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Abstract. The notion of gap is quite important in combinatorial image analysis and it finds several useful
applications in fields as CAD and computer graphics. On the other hand, dimension is a fundamental
concept in General Topology and it was recently extended to digital objects. In this paper, we show that the
dimension of a 2D digital object equipped with an adjacency relation Aα (α ∈ {0, 1}) can be determinated by
the number of its gaps besides some other parameters like the number of its pixel, vertices and edges.

1. Introduction

Digital topology studies the topological properties of computer generated images. First introduced by
Rosenfeld in the eighties for binary images [19] (see also [18]), the approach has been reformulated from
Kovalevsky [20], Eckhardt and Latecki [13] in the contest of general topology.

Digital topology typically deals with finite sets of basic elements (called pixels, voxels or in general
n-voxels) of the digital space.

The simplest model of digital space is the grid point model Zn in which every element is represented by
a point of the real space Rn having integer coordinates.

Although in digital topology it is possible to study gray level and multichannel images like color images
or multispectral images obtained by satellite radiometer, throughout this paper we uniquely refer to binary
(i.e. black and white) images. The associated digital object will consist of the points of Zn corresponding
to black pixels.

In order to define a topology in the digital space, we assign an adjacency (i.e. a symmetric and irreflexive)
relation A.

For any p ∈ Zn, the set {q ∈ Zn : p A q} is called the adjacency set (or adjacency neighborhood ) of p and is
indicated by A(p). The set {p} ∪ A(p) is called the (incident) neighborhood of p and is denoted by N(p).

In every digital space one or more adjacency relations can be defined. In particular in the digital planeZ2

we can define the adjacency relations A4 and A8 by means of the following two adjacency neighborhoods
of the generic point p = (x, y):

A4(p) = {(x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1)}
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and

A8(p) = A4(p) ∪ {(x + i, y + j) : i = ±1, j = ±1}.

Let p, q be two points of Z2. We say that p and q are 4-adjacent (resp. 8-adjacent) iff p , q and p ∈ A8(q)
(resp. p ∈ A4(q)). Moreover, p and q are strictly 8-adjacent if they are 8-adjacent but not 4-adjacent.

Another different model for the digital plane is used, the so-called grid cell model (also referred as cellular
model), originally introduced by Alexandroff and Hopf [2].

We associate to a digital set D ⊆ Z2 a set of certain objects in the Euclidean plane R2. The first type of
objects are squares which are closed respect to the standard topology on R2 and centered at a grid point.

More precisely if p = (x, y) is a point of Z2 then:

• the square is defined by the set of real points
[
x − 1

2 , x + 1
2

]
×

[
y − 1

2 , y + 1
2

]
and is called 2-cell. The set

of all these 2-cells is denoted by C(2)
2 .

• the edges are defined by the four sets of real points
[
x − 1

2 , x + 1
2

]
× {y ± 1

2 } and
{
x ± 1

2

}
×

[
y − 1

2 , y + 1
2

]
and are called 1-cells. The set of all 1-cells is denoted by C(1)

2 .

• the points are defined by the four singletons
{
x ± 1

2 , y ±
1
2

}
and are called 0-cells. The set of all 0-cells

is denoted by C(0)
2 .

Notation 1.1. In the cellular model the pixels of a digital object D are represented by means of the 2-cells.
More precisely, every 2-cell

[
x − 1

2 , x + 1
2

]
×

[
y − 1

2 , y + 1
2

]
is the representant of the pixel centered at p = (x, y).

The digital plane considered as a cellular model is denoted by C2. It is the union of all 0-, 1- and 2-cells,
that is C2 =

⋃2
i=0 C(i)

2 .
The use of the cellular model in order to describe the digital plane has several advantages. For instance,

it allow us to simplify both the theoretical treatment and many computational applications (see, for example
[21, 22]).

We say that two 2-cells e, e′ are 0-adjacent (1-adjacent) if and only if e , e′ and e ∩ e′ ∈ C(0)
2 (e ∩ e′ ∈ C(1)

2 ).
The relation of 0-adjacency (resp., 1-adjacency) is denoted by A0 (resp., A1). Given a 2-cell e, we denote by
A0(e) and (resp. A1(e)) the A0 (resp. A1) adjacent neighborhoods of e, that is the sets of all 2-cells which are
0-adjacent (1-adjacent) to e.

