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Abstract. In this paper we introduce and study the concept of strong convergence in fuzzy metric spaces
(X,M, ∗) in the sense of George and Veeramani. This concept is related with the condition

∧
t>0 M(x, y, t) > 0,

which frequently is required or missing in this context. Among other results we characterize the class
of s-fuzzy metrics by the strong convergence defined here and we solve partially the question of finding
explicitly a compatible metric with a given fuzzy metric.

1. Introduction

I. Kramosil and J. Michalek [10] defined the concept of fuzzy metric space which could be considered a
reformulation of the concept of Menger space in fuzzy setting. This concept was modified by Grabiec in [2].
Later, George and Veeramani modified this last concept and gave a concept of fuzzy metric space (X,M, ∗).
Many concepts and results can be stated for all the above fuzzy metric spaces mentioned. In particular, if
M is any of these fuzzy metrics on X then a topology τM deduced from M is defined on X. A sequence {xn}

in X is convergent to x0 if and only if limn M(xn, x0, t) = 1 for each t > 0.
A significant difference between a classical metric and a fuzzy metric is that this last one includes in its

definition a parameter t. This fact has been successfully used in engineering applications such as colour
image filtering [15–17] and perceptual colour differences [5, 14]. From the mathematical point of view
this parameter t allows to define novel well-motivated fuzzy metric concepts which have no sense in the
classical case. So, several concepts of Cauchyness and convergence have appeared in the literature (see
[2, 3, 6, 12, 18]). Nevertheless, in some cases the natural concepts introduced are non-appropriate. A
discussion of this assertion can be found in [4].

From now on by a fuzzy metric space we mean a fuzzy metric space in the sense of George and
Veeramani.

Given x, y ∈ X the real function Mxy(t) :]0,∞[→]0, 1] defined by Mxy(t) = M(x, y, t) is continuous in a
fuzzy metric space. Notice that Mxy is not defined at t = 0. Then, the behaviour of M for values close to
0 turns of interest. For instance, recently, for obtaining fixed point theorems for a self-mapping T on X D.
Wardowski [20] and D. Mihet [13] have demanded conditions on M involving T for values of t close to 0. In
particular, the Mihet’s condition ([13, Theorem 2.4]) can be written as

∧
t>0 M(x,T(x), t) > 0 for some x ∈ X.
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This condition is related with the condition
∧

t>0 M(x, y, t) > 0 for all x, y ∈ X, which has been studied in [6]
and the obtained results are summarized in the next paragraph.

A sequence {xn} is called s-convergent to x0 if limn M(xn, x0, 1
n ) = 1. This is a (strictly) stronger concept

than convergence and it is given by a limit, which, as in the classical case, only depends on n. A fuzzy
metric space in which every convergent sequence is s-convergent is called s-fuzzy metric space. In a similar
way to the class of principal fuzzy metric spaces [3], the class of s-fuzzy metric spaces admits the following
characterization by means of a special local base [6]: (X,M, ∗) is an s-fuzzy metric space if and only if the
family {

⋂
t>0 B(x, r, t) : r ∈]0, 1[} is a local base at x, for each x ∈ X. On the other hand, if N is a mapping

on X × X given by N(x, y) =
∧

t>0 M(x, y, t), then (X,N, ∗) is a stationary fuzzy metric space if and only if
N(x, y) > 0 for all x, y ∈ X. In a such case, in [6] it is proved that τN = τM if and only if M is an s-fuzzy
metric. However, a drawback of the concept of s-convergence, as in the case of standard Cauchy (see [4]),
is that it has not a natural Cauchyness compatible pair.

The aim of this paper is to go in depth the understanding of the behaviour of a fuzzy metric M when
the parameter t takes values close to 0. Then, motivated by the above works, we study the behaviour of
the sequential convergence when simultaneously the parameter t tends to 0. For it, we introduce a stronger
concept than convergence called strong convergence, briefly st-convergence. This new concept reminds the
classical concept of convergence when it is defined by the role of ε and n0. So, we will say that a sequence
{xn} is st-convergence to x0 if given ε ∈]0, 1[ there exists n0, depending on ε such that M(xn, x0, t) > 1 − ε
for all n ≥ n0 and all t > 0. Our first achievement is that (X,M, ∗) is an s-fuzzy metric space if and only if
every convergent sequence is st-convergent. Then, in Remark 3.11 we observe that for a subclass of s-fuzzy
metrics M is possible to find a compatible metric deduced explicitly from M. The second achievement is
that the natural concept of st-Cauchy sequence (Definition 4.1) deduced from st-convergence is a compatible
pair, in the sense of [4] (Definition 4). This new concept fulfils also the following nice properties:

1. st-convergence implies s-convergence, and the converse is false, in general.
2. Every subsequence of a st-convergent sequence is st-convergent.

