
Filomat 31:6 (2017), 1665–1670
DOI 10.2298/FIL1706665B

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Unbounded Composition Operators via Inductive Limits:
Cosubnormal Operators with Matrix Symbols

Piotr Budzyńskia, Piotr Dymeka, Artur Płanetaa

aKatedra Zastosowań Matematyki, Uniwersytet Rolniczy w Krakowie, ul. Balicka 253c, 30-198 Kraków, Poland

Abstract. We prove, by use of inductive techniques, that assorted unbounded composition operators in
L2-spaces with matrix symbols are cosubnormal.

1. Introduction

Composition operators in L2-spaces constitute important class of operators that can be found in many
areas of mathematics. They are basic objects in the operatorial model of classical mechanics due to Koopman
and von Neumann, ergodic theory, theory of dynamical systems and more. They are also very interesting
objects of investigation from the operator theory point of view. They have attracted considerable attention
from many mathematicians, which resulted in characterizing many of their properties, mainly in the
bounded case (see the monograph [19] and references therein). Unbounded composition operators in L2-
spaces have become objects of intensive studies quite recently, and they proved to be extremely interesting
([3–5, 7, 8, 13]).

Bounded subnormal operators have been introduced by Halmos. Studying subnormality turned out
to be highly successful and it led to numerous problems in functional analysis, operator theory, and
mathematical physics. The theory of bounded operators is well-developed now (see the monograph [10]
and references therein). Theory of unbounded subnormal operators, though having much shorter history,
brought plenty of interesting results and problems as well (see [1, 12, 22–24] for the foundations). Subnormal
operators and their relatives play a vital role in operator theory nowadays.

In this note we deal with assorted composition operators induced by linear transformations ofRκ. Such
operators have been investigated already in [11, 15, 20, 21] (in bounded case) and in [5] (in the unbounded
case). Our main result is a criterion for cosubnormality of these operators (see Theorem 3.1). We derive
it from a criterion for subnormality given in [5], for which we provide essentially different proof. Basic
ingredients of our approach are inductive limit techniques and a criterion for subnormality of general
Hilbert space operators invented in [2, Theorem 3.1.2] (which relies heavily on [9]). It is known that
inductive limits of operators are very useful and versatile tools when dealing with unbounded operators
(see [14, 16]). In particular, they can be used when studying the questions of boundedness and dense
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definiteness of composition operators (see [7]). As we show here, they can be also applied when dealing
with cosubnormality.

2. Preliminaries

In all what follows Z+ stands for the set of nonnegative integers andN for the set of positive integers;
R denotes the set of real numbers, C denotes the set of complex numbers.

LetH and {Hk}
∞

k=1 be Hilbert spaces. IfH ⊆ Hk+1 ⊆ Hk for every k ∈ N, where “⊆” means inclusion of
vector spaces, and ‖ f ‖H = limk→∞ ‖ f ‖Hk for every f ∈ H , then we writeHk ↓ H as k→∞.

LetH be a (complex) Hilbert space and T be an operator inH (all operators are assumed to be linear in
this paper). By D(T) we denote the domain of T. T stands for the closure of T, and T∗ is the adjoint of T (if
it exists). Let T be a closable operator in H and F be a subspace of D(T); if T|F = T, then F is said to be
a core of T. A closed densely defined operator N inH is said to be normal if N∗N = NN∗. A densely defined
operator S in H is said to be subnormal if there exists a complex Hilbert space K and a normal operator
N in K such that H ≤ K (isometric embedding) and Sh = Nh for all h ∈ D(S). Finally, a densely defined
operator S inH is cosubnormal if S∗ is subnormal.

Let (X,A, µ) be a σ-finite measure space. The space of all A-measurable C-valued functions with∫
| f |2 dµ < ∞ is denoted by L2(µ) = L2(X,A, µ). Let A be an A-measurable transformation of X, i.e., A is

a self-map of X such that A−1(A) ⊆ A. Define the measure µ ◦A−1 onA by setting µ ◦A−1(σ) = µ(A−1(σ)),
σ ∈ A. If A is nonsingular, i.e., µ ◦A−1 is absolutely continuous with respect to µ, then the operator

CA : L2(µ) ⊇ D(CA)→ L2(µ)

given by

D(CA) = { f ∈ L2(µ) : f ◦A ∈ L2(µ)}, CA f = f ◦A for f ∈ D(CA),

is well defined1) and closed in L2(µ) (see [3, Section 3]). We call it a composition operator (induced by A) and
we say that A is the symbol of CA. If the Radon-Nikodym derivative

hA =
dµ ◦A−1

dµ

belongs to L∞(µ), which is the space of all C-valued and essentially bounded functions on X, then CA is
bounded on L2(µ) and ‖CA‖ = ‖hA‖

1/2
L∞(µ). The reverse is also true. By the measure transport theorem we get

D(CA) = L2((1 + hA) dµ).