Adjacencies in grid point and cellular models are strictly connected. In fact, let p1 and p2 be the points
of Z2 representing the 2-cells e1 and e2, respectively. Then e1 and e2 are 1-adjacent (respectively 0-adjacent)
if and only if p1 and p2 are 4-adjacent (respectively 8-adjacent).

We say that two cells e and e′ are incident each other if and only if either e = e′, or e ⊆ e′, or e′ ⊆ e. If
two cells e and e′ are incident we write eIe′. The set of all the cells incident to e is denoted by I(e) and called
incidence neighborhood of the cell e.

We can also consider the digital plane as an abstract cell complex (C2, <, dim) (see [20, 22, 23]). Here
dim denotes the function that associates to any cell e its dimension and < is a bounding relation, that is
antisymmetric, irreflexive, and transitive and such that for every e, e′ ∈ C2, e < e′ if and only if eIe′ and
dim(e) < dim(e′).

Hence < is a partial order onC2 and the corresponding order topology τ(<) is called the grid cell topology.
In this topology the open sets are precisely the sets U ⊆ C2 such that for every u ∈ U and every v ∈ C2 with
u < v, we have v ∈ U. The grid cell topology is also a T0-space and an Alexandroff space (i.e. the intersection
of any family of its open sets of X is an open set). So, for any cell e ∈ C2, it is possible to define the minimal
neighborhood η(e) as the intersection of all open sets containing e.

The reader is referred to [4] for more results concerning Alexandroff spaces.
Throughout this paper, we assume that the abstract cell complex (C2, <, dim) is equipped with the grid

cell topology τ(<).
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2. Dimension in Digital Geometry

Dimension is a fundamental concept in topology. It is a topological invariant [15] and plays an important
role in defining and studying properties of basic geometric objects, such as curves and surfaces [16].

In digital topology the notion of dimension has attracted comparatively little attention, unlike some other
topological notions (such as connectivity, tunnels, gaps, cavities, genus, and others, see, e.g., [6, 8, 10, 17, 18]).

For a long time, the only available definition of dimension for subsets of discrete spaces was that one
given in 1971 by Mylopoulos and Pavlidis [27].

Recently in [9] was noted that such a notion generates some paradoxes which makes it absolutely
unsuitable for a general purpose even in the particular case of the digital plane. In the same paper a new
consistent definition of dimension was proposed, and some useful properties coherent with the classical
ones were proved.

2.1. Review of Mylopoulos-Pavlidis Theory of Dimension
Mylopoulos and Pavlidis [27] proposed a definition of dimension of a subset (finite or infinite) in a

generic digital space Cn with respect to an adjacency relation Aα (see [26] for more details; for its use see
also [17]).

Let Nα(e) be the union of Nα(e) with all n-cells e′ for which there exist e1, e2 ∈ Nα(e) such that a shortest α-
path from e1 to e2 not passing through e passes through e′. Note that for n = 2 we have N1(e) = N0(e) = N0(e)1).
We also denote Aα(e) = Nα(e) \ {e}.

A non-empty set D ⊆ Cn is called totally α-disconnected if, for each n-cell e ∈ D, Aα(e)∩D = ∅, that is if no
pair of pixels of D is α-adjacent or, equivalently, if every α-connected set of D has cardinality 1.

A subset D ⊆ Cn is called linearly α-connected whenever |Aα(e) ∩ D| ≤ 2 for all e ∈ D and |Aα(e) ∩ D| > 0
for at least one e ∈ D.

Definition 2.1. (Mylopoulos-Pavlidis, [27]) Let D be a digital object and Aα an adjacency relation on Cn.
The dimension dimα(D) is defined as follows:

1) dimα(D) = −1 if and only if D = ∅,

2) dimα(D) = 0 if D is a totally α-disconnected nonempty set,

3) dimα(D) = 1 if D is linearly α-connected,

4) dimα(D) = max
e∈D

dimα(Aα(e) ∩D) + 1 otherwise.