A significant difference with respect to s-convergence is:
3. There exist convergent sequences without st-convergent subsequences. Also:
4. In an s-fuzzy metric space Cauchy sequences are not st-Cauchy, in general.

The structure of the paper is as follows. In Section 3, after the preliminary section, we introduce and
study the notion of st-convergence. In Section 4 we introduce the corresponding natural concept of st-
Cauchyness and we show that it is compatible with st-convergence. At the end, a question related to the
obtained results is proposed.

2. Preliminaries

Definition 2.1. (George and Veeramani [1]) A fuzzy metric space is an ordered triple (X,M, ∗) such that X
is a (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set on X ×X×]0,∞[ satisfying the following
conditions, for all x, y, z ∈ X, s, t > 0:

(GV1) M(x, y, t) > 0;

(GV2) M(x, y, t) = 1 if and only if x = y;

(GV3) M(x, y, t) = M(y, x, t);

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t + s);

(GV5) M(x, y, ) :]0,∞[→]0, 1] is continuous.

The continuous t-norms used in this paper are the usual product, denoted by ·, and the Lukasievicz
t-norm, denoted by L (xLy = max{0, x + y − 1}), which satisfy that · ≥ L.
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Note that if (X,M, ∗) is a fuzzy metric space and � is a continuous t-norm satisfying � ≤ ∗, then (X,M, �)
is a fuzzy metric space.

If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗), or simply M, is a fuzzy metric on X. This
terminology will be also extended along the paper in other concepts, as usual, without explicit mention.

George and Veeramani proved in [1] that every fuzzy metric M on X generates a topology τM on X
which has as a base the family of open sets of the form {BM(x, ε, t) : x ∈ X, 0 < ε < 1, t > 0}, where
BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε} for all x ∈ X, ε ∈]0, 1[ and t > 0. If confusion is not possible, as usual,
we write simply B instead of BM.

Let (X, d) be a metric space and let Md a function on X × X×]0,∞[ defined by

Md(x, y, t) =
t

t + d(x, y)

Then (X,Md, ·) is a fuzzy metric space, [1], and Md is called the standard fuzzy metric induced by d. The
topology τMd coincides with the topology τ(d) on X deduced from d.

Definition 2.2. (Gregori and Romaguera [9]) A fuzzy metric M on X is said to be stationary if M does not
depend on t, i.e. if for each x, y ∈ X, the function Mx,y(t) = M(x, y, t) is constant. In this case we write M(x, y)
instead of M(x, y, t).

Proposition 2.3. (George and Veeramani [1]) Let (X,M, ∗) a fuzzy metric space. A sequence {xn} in X converges
to x if and only if limn M(xn, x, t) = 1, for all t > 0.

Definition 2.4. (George and Veeramani [1], Schweizer and Sklar [19]) A sequence {xn} in a fuzzy metric
space (X,M, ∗) is said to be M-Cauchy, or simply Cauchy, if for each ε ∈]0, 1[ and each t > 0 there is n0 ∈ N
such that M(xn, xm, t) > 1 − ε for all n,m ≥ n0. Equivalently, {xn} is M-Cauchy if limn,m M(xn, xm, t) = 1 for all
t > 0.

As in the classical case convergent sequences are Cauchy.

Definition 2.5. (Gregori and Miñana [4]) Suppose it is given a stronger concept than convergence, say
A-convergence. A concept of Cauchyness, say A-Cauchyness, is said to be compatible with A-convergence,
and vice-versa, if the diagram of implications below is fulfilled

A−conver1ence → conver1ence
↓ ↓

A−Cauchy → Cauchy

and there is not any other implication, in general, among these concepts.

From now on (X,M, ∗), or simply X if confusion is not possible, is a fuzzy metric space.