It follows from [3, Proposition 3.2] that

D(CA) = L2(µ) if and only if hA < ∞ a.e. [µ]. (1)

The adjoint of a composition operator induced byA-bimeasurable transformation turns out to be a weighted
composition operator (see [8, Lemma 6.4] and [3, Corollary 7.3]):

if A is an invertible transformation of X such that both the A and A−1 are A- measurable
and nonsingular, then

D
(
C∗A

)
=

{
f ∈ L2(µ) : hA ·

(
f ◦A−1

)
∈ L2(µ)

}
, C∗A f = hA ·

(
f ◦A−1

)
, f ∈ D

(
C∗A

)
.

(2)

1)The reverse is also true, i.e., if CA is well defined, then A is nonsingular.
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Denote by E+ the set of all entire functions γ on C of the form γ(z) =
∑
∞

n=0 anzn, z ∈ C, where an are
nonnegative real numbers and ak > 0 for some k > 1. For a given positive integer κ, a function γ ∈ E+ and
a norm | · | on Rκ induced by an inner product we define the σ-finite measure µ|·|γ onB(Rκ), the σ-algebra of
Borel subsets of Rκ, by

µ|·|γ (dx) = γ(|x|2) mκ(dx),

where mκ is the κ-dimensional Lebesgue measure onRκ. If A is a linear transformation ofRκ (clearly, such
an A is B(Rκ)-measurable), we can verify that the composition operator CA in L2(µ|·|γ ) is well-defined if and
only if A is invertible. If this is the case, then (see [20, equation (2.1)])

hA(x) =
1

|det A|
γ(|A−1x|2)
γ(|x|2)

, x ∈ Rκ \ {0}. (3)

(Here, and later on, |det A| stands for the modulus of the determinant of A.) Hence, by (1) and [3, Proposition
6.2], every such well-defined composition operator CA is automatically densely defined and injective. The
question of boundedness of CA has the following solution.

Theorem 2.1 ([20, Proposition 2.2]). Let γ be in E+ and | · | be a norm on Rκ induced by an inner product. Let A
be an invertible linear transformation of Rκ. Then the following assertions hold:

1. If γ is a polynomial, then A induces bounded composition operator on L2(µ|·|γ ) and on L2(µ|·|1/γ).

2. If γ is not a polynomial, then A induces bounded composition operator on L2(µ|·|γ ) (resp. on L2(µ|·|1/γ)) if and
only if ‖A−1

‖ 6 1 (resp. ‖A‖ 6 1).

It turns out that subnormality of CA can also be characterized in terms of the symbol A.

Theorem 2.2 ([20, Theorem 2.5]). Let γ be in E+ and | · | be a norm on Rκ induced by an inner product. Let A be
an invertible linear transformation ofRκ such that CA is a bounded operator on L2(µ|·|γ ). Then CA is subnormal if and
only if A is normal in (Rκ, | · |).

We close this section by recalling some information concerning weighted composition operators. Let
(X,A, ν) be a σ-finite measure space, A be a nonsingular A-measurable transformation of X and w be a
C-valuedA-measurable mapping on X such that the measure (|w|2 dν) ◦A−1 is absolutely continuous with
respect to ν. Weighted composition operator WA,w : L2(ν) ⊇ D(WA,w)→ L2(ν) is defined by

D(WA,w) = { f ∈ L2(ν) : w · ( f ◦A) ∈ L2(ν)}, WA,w f = w · ( f ◦A), f ∈ D(WA,w).

Any such operator WA,w is closed. The operator WA,w is densely defined if and only if
(
EA(|w|2)◦A−1

)
hA < ∞

a.e. [ν], where EA(·) denotes the conditional expectation operator with respect to σ-algebra A−1(A) (see [8,
Lemma 6.1]; see also [6] for more information concerning unbounded weighted composition operators).
In particular, if A is invertible and A−1 is A-measurable, then WA,w is densely defined if and only if(
|w|2 ◦A−1

)
· hA < ∞ a.e. [ν].

3. Criterion for Cosubnormality

Our main result is the following criterion for cosubnormality of unbounded composition operators with
matrix symbols in L2(µ|·|1/γ).

Theorem 3.1. Let γ be in E+, | · | be a norm on Rκ induced by an inner product and A be an invertible linear
transformation of Rκ. If A is normal in (Rκ, | · |), then CA is cosubnormal in L2(µ|·|1/γ).
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The proof of the criterion relies on several results, provided below, which are of independent interest. We
begin by proving that certain families generated by characteristic functions attached to π-systems of sets
are dense in L2-spaces.