We call 2×2-block a set of four pixels that are pairwise 1-adjacent, 2×1-block a set of two 1-adjacent pixels
and L-block a 2 × 2-block with one pixel missing. The number of 2 × 2- (respectively, 2 × 1, L-) block will be
denoted by β22(D) (respectively β21(D) and λ(D)) or simply by β22, β21 and λ when no confusion about the
digital object is possible.

The following characterization of 2-dimensionality in C2 was given in [17]:

Proposition 2.2. A digital object D ⊆ C2 is two dimensional with respect to adjacency relation Aα if and only if:

• for α = 0, D contains an L-block as a proper subset;

• for α = 1, D contains a 2 × 2-block as a proper subset.

The above proposition suggests us that the 2-dimensionality of a digital object is equivalent to the
existence of some L- (resp. 2× 2-) block in a digital object. Note, however, that, according to Definition 2.1,
an L-block itself, is one-dimensional with respect to A0.

1)For higher dimensions these sets may not coincide; e.g., for n = 3, we have N2(e) = N1(e) = N1(e) and N0(e) = N0(e) , N1(e), i.e.,
N2(e) , N0(e).
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Figure 1: A paradox: an example of a 2D digital object which has dimension 3 according to the Mylopoulos-Pavlidis
definition of dimension.

Another “defect” of Definition 2.1, which seems to be even more serious to us, is that a digital object in
the 2-dimensional digital space C2 may have dimension 3! This can be easily seen if we apply Definition
2.1, related to 0-adjacency, to an object that contains a (3 × 3)-block (see Figure 1).

2.2. A New Definition for Digital Dimension

In order to solve the problem of Mylopoulos-Pavlidis definition, in [9] the following new definition of
digital dimension was introduced.

Definition 2.3. Let D be a digital object and let the space Z2 be equipped with an adjacency relation Aα,
α ∈ {0, 1}. The dimension of D relative to the α-adjacency is denoted by dimα(D) and defined as follows:

1) dimα(D) = −1 if D = ∅,

2) dimα(D) = 0 if D is totally α-disconnected,

3) dimα(D) = 1 if α = 0, D is not totally α-disconnected and does not contain any L-block; or α = 1, D is not
totally α-disconnected and does not contain any 2 × 2-block,

4) dimα(D) = 2 otherwise (more precisely, if α = 0 and D contains at least one L-block or α = 1 and D
contains at least one 2 × 2-block).

Notation 2.4. Note that in Definition 2.3, points 3) and 4) can be reformulated by using mathematical
morphology [12, 29] (Remember that in these cases D is not totally α-disconnected). More precisely, we
can define dim(D) = 1 iff α = 1 and εB(D) = D 	 B = ∅ where the structuring element B is a 2 × 2-block, or
α = 0 and

⋃4
i=1 εLi (D) =

⋃4
i=1 D 	 Li = ∅where Li, i = 1, . . . , 4, represents all possible L-blocks. Furthermore,

dim(D) = 2 iff α = 1 and εB(D) , ∅, or α = 0 and
⋃4

i=1 εLi (D) , ∅.

In order to give a sort of “local” characterization of dimension, we now define the dimension of a point
of a digital object D.

Definition 2.5. Let p be a 2-cell of a non-empty digital object D. The local dimension of p within D with
respect to A0 is denoted by dim0(p,D) and defined as follows:

1) dim0(p,D) = 0 if A0(p) ∩D = ∅;

2) dim0(p,D) = 1 if A0(p) ∩D is totally 0-disconnected;

3) dim0(p,D) = 2 otherwise (i.e., if A0(p) ∩D is not totally 0-disconnected).
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Definition 2.6. Let D be a nonempty digital object and let p ∈ D. The local dimension of p within D with
respect to A1 is the nonnegative integer dim1(p,D) = dim0(A0(p) ∩D).

The following properties were proved in [9].

Proposition 2.7. Let D be a nonempty digital object and p ∈ D. Then the following properties hold:

1) dim0(p,D) = 2 (resp. dim1(p,D) = 2) iff p belongs to an L-block (resp. 2 × 2-block) in D.

2) dimα(D) = max{dimα(p,D) : p ∈ D}, where α = {0, 1}.