3. Strong Convergence

The condition of convergence in a fuzzy metric space can be rewritten as follows.
A sequence {xn} converges to x0 if and only if for all t > 0 and for all ε ∈]0, 1[ there exists nε,t ∈ N,

depending on ε and t, such that
M(xn, x0, t) > 1 − ε, for all n ≥ nε,t.

Then we can give a stronger concept than convergence strengthening in a natural way the imposition
on t as follows.
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Definition 3.1. A sequence {xn} in (X,M, ∗) is strong convergent, briefly st-convergent, to x0 ∈ X if given
ε ∈]0, 1[ there exists nε, depending on ε, such that

M(xn, x0, t) > 1 − ε, for all n ≥ nε and for all t > 0.

Equivalently, {xn} is st-convergent to x0 ∈ X if given ε ∈]0, 1[ there exists nε ∈N such that

xn ∈ B(x0, ε, t), for all n ≥ nε and for all t > 0.

Clearly, a st-convergent sequence to x0 is convergent to x0.
Next, we will give a characterization of st-convergent sequences by means of (double) limits.

Proposition 3.2. A sequence {xn} in (X,M, ∗) is st-convergent to x0 if and only if limn,m M(xn, x0, 1
m ) = 1

Proof. Suppose {xn} is st-convergent to x0. Let ε ∈]0, 1[. Then we can find nε such that M(xn, x0, t) > 1 − ε
for all n ≥ nε and for all t > 0. In particular M(xn, x0, 1

m ) > 1 − ε for all n ≥ nε and for all m ∈ N, i.e.,
limn,m M(xn, x0, 1

m ) = 1.
Conversely, suppose limn,m M(xn, x0, 1

m ) = 1. Let ε ∈]0, 1[. Then we can find nε ∈ N such that
M(xn, x0, 1

m ) > 1 − ε for all n,m ≥ nε. Take t > 0. Then we can find mt ≥ nε such that 1
mt
< t and so

M(xn, x0, t) ≥M(xn, x0, 1
mt

) > 1 − ε for all n ≥ nε, so {xn} is st-convergent to x0.

The next corollary is immediate.

Corollary 3.3. Each st-convergent sequence is s-convergent.

Now we will see that the converse of the last corollary is not true, in general.

Example 3.4. Let (X,Md, ·) be the standard fuzzy metric, where X = R and d is the usual metric on R.
Consider the sequence {xn}, where xn = 1

n2 for all n ∈N. The sequence {xn} is s-convergent to 0, since

lim
n

Md(xn, 0,
1
n

) = lim
n

1
n

1
n + 1

n2

= 1.

Now, we will see that {xn} is not st-convergent to 0.
Suppose that {xn} is st-convergent to 0. Then for each ε ∈]0, 1[ there exists nε ∈N such that Md(xn, 0, t) =

t
t+ 1

n2
> 1 − ε for all t > 0 and for all n ≥ nε. Therefore, 1

n2
ε
< tε

1−ε for all t > 0, a contradiction.

Under the above terminology the following assertions are immediate:

Proposition 3.5.
1. Constant sequences are st-convergent.
2. If M is stationary then convergent sequences are st-convergent.

Proposition 3.6. Each subsequence of a st-convergent sequence in X is st-convergent.

Proof. It is straightforward.

Remark 3.7. In [6] the authors proved that in a fuzzy metric space each convergent sequence admits an
s-convergent subsequence. This affirmation is not true for st-convergent sequences as we will show in the
the next example.

Example 3.8. Consider the standard fuzzy metric space (X,Md, ·) of Example 3.4 and let {xn} be the sequence
defined by xn = 1

n . Clearly, {xn} converges to 0. Suppose that {xnk } is a subsequence of {xn} which is st-
convergent to 0. Then for each ε ∈]0, 1[ there exists kε ∈ N such that Md(xnk , 0, t) = t

t+ 1
nk

> 1 − ε for all t > 0

and for all k ≥ kε. Therefore 1
nkε
< tε

1−ε for all t > 0, a contradiction.
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Theorem 3.9. Every convergent sequence in (X,M, ∗) is st-convergent if and only if every convergent sequence in X
is s-convergent.

Proof. If every convergent sequence in X is st-convergent then by Corollary 3.3 every convergent sequence
in X is s-convergent.

Conversely, suppose that every convergent sequence in X is s-convergent and suppose that there exists
a convergent sequence {xn} to x0 in X which is not st-convergent. Then there exists δ ∈]0, 1[ such that for
each k ∈N there exists n(k) ≥ k such that M(xn(k), x0, t(k)) ≤ 1 − δ, for some t(k) > 0.