Recall that a nonempty family B of subsets of a given set X is a π-system, whenever A ∩ B ∈ B for all A
and B ∈ B. In turn, if B satisfies:

(a) ∅ ∈ B,
(b) A ∈ B =⇒ X \ A ∈ B,
(c)

(
{Ai}

∞

i=1 ⊂ B and Ai ∩ A j = ∅ for i , j
)

=⇒
⋃
∞

i=1 Ai ∈ B,

then B is said to be a λ-system.

Lemma 3.2. Let (X,A, ν) be a measure space. Let B ⊆ A be family of sets satisfying the following conditions:

(i) B is a π-system,
(ii) A = σ(B), i.e.,A is generated by B,

(iii) there exists {Xn}
∞

n=1 ⊆ B such that Xn ⊆ Xn+1 and X =
⋃
∞

n=1 Xn,
(iv) F := lin {χσ : σ ∈ B}, the linear space spanned by {χσ : σ ∈ B}, is contained in L2(X,A, ν).

Then the family F is dense in L2(X,A, ν).

Proof. Clearly, by (iii) and (iv), the measure ν is σ-finite. For every k ∈ N, (Xk,Ak, νk) is a finite measure
space, where Ak = {ω ∩ Xk : ω ∈ A} and νk = ν|Ak , the restriction of ν to Ak. For every k ∈ N we set
Lk := {ω ∈ Ak : χω ∈ Fk}, where Fk denotes the L2(νk)-closure of Fk = lin {χσ∩Xk : σ ∈ B}. Then Lk is
λ-system and thus, by [18, Théorème] (known also as Dynkin’s π-λ theorem), we haveAk = Xk∩σ(B) ⊆ Lk

for all k ∈ N. Since simple functions are dense in L2-spaces, we deduce that Fk = L2(νk) for every k ∈ N.
This and σ-finiteness of ν imply the claim.

Employing the lemma above and description of the graph norm of WA,w, we prove that certain families
generated by characteristic functions form cores for weighted composition operators.

Proposition 3.3. Let (X,A, ν) be a σ-finite measure space and let B ⊆ A be a family of sets satisfying conditions
(i)-(iii) of Lemma 3.2. Let A : X→ X be invertible and such that both A and A−1 areA-measurable and nonsingular.
Let w : X→ C beA-measurable. Assume that F := lin

{
χσ : σ ∈ B

}
⊆ D(WA,w). Then F is a core of WA,w.

Proof. It follows from Lemma 3.2 that F , and consequently D(WA,w), is dense in L2(ν). Thus, by [8, Lemma
6.1], J := (|w|2 ◦ A−1) · hA < ∞ a.e. [ν]. This in turn implies that the measure J dν is σ-finite. Now, by the
measure transport theorem, we have

‖ f ‖2 + ‖WA,w f ‖2 = ‖ f ‖2 +

∫
w2
· | f |2 ◦A dν = ‖ f ‖2 +

∫
w2
◦A−1

· | f |2 · hA dν =

∫
| f |2(1 + J) dν.

Thus F is a core of WA,w if and only if F is dense in L2
(
(1 + J) dν

)
. Since the measure (1 + J) dν is σ-finite, it

suffices to apply Lemma 3.2 (with (1 + J) dν in place of ν) to prove the claim.

As a consequence we get the following (cf. [3, Theorem 4.7]).

Corollary 3.4. Letγ be in E+, |·| be a norm onRκ induced by an inner product, A be an invertible linear transformation
of Rκ and CA be the composition operator in L2(µ|·|γ ) induced by A. Then D∞(CA) :=

⋂
∞

n=1 D(Cn
A) is a core of CA.

Proof. Let B denote the family of all sets of the form σ∩ {x ∈ Rκ : |x| ≤ k}with σ ∈ B(Rκ) and k ∈N. Then B
satisfies conditions (i)-(iv) of Lemma 3.2. Moreover, F := lin {χω : ω ∈ B} ⊆ D∞(CA). This and Proposition
3.3 imply that F and consequently D∞(CA) are cores of CA.

Remark 3.5. Another way of proving that D∞(CA) is a core of CA is to use the so-called Mittag-Leffler theorem, as
it was done in the proof of [3, Theorem 4.7].
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Cosubnormality of a composition operator induced by a linear transformation of Rκ is strongly related
to subnormality of a composition operator induced by the inverted symbol. This is a consequence of the
following fact, which essentially is due to Stochel (see [20, equality (UE) on page 309] for the case of bounded
operators).

Lemma 3.6. Let γ be in E+, | · | be a norm on Rκ induced by an inner product and A be an invertible linear
transformation of Rκ. Then the operators |det A|C∗A in L2(µ|·|1/γ) and CA−1 in L2(µ|·|γ ) are unitarily equivalent.