3) If p ∈ E ⊆ D then dimα(p,E) ≤ dimα(p,D), for α = {0, 1}.

4) If E ⊆ D then dimα(E) ≤ dimα(D), where α = {0, 1}.

5) If D1 and D2 are two disjoint digital objects, then dimα(D1 ∪D2) =
max(dimα(D1),dimα(D2)), where α ∈ {0, 1}.

2.3. Relations Between Dimension and Euler Characteristic
In combinatorial topology, Euler characteristic is a fundamental theoretic concept and basic topological

invariant. Recall that, given a subset D of the abstract cell complex (C2, <,dim), its Euler characteristic is
the number

χ(D) = c0 − c1 + c2, (1)

where ci = |D ∩ C(i)
2 | is the number of the i-dimensional cells of D (with i = 0, 1, 2), that is the number of

vertices, edges, and faces of the digital object D, respectively.
In this section we establish relations between dimension of digital objects and their Euler characteristic.

For this purpose we introduce the following definition.

Figure 2: The skeletons S0(D) and S1(D) respect to A0 and A1 adjacency of a same digital object D.

Definition 2.8. Let D be a non-empty object of the digital space C2 equipped with an adjacency relation Aα

(with α ∈ {0, 1}). We call skeleton of D respect to Aα the graph Sα(D) = (V,E) in which the set of vertices is
V = D∩C(2)

2 and the set of edges is E = {(e, e′) : e, e′ ∈ C(2)
2 and eAαe′}, that is the vertices are all the 2-cells of

D and a couple of vertices forms an edge iff they are α-adjacent (see Figure 2 for a graphical representation
of the skeletons of a digital object).

In what follows, we will characterize dimensionality in C2 with respect to A1 adjacency, the character-
ization with respect to A0 adjacency being similar. Because of Proposition 2.7(5), it is enough to consider
the case of connected digital objects. We have the following theorem.

Theorem 2.9. Let D be a 1-connected digital object whose skeleton S1(D) = (V,E) has |V| = c2 vertices and |E| = m
edges. Then the following holds:
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1) dim1(D) = −1, if c2 = 0

2) dim1(D) = 0, if c2 , 0 and m = 0

3) dim1(D) = 1, if c2 > m > 0

4) If m = c2 > 0, then

(a) dim1(D) = 1 if χ(D) = 0
(b) dim1(D) = 2 if χ(D) > 0

5) If m > c2 > 0,

(a) dim1(D) = 1 if χ(D) < 0
(b) dim1(D) = 2 if χ(D) ≥ 0.

Notation 2.10. Let us note that in the above theorem the cases “m < c2” and “c2 = m and χ(D) < 0” seem
to be missing. However it can be proved that they are non-admissible. In fact the graph S1(D) results
connected and, because it is well know that a connected graph with c2 vertices and m edges has a unique
cycle of length greater than 3 if and only if c2 = m (see [5]).

Throughout the rest of the paper, every digital object D ⊆ Z2 will be also considered as a planar graph
G and we will denote by V(D), L(D), C(D) and H(D) (or simply by V, L, C and H when no confusion arises)
the number of its vertices, edges, connected components and holes, respectively.

Such a point of view, allow us to obtain a lighter (and hence more efficient for practical application) and
simpler version of Theorem 2.9 which does not involve Euler characteristic.

Corollary 2.11. Let D be a 1-connected digital object whose skeleton S(D) has c2 vertices and m edges. Then the
following implications hold:

1) If c2 > m then dim1(D) = 1,

2) If c2 = m and H < 1 then dim1(D) = 2,

3) If c2 = m and H = 1 then dim1(D) = 1,

4) If m > c2 and H ≤ 1 then dim1(D) = 2,

5) If m > c2 and H > 1 then dim1(D) = 1.

Theorem 2.12. Let D be a 0-connected digital object which skeleton S(D) has c2 vertices and m edges. Then the
following holds:

1) If P = c2 = 0 then dim0(D) = −1;

2) If c2 , 0 and m = 0 then dim0(D) = 0;

3) If c2 > m > 0 then dim0(D) = 1;

4) If m = c2 and

• L − V < P then dim0(D) = 2;
• L − V = P then dim0(D) = 1.

