤M(x, z, t + s);
5. the function M(x, y, ·) : (0,∞)→ [0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, (M, ∗) will be called a fuzzy metric on X.

Definition 2.3. ([3]) Let (X,M, ∗) be a fuzzy metric space and let r ∈ (0, 1), t > 0 and x ∈ X. The set

BM(x, r, t) = {y ∈ X|M(x, y, t) > 1 − r}

is called the open ball with center x and radius r with respect to t.

It is clear that {BM(x, r, t)|x ∈ X, t > 0, r ∈ (0, 1)} forms a base of a topology τM in X. {BM(x, 1
n ,

1
n )|n ∈ N} is

a neighborhood base at x for the topology τM for all x ∈ X (see [3]).

Definition 2.4. ([4]) A mapping f from a fuzzy metric space (X1,M1, ∗1) to a fuzzy metric space (X2,M2, ∗2)
is called uniformly continuous if for each r2 ∈ (0, 1) and t2 > 0, there exist r1 ∈ (0, 1) and t1 > 0 such that
M2( f (x), f (y), t2) > 1 − r2 whenever x, y ∈ X1 and M1(x, y, t1) > 1 − r1.

Definition 2.5. ([1]) Let (X, τX) and (Y, τY) be two topological spaces and let f : X→ Y be a bijection. If both
the mapping f and the inverse mapping f−1 : Y→ X are continuous, then f is called a homeomorphism.

Definition 2.6. ([1]) A topological space (X, τX) is said to be homeomorphic to another topological space
(Y, τY) if there exists a homeomorphism f : X→ Y.

Definition 2.7. ([3]) A fuzzy metric space (X,M, ∗) is said to be F-bounded if there exist t > 0 and 0 < r < 1
such that M(x, y, t) > 1 − r for all x, y ∈ X.

Definition 2.8. ([5]) A fuzzy metric space (X,M, ∗) is said to be separable if (X, τM) is separable.
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3. Topological Construction of the Hausdorff Fuzzy Metric on Comp(X)

Given a fuzzy metric space (X,M, ∗), we will denote by P(X), Comp(X) and Fin(X), the set of nonempty
subsets, the set of nonempty compact subsets and the set of nonempty finite subsets of (X, τM), respectively.
Let M(a,B, t) := sup

b∈B
M(a, b, t), M(B, a, t) := sup

b∈B
M(b, a, t) for all a ∈ X, B ∈ P(X) and t > 0 (see Definition 2.4

of [22]). Observe that M(a,B, t) = M(B, a, t). In the following, for any A ⊂ X, the cardinality of A shall be
denote by |A|.

Definition 3.1. ([20]) Let (X,M, ∗) be a fuzzy metric space. For every A,B ∈ Comp(X) and t > 0, define HM:
Comp(X)× Comp(X) × (0,∞)→ [0, 1] by

HM(A,B, t) = min{inf
a∈A

M(a,B, t), inf
b∈B

M(A, b, t)}.

Then (Comp(X),HM, ∗) is a fuzzy metric space. (HM, ∗) is called the Hausdorff fuzzy metric on Comp(X).

Lemma 3.2. ([20]) Let (X,M, ∗) be a fuzzy metric space. Then, for each a ∈ X, B ∈ Comp(X) and t > 0, there exists
a ba ∈ B such that M(a,B, t) = M(a, ba, t).

Lemma 3.3. ([16]) Let (X,M, ∗) be a fuzzy metric space. Then HM(A,B, t) = 1−inf{r|A ⊂ BM(B, r, t),B ⊂ BM(A, r, t)}
for all A,B ∈ Comp(X) and t > 0, where BM(A, r, t) =

⋃
a∈A

BM(a, r, t).

Let (X,M, ∗) be a fuzzy metric space. For each n ∈N, put Finn(X)={A ⊂ X|1 ≤ |A| ≤ n}, which we regard
as a subspace of Comp(X).

Proposition 3.4. Let (X,M, ∗) be a fuzzy metric space. Then Finn(X) is a closed subset of Comp(X).

Proof. Let A ∈ Comp(X)\ Finn(X) and t > 0. Then A contains at least n + 1 points. Now we choose A1 ⊂ A
with |A1| = n + 1. Put ε0 = max{M(x, y, 2t)|x, y ∈ A1}. Then there exists ε1 ∈ (ε0, 1) such that ε1 ∗ ε1 > ε0. We
claim that BHM

(A, 1 − ε1, t) ∩ Finn(X) = Ø. Indeed, otherwise, we can choose B ∈ BHM
(A, 1 − ε1, t) ∩ Finn(X).