Proof. Clearly, the map U : L2(µ|·|1/γ) 3 f 7→ fγ(·) := f (·)
γ(|·|2) ∈ L2(µ|·|γ ) is a unitary operator. By (2) and (3),

f ∈ L2(µ|·|1/γ) belongs to D(C∗A) if and only if∫
Rκ

∣∣∣( f ◦ A−1)(x)hA(x)
∣∣∣2 dµ|·|1/γ(x) < ∞.

Since, by the change-of-variable theorem (see [17, Theorem 7.26]), we have∫
Rκ
| fγ(x)|2hA−1 (x) dµ|·|γ (x) =

∫
Rκ
| f (A−1x)|2

γ(|x|2)(
γ(|A−1x|2)

)2 dmκ(x) = |det A|2
∫
Rκ

∣∣∣( f ◦ A−1)(x)hA(x)
∣∣∣2 dµ|·|1/γ(x),

we see that f ∈ D(C∗A) is equivalent to fγ ∈ D(CA−1 ). This and elementary computations implies that
CA−1 U = U|det A|C∗A, which proves our claim.

It was shown in [5, Theorem 32] that a normal linear transformation A of (Rκ, | · |) induces subnormal
composition operator CA in L2(µ|·|γ ). The proof of this fact involved a highly non-trivial construction of
a measurable family of probability measures satisfying the so-called consistency condition. Below we
prove this fact in a different manner, based on the following version of [2, Theorem 3.1.2] (we include the
proof, which is similar to that of the original result, for the reader’s convenience).

Lemma 3.7. Let S be a closed densely defined operator in a complex Hilbert spaceH . Suppose that there are a family
{Hk}k∈N of Hilbert spaces such thatHk ↓ H as k→∞, and a set X ⊆ H such that

(i) X ⊆ D∞(S),
(ii) F := lin

⋃
∞

n=0 Sn(X) is a core of S,
(iii) F is dense inHk for every k ∈N,
(iv) S|F is a subnormal operator inHk for every k ∈N.

Then S is subnormal.

Proof. We prove that S|F is subnormal inH . To this end we consider any finite system {ai, j
p,q}

i, j=1,...,m
p,q=0,...,n ⊂ C such

that
m∑

i, j=1

n∑
p,q=0

ai, j
p,qλ

pλ̄qziz̄ j > 0, λ, z1, . . . , zm ∈ C.

Since S|F is subnormal inHk for every k ∈N and F is invariant for S, we obtain by [9, Theorem 21] that
m∑

i, j=1

n∑
p,q=0

ai, j
p,q〈S

p fi,Sq f j〉Hk > 0, f1, . . . , fm ∈ F , k ∈N.

Clearly, the polarization formula and the fact thatHk ↓ H as k→∞ imply that limk→∞〈x, y〉Hk = 〈x, y〉H for
all x, y ∈ H . Therefore we have

m∑
i, j=1

n∑
p,q=0

ai, j
p,q〈S

p fi,Sq f j〉H > 0, f1, . . . , fm ∈ F .

In view of [9, Theorem 21], the above implies subnormality of S|F inH . This and the fact that F is a core
of S yields subnormality of S.
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Proposition 3.8 ([5, Theorem 32]). Let γ be in E+, | · | be a norm on Rκ induced by an inner product and A be an
invertible linear transformation of Rκ. If A is normal in (Rκ, | · |), then CA is subnormal in L2(µ|·|γ ).

Proof. Since γ ∈ E+, we have γ(z) =
∑
∞

n=0 anzn for all z ∈ C. For k ∈ N, let γk be a polynomial given by
γk(z) =

∑k
n=0 anzn, z ∈ C. Without loss of generality we may assume that a1 > 0. Hence for every k ∈ N,

µγk , 0. Since for every l ∈ N, µ|·|γl
is absolutely continuous with respect to µ|·|γl+1

, and µ|·|γl
is absolutely

continuous with respect to µ|·|γ , we deduce that L2(µ|·|γk
) ↓ L2(µ|·|γ ) as k → ∞. Moreover, by Theorems 2.1 and

2.2, A induces a bounded subnormal composition operator on every L2(µ|·|γk
), k ∈N. Let X = D∞(CA). Then

we have

F := lin
∞⋃

n=0

Cn
A(X) = D∞(CA)

and so, by Corollary 3.4, F is a core of CA. Moreover, for every k ∈ N, CA|F is subnormal in L2(µ|·|γk
). We

complete the proof by applying Lemma 3.7.

Combining Lemma 3.6 and the proposition above we may prove Theorem 3.1.

Proof. [Proof of Theorem 3.1] Since A is normal in (Rκ, | · |), A−1 is normal in (Rκ, | · |) as well. This implies that
CA−1 is subnormal in L2(µ|·|γ ) by Proposition 3.8. Therefore, by Lemma 3.6, we see that CA is cosubnormal in
L2(µ|·|1/γ).
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ments des opérateurs, Rev. Roumaine Math. Pures Appl. 7 (1962) 241–282.
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