Next we will construct a convergent sequence {y j}which is not s-convergent.
Take 1 ∈ N, then there exists n(1) ≥ 1 such that M(xn(1), x0, t(1)) ≤ 1 − δ. Let n1 ∈ N such that

n1 ≥ max{ 1
t(1) ,n(1)} and we define

y1 = y2 = · · · = yn1 = xn(1).

Now, for n1 ∈ N, there exists n(n1) ≥ n1 such that M(xn(n1), x0, t(n1)) ≤ 1 − δ. Let n2 ∈ N such that
n2 ≥ max{ 1

t(n1) ,n(n1)}. Clearly, n2 ≥ n1. So we define

yn1+1 = yn1+2 = · · · = yn2 = xn(n1).

By induction on k ∈ N, for nk−1 ∈ N, there exists n(nk−1) ≥ nk−1 such that M(xn(nk−1), x0, t(nk−1)) ≤ 1 − δ.
Let nk ∈N such that nk ≥ max{ 1

t(nk−1) ,n(nk−1)}. Clearly, nk ≥ nk−1. So we define

ynk−1+1 = ynk−1+2 = · · · = ynk = xn(nk−1).

The constructed sequence {y j} is convergent. Indeed, since {xn} converges to x0 we have that for each
ε ∈]0, 1[ and t > 0 there exists n0 ∈N such that M(xn, x0, t) > 1 − ε for all n ≥ n0. If we take k0 ∈N such that
nk0 ≥ n0 and consider j0 = nk0 , then for each j ≥ j0, y j = xn(nk), where nk ≥ nk0 , and so by construction of {y j}

we have that M(y j, x0, t) > 1 − ε.
Now, we will see that {y j} is not s-convergent to x0. By construction of {y j} we have that for all k ∈ N,

M(ynk , x0, 1
nk

) ≤ 1 − δ. Therefore there exists δ ∈]0, 1[ such that for each j ∈Nwe can find k( j) ∈N such that
nk( j) ≥ j and so M(ynk( j), x0, 1

nk( j)
) ≤ 1 − δ. Thus {y j} is not s-convergent, a contradiction.

An example of s-fuzzy metric is (]0,∞[,M, ·), where M(x, y, t) =
min{x,y}+t
max{x,y}+t . On the other hand, the standard

fuzzy metric space (X,Md, ·) is s-fuzzy metric if and only if τ(d) is the discrete topology [6].
The next corollary is obvious taking into account the last theorem and Corollary 3.10 of [6].

Corollary 3.10. The following are equivalent:

(i) M is an s-fuzzy metric.
(ii)
⋂

t>0 B(x, r, t) is a neighborhood of x for all x ∈ X, and for all r ∈]0, 1[.
(iii) {

⋂
t>0 B(x, r, t) : r ∈]0, 1[} is a local base at x, for each x ∈ X.

(iv) Every convergent sequence is st-convergent.

Notice that in an s-fuzzy metric convergence can be defined with a simple limit and that one can find
a local base at x for each x ∈ X depending only on the radius, which reminds the case of classical metrics.
This observation is related with the next remark.

Remark 3.11. (Metric deduced explicitly from a fuzzy metric)
We will say that a metric d and a fuzzy metric M, both on X, are compatible if the topologies deduced

from d and M coincide, i.e. τ(d) = τM. Recall that a topological space is metrizable if and only if it is fuzzy
metrizable [7]. Now, the topological study of a (fuzzy) metrizable space is easier thought a metric or even
thought a stationary fuzzy metric because in both cases it does not appear the parameter t.

The reader knows that for a given metric d on X one can find many compatible fuzzy metrics (see
[1]) deduced explicitly from d. The converse, up to we know, is an unsolved question. To approach this
question, in the next paragraph, we recall some known results.
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Given a metric d on X it is easy to find stationary fuzzy metrics compatible with d. For instance, for a
fixed K > 0, if we define NK = K

K+d(x,y) for each x, y ∈ X then (NK, ·) is a stationary fuzzy metric and τ(d) = τNK .
Conversely, if (N,L) is a stationary fuzzy metric on X then d(x, y) = 1 −N(x, y), for each x, y ∈ X, is a metric
on X and τ(d) = τN.