5) If m > c2 > 0 and L − V ≤ P then dim0(D) = 2.

Notation 2.13. In Theorem 2.12, almost all the points of Theorem 2.9 have been reformulated for 0-connected
digital objects but item (a) of point 5. In fact there exist some 0-connected objects with m > c2 > 0 and
χ(D) < 0 that have not 0-dimension 1 (see for example Fig. 3).
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Figure 3: A 0-connected object D with m > c2 > 0, χ(D) < 0 and dim0(D) = 2

In Section 4, we obtain two more general results than Theorem 2.9, 2.12 and Corollary 2.11 which hold
both for 0- and 1-adjacency and remove the singularity of the last part of Theorem 2.12. Such properties
are obtained by means of the notion of gap of a digital object.

3. Notion of Gap in Digital Geometry

Roughly speaking, a gap of a 2-D binary digital object (i.e. a set of pixels) is a location of the object that
can be locally penetrated by some discrete path (usually called ray). This concept is the discrete equivalent
of the topological notion of tunnel, and it is very important in digital geometry. In fact, it finds several
useful applications in fields as computer aided design (CAD) and computer graphics where it is relevant
to know whether an apparently “solid” surface can have some “unreal” (or “immaterial”) holes.

Several definitions of gap are available in the literature (see, e.g., [1, 3]). In what follows, we will refer
to the following one, that was introduced in [8] and that fits better our purposes.

Figure 4: Gaps in a 2-dimensional binary picture.

Definition 3.1. Let v be a 0-cell of a digital object D in C2. We say that D has a gap at v if there are two
2-cells p1 and p2, such that:

1) v ∈ p1 ∩ p2

2) p1 ∈ A0(p2) \ A1(p2) (i.e. p1 and p2 are strictly 0-adjacent), and

3) A1(p1) ∩ A1(p2) ∩D = ∅.

We denote by G(D) (or simply by G when no confusion arises) the number of gaps of a digital object D.
Figure 4 illustrates the notion of gap.

Notation 3.2. Let us note that in the above definition Condition 1 has mainly the role to locate the gap, but
it is essentially contained in Condition 2.
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Figure 5: (a) v is a free vertex of the digital object D: the 2 × 2-block B is not complectly contained in D. (b) l is a free
edge of D: the 2 × 1-block b is not complectly contained in D.

It is also possible to reformulate Definition 3.1 using the bounding relation < defined in Section 1 for the
abstract cell complex.

Definition 3.3. Let x be a 0-cell of a digital object D in (C2, I, dim). We say that D has a gap in x if there are
two 2 cells e′ and e′′ such that

1) x < e′ and x < e′′ and

2) for any e ∈ D, if e < e′ or e < e′′ than x ≮ e.

Let D be a digital object with P pixels, V vertices, L edges, C connected components, H holes and β22
2 × 2-blocks.
In [6], it was proved that the number of gaps of D is given by

G = V − 2(P + C −H) + β22. (2)

In [8], another formula to express the number of gaps for a digital object was found by using the notions
of free vertices and free edges. More precisely, let v be a vertex and l an edge of D. We say that v (respectively
l) is free if the 2 × 2-block centered in v (respectively 2 × 1-block centered in l ) is not completely contained
in D (See Figure 5).

We denote by V∗ (resp. L∗) the number of free vertices (resp. edges) and by V′ (resp. L′) the number of
non-free vertices (resp. edges).

We have the following characterization of free vertices and edges.

Proposition 3.4. A vertex (resp. edge) e of a digital object D is free iff it belong to its boundary bd(D).

Proof. Let e ∈ D be free, and let us suppose, by contradiction, that e < bd(D). Then e ∈ int(D). So there is a
neighborhood of e, Nα(e) α = 0, 1, such that Nα(e) ⊆ D. But η(e) ⊆ Nα(e) ⊆ D, i.e η(e) ⊆ D. A contradiction.
Conversely, let e ∈ bd(D). Then for all Nα(e), we have Nα(e) ∩D , ∅ and Nα(e) ∩ (C2 \D) , ∅. In particular,
we have η(e) ∩D , ∅. So η(e) ∩ C2 \D = ∅ and η(e) * D.