Then 1 ≤ |B| ≤ n. Note that HM(A,B, t) > ε1, according to Lemma 3.3, we have that A ⊂ BM(B, 1 − ε1, t).
Hence A1 ⊂ BM(B, 1 − ε1, t), i.e., A1 ⊂

⋃
b∈B

BM(b, 1 − ε1, t). Since |B| < |A1|, there exist a1, a2 ∈ A1 and b1 ∈ B

such that a1, a2 ∈ BM(b1, 1 − ε1, t). Then

M(a1, a2, 2t) ≥M(a1, b1, t) ∗M(b1, a2, t) ≥ ε1 ∗ ε1 > ε0 ≥M(a1, a2, 2t),

which is a contradiction. So Finn(X) is a closed subset of Comp(X).

Theorem 3.5. Let (X,M, ∗) be a fuzzy metric space. Then Fin(X) is an Fσ-set of Comp(X).

Proof. Observe that Fin(X)=
∞⋃

n=1
Finn(X), it follows from Proposition 3.4 that Fin(X) is an Fσ-set of Comp(X).

Theorem 3.6. Let (X,M, ∗) be a fuzzy metric space. Then X is homeomorphic to Fin1(X).

Proof. Let f : X → Fin1(X) be a mapping defined by f (x) = {x} for every x ∈ X. Note that HM({x}, {y}, t) =
M(x, y, t) for all x, y ∈ X and t > 0. It is straightforward to show that f is a homeomorphism.

According to the above theorem, we can regard (X,M, ∗) as a subspace of (Comp(X),HM, ∗).

Corollary 3.7. Let (Xi,Mi, ∗i)(i = 1, 2) be two fuzzy metric spaces. Then X1 is homeomorphic to X2 if and only if
Fin1(X1) is homeomorphic to Fin1(X2).

Let (Xi,Mi, ∗i)(i = 1, 2) be two fuzzy metric spaces and let ϕ be a continuous mapping from X1 to X2.
Define a mapping ϕ∗ : Comp(X1)→ Comp(X2) by ϕ∗(A) = ϕ(A) for every A ∈ Comp(X1).
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Theorem 3.8. If both the mapping ϕ and the inverse mapping ϕ−1 are uniformly continuous. Then the following
are equivalent.

(i) ϕ : X1 → X2 is a homeomorphism.
(ii) ϕ∗ : Comp(X1)→ Comp(X2) is a homeomorphism.

(iii) ϕ∗|Fin1(X1) : Fin1(X1)→ Fin1(X2) is a homeomorphism, where ϕ∗|Fin1(X1) is the restriction of ϕ∗ on Fin1(X1).

Proof. (ii)⇒(iii) Suppose that ϕ∗ : Comp(X1)→ Comp(X2) is a homeomorphism. Since ϕ∗({x1}) = ϕ(x1) for
every x1 ∈ X1, it is easy to see that ϕ∗|Fin1(X1) : Fin1(X1)→ Fin1(X2) is a homeomorphism.

(iii)⇒(i) Suppose that ϕ∗|Fin1(X1) : Fin1(X1) → Fin1(X2) is a homeomorphism. Since ϕ∗({x1}) = ϕ(x1) for
every x1 ∈ X1, we get that ϕ is a bijection. Let x ∈ X1 and n ∈ N. Since ϕ∗|Fin1(X1) is continuous, we can find
k ∈N such that

ϕ∗|Fin1(X1)(BHM1
({x},

1
k
,

1
k

) ∩ Fin1(X1)) ⊆ BHM2
(ϕ∗({x}),

1
n
,

1
n

) ∩ Fin1(X2).

Observe that, for each i ∈ {1, 2}, HMi ({y}, {z}, t) = Mi(y, z, t) whenever y, z ∈ Xi and t > 0. We have that
ϕ(BM1 (x, 1

k ,
1
k )) ⊆ BM2 (ϕ(x), 1

n ,
1
n ). Thus ϕ is continuous. To prove that ϕ−1 is continuous we use the similar

argument as above.
(i)⇒(ii) Suppose that ϕ : X1 → X2 is a homeomorphism. Let A,B ∈ Comp(X1) with A , B. Then

ϕ∗(A) = ϕ(A) , ϕ(B) = ϕ∗(B).

Also, for any C ∈ Comp(X2),

(ϕ∗)−1(C) = ϕ−1(C) ∈ Comp(X1).

Hence ϕ∗ is a bijection. Let r ∈ (0, 1) and t > 0. Since ϕ is uniformly continuous, then there exist r0 ∈ (0, 1)
and t0 > 0 such that M2(ϕ(a), ϕ(b), t) > 1 − r whenever a, b ∈ X1 and M1(a, b, t0) > 1 − r0. Let A ∈ Comp(X1).
Then

ϕ∗(BHM1
(A, r0, t0)) ⊆ BHM2

(ϕ∗(A), r, t).