Now, let ∗ ≥ L and suppose that (M, ∗) is a fuzzy metric on X satisfying N(x, y) =
∧

t>0 M(x, y, t) > 0 for
each x, y ∈ X. Then (N, ∗) is a fuzzy metric on X and τN = τM if and only if M is an s-fuzzy metric (see [6,
Theorem 4.2]). Consequently, in this case d(x, y) = 1 −

∧
t>0 M(x, y, t) is a metric on X with τ(d) = τM and so

d is a compatible metric with M. Clearly, d is deduced explicitly from M.

4. Strong Cauchy Sequences

Next, we will give a concept of strong Cauchy sequence according to Definition 3.1.

Definition 4.1. A sequence {xn} in X is strong Cauchy, briefly st-Cauchy, if given ε ∈]0, 1[ there exists nε,
depending on ε, such that

M(xn, xm, t) > 1 − ε, for all n,m ≥ nε and for all t > 0.

Clearly, st-Cauchy sequences are Cauchy.
In a similar way to the case of st-convergence, we give the next characterization of st-Cauchyness by

means of (triple) limit.

Proposition 4.2. {xn} is st-Cauchy if and only if limn,m,k M(xn, xm, 1
k ) = 1

Proof. The proof is similar to the proof of Proposition 3.2.

We will see that the concept of st-Cauchyness is compatible with the concept of st-convergence. First,
we will see that the next diagram

st − conver1ence → conver1ence
↓ ↓

st − Cauchy → Cauchy

is fulfilled. For it, we start showing the next proposition.

Proposition 4.3. Every st-convergent sequence is st-Cauchy.

Proof. Let {xn} be a st-convergent sequence in a fuzzy metric space (X,M, ∗). Take ε ∈]0, 1[. By continuity of
∗, we can find r ∈]0, 1[ such that (1 − r) ∗ (1 − r) > 1 − ε. Since {xn} is st-convergent, there exists x0 ∈ X and
n0 ∈ N such that M(xn, x0, t) > 1 − r for all n ≥ n0 and all t > 0. Therefore, for each n,m ≥ n0 and each t > 0
we have that

M(xn, xm, t) ≥M(xn, x0, t/2) ∗M(x0, xm, t/2) > (1 − r) ∗ (1 − r) > (1 − ε.)

And thus, {xn} is st-Cauchy.

Now, we will see that the implications of the above diagram cannot be reverted in general.
Example 3.4 shows an s-convergent sequence, and so convergent, which is not st-convergent. It is easy

to verify that it is also an example of convergent (Cauchy) sequence which is not st-Cauchy.
The next example shows an st-Cauchy sequence, which is not (st-)convergent.

Example 4.4. Let (X,M, ∗) be the stationary fuzzy metric space, where X =]1,+∞[, M(x, y) =
min{x,y}
max{x,y} and ∗ is

the usual product. It is easy to verify that the sequence {xn}, where xn = 1 + 1
n is a st-Cauchy sequence in X,

which is not (st-)convergent.
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Therefore, the concepts of st-Cauchyness and st-convergence are compatible.
Finally, we will see that in an s-fuzzy metric space Cauchy sequences are not st-Cauchy, in general.

Example 4.5. Consider (X,M, ∗), where X =]0,∞[, ∗ is the usual product and M(x, y, t) =
min{x,y}+t
max{x,y}+t for each

x, y ∈ X and each t > 0. In [6] it is proved that it is an s-fuzzy metric space.
Now, if we consider the sequence {xn} in X, where xn = 1

n for each n ∈ N, it is a Cauchy sequence in X.
Indeed,

lim
n,m

M(xn, xm, t) = lim
n,m

min{ 1
n ,

1
m } + t

max{ 1
n ,

1
m } + t

= 1.

On the other hand, {xn} is not st-Cauchy. Indeed, tacking ε = 1
2 , then for each n ∈ N we can find m > n

and t > 0 such that M(xn, xm, t) < 1
2 . For instance, given n ∈N, if we consider m = 3n and t ∈]0, 1

3n [ we have
that

M(xn, xm, t) =
1

3n + t
1
n + t

<
1

3n + 1
3n

1
n + 1

3n

=
1
2
.

A question concerning our above study is the next.

Problem 4.6. Characterize those fuzzy metric spaces in which Cauchy sequences are st-Cauchy.
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