It is also possible to prove the following topological characterization of free elements.

Proposition 3.5. Let e be a 0- or 1-cell of a digital object D. Then, e is free iff η(e) * D.

Notation 3.6. Let us note that a vertex v is non-free if and only if it is the unique common vertex of the four
pixels in a 2 × 2-block centered at v. Similarly, an edge l is non-free if and only if it is the common edge of
the two pixels in a 2 × 1-block. Moreover, since it is evident that in every 2 × 2-block (resp. 2 × 1-block)
there is exactly one non free vertex (resp. edge), we have that V′ = β22 and L′ = β21. It is also clear that
V = V∗ + V′ and L = L∗ + L′.
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More recently, in [24] and [25] two formulas which express, respectively the number of 1-gaps of a
generic 3D object of dimension α = 1, 2 and the number of (n − 2)-gaps of a generic digital n-object, by
means of a few simple intrinsic parameters of the object itself were found.

Thanks to Proposition 3.4, the boundary bd(D) of a digital object D can be seen as a graph with V∗

vertices and L∗ edges.

Proposition 3.7. Let D be a digital object. If D has a gap on a vertices v then v ∈ bd(D).

Proof. Let v a vertex of D having a gap. By contradiction, let us suppose that v does not belong to the border
bd(D) of D. Then by Proposition 3.4, v belongs to the interior of D. But in this way, v should be a non-free
vertex and, by Definition 3.1, D should not have a gap on v.

Example 3.8. Recall that a closed digital α-curve C (α = 0 or 1) is an α-connected set of pixels such that
every its pixel has exactly two α-adjacent neighborhoods in C. It is easy to see that all vertices of C are free.

In [8], it was proved (using combinatorial consideration) that the number of gaps of a digital object is
also given by the following formula:

G = L∗ − V∗. (3)

Here we give a simpler proof using graph theory.

Proposition 3.9. Let D be a digital object, and let us denote by V∗ and L∗ the number of free vertices and edges,
respectively. Then G = L∗ − V∗.

Proof. Let bd(D) be the boundary of D. By Proposition 3.4, it forms a graph with V∗ vertices and L∗ edges.
We distinguish two cases depending on D is connected or not.

First, let us suppose that D is connected and that it has no hole. Then bd(D) is an Eulerian graph and
every vertex has degree two but the ones in which there is a gap. Such vertices have degree four. Let us
denote by Γ the set of all vertices of D having a gap. Obviously, by Property 3.7, Γ ⊆ bd(D). Since it is well
known that in any graph the sum of the degrees of the vertices is twice the number of the edges, we have
that 2L∗ =

∑
v∈bd(D) d(v) =

∑
v∈Γ d(v) +

∑
v∈bd(D)\Γ d(v) = 4|Γ|+ 2|bd(D)\Γ| = 4G + 2(V∗−G) = 2V∗+ 2G and hence

G = L∗ − V∗.
In the other case, i.e. if D is connected with H holes, the boundary bd(D) is composed by 2H +1 Eulerian

graphs in which the previous case can be applied separately to any graph.
Finally, if D is not connected and has C connected component, the proof easily follows from the previous

case by induction over the number of connected components C.

In the next paragraph we prove the equivalence of the formulas (2) and (3) by directly showing that can
be obtained each other. This will make easier and more elegant the proofs given in [6] e [8].

4. The Main Result

Let us recall a well-known generalization of the Euler’s formula frequently used in Digital Geometry.
Let D be a digital object with P pixels, V vertices, L edges, C connected components and H holes. Considering
D as a planar graph Gwe can think to apply Euler’s formula to D, obtaining:

V − L + P = C −H, (4)

where P is the number of pixels of the digital object D. We refer to such expression as the Euler’s formula for
2D objects.

The equivalence between the formulas (2) and (3) is based on two lemmas we are going to prove and
that need a special graphical representation called the pixel language. In this notation, we refer to basic
configurations of 3 × 3 pixels with a key pixel whose neighborhood is studied. Such a central pixel is
denoted by a black square (and sometimes labelled with a letter) and the following graphical rules are
used for expressing the existence or not of its adjacent pixels.
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• Neighborhoods of the key pixel that MUST exist in the considered configuration are represented by
a gray square .