In fact, for each B ∈ BHM1
(A, r0, t0), we get that HM1 (A,B, t0) > 1 − r0. According to Proposition 3.3, we

obtain that A ⊆ BM1 (B, r0, t0) and B ⊆ BM1 (A, r0, t0). Now, consider A ⊆ BM1 (B, r0, t0). Then, for each
a ∈ A, there exists b ∈ B such that M1(a, b, t0) > 1 − r0. Hence M2(ϕ(a), ϕ(b), t) > 1 − r. It follows that
ϕ(A) ⊆ BM2 (ϕ(B), r, t), i.e., ϕ∗(A) ⊆ BM2 (ϕ∗(B), r, t). Analogously, we get that ϕ∗(B) ⊆ BM2 (ϕ∗(A), r, t). Hence
HM2 (ϕ∗(A), ϕ∗(B), t) > 1−r. Consequently,ϕ∗(B) ∈ BHM2

(ϕ∗(A), r, t).Soϕ∗ is continuous. Sinceϕ−1 is uniformly
continuous, a similar argument shows that (ϕ∗)−1 is continuous. Thus ϕ∗ : Comp(X1) → Comp(X2) is a
homeomorphism.

4. Some Properties of the Hausdorff Fuzzy Metric on Comp(X)

In the section, we will study F-boundedness, separability and connectedness of the Hausdorff fuzzy
metric spaces on Comp(X).

Lemma 4.1. ([20]) Let (X,M, ∗) be a fuzzy metric space. Then M is a continuous functions on X × X × (0,∞).

Lemma 4.2. Let (X,M, ∗) be a fuzzy metric space, B ∈ Comp(X) and t > 0. Then x 7→ M(x,B, t) is a continuous
function on X.

Proof. Let x0 ∈ X and t > 0, and let {xn}n∈N be a sequence in X with xn converging to x0. Since {M(xn,B, t)}n∈N
is a sequence in [0,1], there is a subsequence {xnm }m∈N of {xn}n∈N such that the sequence {M(xnm ,B, t)}m∈N
converges to some point of [0,1]. Note that {xnm }m∈N converges to x0, we claim that x 7→ M(x,B, t) is
continuous function on X.
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Remark 4.3. Observe that Lemma 4.2 also shows that x 7→ M(A, x, t) is a continuous function on X for all
A ∈ Comp(X) and t > 0.

Proposition 4.4. Let (X,M, ∗) be a fuzzy metric space. Then, for each A,B ∈ Comp(X) and t > 0, there exist a0 ∈ A
and b0 ∈ B such that HM(A,B, t) = M(a0, b0, t).

Proof. Without loss of generality, we suppose that HM(A,B, t) = inf
a∈A

M(a,B, t).Due to Lemma 4.2, we deduce

that {M(a,B, t)|a ∈ A)} is a compact subset of [0,1]. Then there exists a0 ∈ A such that M(a0,B, t) = inf
a∈A

M(a,B, t).

Also, according to Lemma 3.2, we can find a b0 ∈ B such that M(a0, b0, t) = M(a0,B, t). So HM(A,B, t) =
M(a0, b0, t).

Theorem 4.5. Let (X,M, ∗) be a fuzzy metric space. Then (Comp(X),HM, ∗) is F-bounded if and only if (X,M, ∗) is
F-bounded.

Proof. Suppose that (Comp(X),HM, ∗) is F-bounded. Then there exist r ∈ (0, 1) and t > 0 such that
HM(A,B, t) > 1 − r for all A,B ∈ Comp(X). Let x, y ∈ X. Observe that M(x, y, t) = HM({x}, {y}, t) > 1 − r, we
conclude that (X,M, ∗) is F-bounded.

Conversely, suppose that (X,M, ∗) is F-bounded. Then there exist r ∈ (0, 1) and t > 0 such that M(x, y, t) >
1 − r for all x, y ∈ X. Let A,B ∈ Comp(X). According to Proposition 4.4, we can find a0 ∈ A and b0 ∈ B such
that HM(A,B, t) = M(a0, b0, t). Hence HM(A,B, t) > 1 − r. We are done.

Lemma 4.6. ([1]) Let (X, τ) be a metrizable topological space and S a subspace of X. If X is separable, then so is S.

Lemma 4.7. ([20]) Let Y be a dense subset of a fuzzy metric space (X,M, ∗). Then Fin(Y) is dense in (Comp(X),HM, ∗).

Theorem 4.8. Let (X,M, ∗) be a fuzzy metric space. Then (Comp(X),HM, ∗) is separable if and only if (X,M, ∗) is
separable.

Proof. Assume that (Comp(X),HM, ∗) is separable. Since X is a subspace of Comp(X), it follows from Lemma
4.6 that (X,M, ∗) is separable.

Conversely, assume that (X,M, ∗) is separable. Let Y be a countable dense subset of X. Then, according to
Lemma 4.7, Fin(Y) is dense in (Comp(X),HM, ∗). Since Fin(Y) is countable, we conclude that (Comp(X),HM, ∗)
is separable.

Definition 4.9. A fuzzy metric space (X,M, ∗) is said to be connected if (X, τM) is connected.

Theorem 4.10. Let (X,M, ∗) be a fuzzy metric space. Then (Finn(X),HM, ∗) is connected for every n ∈N if and only
if (X,M, ∗) is connected.

Proof. Suppose that (Finn(X),HM, ∗) is connected for every n ∈ N. Then Fin1(X) is connected. Due to
Theorem 3.6, we deduce that (X,M, ∗) is connected.

Conversely, suppose that (X,M, ∗) is connected. Then, according to Theorem 3.6, we conclude that
Fin1(X) is connected. Assume that Fink(X)(k ≥ 1) is connected. To complete our proof, it suffices to prove
that Fink+1(X) is connected. Put Fink

k(X) = {A ⊂ X||A| = k}. Let F ∈Fink
k(X) andAF = {F∪{x}|x ∈ X}. We claim

that AF is a connected subset of Fink+1(X). In fact, otherwise, we can find two nonempty disjoint closed
subsets B and C of AF such that AF = B ∪ C. Without loss of generality, we may assume that F ∈ C. Put
Y =
⋃
{B\F|B ∈ B} and Z = (

⋃
{C\F|C ∈ C}) ∪ F. Then Y and Z are two nonempty disjoint subsets of X with

X = Y ∪ Z. Next, we shall show that Y and Z are both closed subsets of X. Let y ∈ Y. Then F ∪ {y} ∈ B.
Thus, for each t > 0, there exists an r0 ∈ (0, 1) such that

BHM (F ∪ {y}, r0, t) ∩ C = Ø.

Therefore, for each z ∈ Z, we have that

HM(F ∪ {z},F ∪ {y}, t) = min{ inf
a∈F∪{z}

M(a,F ∪ {y}, t), inf
b∈F∪{y}

M(F ∪ {z}, b, t)} ≤ r0.
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Since

M(z, y, t) ≤M(z,F ∪ {y}, t) = inf
a∈F∪{z}

M(a,F ∪ {y}, t)

and

M(z, y, t) ≤M(F ∪ {z}, y, t) = inf
b∈F∪{y}

M(F ∪ {z}, b, t),

we get that

M(z, y, t) ≤ HM(F ∪ {z},F ∪ {y}, t) ≤ r0.

So BM(y, r0, t) ∩ Z = Ø, which implies that Z is a closed subset of X. To prove that Y is a closed subset of X
we use a similar argument. Hence (X,M, ∗) fails to be connected, a contradiction occurs. Consequently,AF
is a connected subset of Fink+1(X). Since

Fink(X) ∩AF = {F} , Ø,

we deduce that Fink(X) ∪AF is a connected subset of Fink+1(X). Observe that

Fink+1(X) =
⋃

F∈Fink
k(X)

(Fink(X) ∪AF)

and ⋂
F∈Fink

k(X)

(Fink(X) ∪AF) = Fink(X) , Ø,

we conclude that Fink+1(X) is connected. The proof is finished.

Lemma 4.11. ([1]) The union of collection of connected subspaces of a topological space (X, τX) that have a point in
common is connected.

Lemma 4.12. ([1]) Let A be a connected subspace of a topological space (X, τX). Then the closure A of A is also
connected.

Theorem 4.13. Let (X,M, ∗) be a fuzzy metric space. If (X,M, ∗) is connected, then so is (Comp(X),HM, ∗).

Proof. Suppose that (X,M, ∗) is connected. According to Theorem 4.10, we have that (Finn(X),HM, ∗) is
connected for every n ∈N. Note that

Fin(X) =

∞⋃
n=1

Finn(X)

and

∞⋂
n=1

Finn(X) = Fin1(X) , Ø.

It follows from Lemma 4.11 that Fin(X) is connected. Thanks to Lemma 4.7 and Lemma 4.12, we deduce
that (Comp(X),HM, ∗) is connected.

Question 4.14. Let (X,M, ∗) be a fuzzy metric space. If (Comp(X),HM, ∗) is connected, then is (X,M, ∗) connected?
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5. Conclusion

In this work, we have studied necessary and sufficient conditions for two Hausdorff fuzzy metric spaces
on the family of nonempty compact sets to be homeomorphic. Moreover, we have investigated some
properties of the Hausdorff fuzzy metric spaces, as F-boundedness, separableness and connectedness.

Since some fixed point theorems for contractions in fuzzy metric spaces have been proved, a natural
question arises:

Can we give some contraction theorems in Hausdorff fuzzy metric spaces?
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