• Pixels that MAY OR MAY NOT exist in the configuration will be drawn with a dashed square .
Any subset of such pixels (in particular, no one or all of them) may belong to the configuration or may
be missing.

• Grid positions that CANNOT contain any pixels from the configuration will be marked by a cross .

Lemma 4.1. For every digital object D with P pixels, L edges and β21 2 × 1-block, we have:

L = 4P − β21. (5)

Proof. We proceed by induction over P. If P = 1, it trivially follows L = 4, β21 = 0 and hence the identity
holds. Now, suppose that formula (5) holds for any digital object with a fixed number of pixels P and
consider a generic digital object D with P+1 pixels. Chosen a fixed pixel p of D, D̃ = D\ {p} is a digital object
with P pixels. Therefore we can use the inductive hypothesis over D̃ and consider D as a digital object
obtained by adding the pixel p to D̃. Let denote by Ṽ, L̃ and β̃21 the number of vertices, edges and 2×1-blocks
of D̃, respectively. Using the pixel language and up to symmetries, we have only five cases (see Figure 6)
according to the insertion of p to D̃ creates a number µ ∈ {0, 1, 2, 3, 4} of new 2×1-blocks in D. Since, for each
such a case, it results β21 = β̃21+µ and L = L̃+4−µ, we have 4(P+1)−β21 = 4P+4−(β̃21+µ) = 4P−β̃21+4−µ = L
which proves the inductive step.

Figure 6: The 5 cases corresponding to 6 families of configurations (expressed in the pixel language) of the object D
with P + 1 pixels depending on the number µ of new 2 × 1-blocks in D created inserting the central pixel x in A0(p).

Lemma 4.2. For every digital object D with P pixels, V vertices, β21 2 × 1-block, C connected component, and H
holes, we have that

V = 3P + C −H − β21. (6)

Proof. Suppose, by contradiction, that there exists a digital object D such that V , 3P + C − H − β21. By
formula (4) we have −H = V − L + P − C and hence V , 3P + C + V − L + P − C − β21, that is L , 4P − β21
which contradicts Lemma 4.1.

Now, we are finally able to prove the equivalence between formulas (2) and (3) announced before.

Theorem 4.3. Let D be a digital object with P pixels, V vertices, G gaps, C connected components, H holes,
β22 2 × 2-blocks and having V∗ free vertices and L∗ free edges. Then the formula G = L∗ − V∗ is equivalent to
G = V − 2(P + C −H) + β22.
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Proof. Let G = L∗ −V∗ hold and suppose – by contradiction – that G , V − 2(P + C −H) + β22. Hence, using
formula (6), we obtain G , P − C + H − β21 + β22. Since, by formula (4) we know that L − V = P − C + H, it
follows that G , L − V − β21 + β22, that is G , L∗ − V∗. A contradiction.

Conversely, let us assume that G = V− 2(P + C−H) +β22 and suppose, by contradiction, that G , L∗−V∗

or, equivalently,

G , L − V − β21 + β22. (7)

Then, replacing L−V = P+H−C, we obtain G , P+H−C−β21+β22. By equation (6), we haveβ21 = 3P−V+C−H
and replacing it in the previous expression, it follows that G , P + H − C + V − 3P − C + H + β22. Hence
G , V − 2(P + C −H) + β22 which contradicts our hypothesis and completes our proof.

Although the notions of gap and dimension of a digital object D seem to be unrelated, as matter of fact
a connection exists as the the following theorem proves.

In order to obtain such a result, we will use the notion of skeleton (see Definition 2.8).

Theorem 4.4. Let D be an object of the digital space C2, equipped with an adjacency relation Aα (with α ∈ {0, 1})
but considered as 0-object and having P pixels, V vertices, L edges, and G gaps.

1) If P = c2 = 0 then dimα(D) = −1;

2) If c2 , 0 and m = 0 then dimα(D) = 0;

3) If V − L + m + αG = 0 then dimα(D) = 1;

4) If V − L + m + αG > 0 then dimα(D) = 2

where c2 and m are respectively the number of vertices and edges of the skeleton S(D) associated to D respect to Aα.

Proof. 1) and 2) are easy to check.
3) Let us suppose firstly that D is equipped with the 1-adjacency and suppose V − L + m + G = 0. Hence,
G = L−V −m = L∗ + L′ −V∗ −V′ −m. Because of 1-adjacency, every edge of the skeleton S1(D) corresponds
to a non free edge of the digital object D. So, we have that m = L′ and that G = L∗ −V∗ −V′. By Remark 3.6,
we have G = L∗ − V∗ − β22 and being G = L∗ − V∗, we obtain that β22 = 0, i.e. dim1(D) = 1.
Now, let D be equipped with the 0-adjacency and suppose that V − L + m = 0.
Let us denote by β21 the number of 2 × 1-blocks, by β22 the number of 2 × 2-blocks, by λ the number
of L-blocks, and by ξ the number of 0-tandem (that is a pair of strictly 0-adjacent pixels) of D. Because
of 0-adjacency, every edge of S0(D) derives either from a 2 × 1-block or from a 0-tandem. So, we have
m = β21 + ξ. In D there are exactly one 0-tandem for every gap, one 0-tandem for every L-block and two
0-tandems for every 2× 2-block and all such cases are mutually exclusive. So, it results ξ = G +λ+ 2β22 and
hence m = β21 + G + λ + 2β22.

Replacing the latter expression into V−L+m = 0 and using relations from Remark 3.6, with some simple
computations, we obtain the following system:

λ + 3β22 = 0
λ ≥ 0
β22 ≥ 0

which admits solutions if and only if (λ, β22) = (0, 0). This implies that dim0(D) = 1 and completely proves
point 3).
4) Let D equipped with the 1-adjacency and suppose v − L + m + G > 0. Using the same method of the
corresponding part in point 3), we have β22 > 0, i.e. dim1(D) = 2.
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Finally, let be D equipped with the 0-adjacency and suppose V − L + m > 0. Similarly to the second part of
point 3) we obtain the system

L + 3β22 > 0
L ≥ 0
β22 ≥ 0

which admits solutions if and only if L , 0 or β22 , 0. This implies that dim0(D) = 2 and completes our
proof.

Euler’s formula for 2-D object (4) allow us to write the statement of Theorem 4.4 in the following way.

Corollary 4.5. Let D be a digital object equipped with α-adjacency (α = 0, 1). The following holds:

1. If P = c2 = 0 then dim1(D) = −1;

2. If c2 , 0 and m = 0 then dim1(D) = 0;

3. if C −H + m − P + αG = 0 then dimα(D) = 1;

4. if C −H + m − P + αG > 0 then dimα(D) = 2.

5. Conclusion and Perspectives

The present paper dealt with the study of existing relationship between the notions of gap and that of
discrete digital dimension dimα(D) of a digital object D in the digital plane Z2 with the cellular model C2
and equipped with an adjacency relation Aα (α ∈ {0, 1}). More specifically, we proved that the dimension
dimα(D) of such an object is completely determined by the numbers P of its pixels, V of its vertices, L of
its edges, and G of its gaps. This result requires some considerations on the number of 2 × 2-blocks and
implies a previous classification of all the possibile configurations of 2 × 1-blocks that we create in any
0-adjacency neighborhood A0(p) of the object D every time we add the central pixel p (see Lemma 4.1).
However, in dimension 3 a similar classification involves simultaneously at least 2 × 1 × 1-, 2 × 2 × 1- and
2×2×2-blocks with a larger number of cases that we need to take under consideration and a more complex
analysis. Obviously, such approach, which is already difficult to manage for 3D objects, is impossible to
use for a generic dimension n and, for such a reason, it seems absolutely necessary to adopt some different
combinatorial techniques in order to find more general results.

Another paper, with a detailed discussion of the problem above and an attempt to extend the relationship
between the number of gaps and the dimension of digital objects in dimension 3 and higher, is currently in
preparation and should be available for publication in the near future.

Finally, the authors would like to thank the anonymous referee for providing constructive comments
and suggestions.
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