
Filomat 31:7 (2017), 2123–2142
DOI 10.2298/FIL1707123T

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Linear Programming Twin Support Vector Regression

M. Tanveera

aDiscipline of Mathematics, Indian Institute of Technology Indore, Indore 453 552 INDIA

Abstract. In this paper, a new linear programming formulation of a 1-norm twin support vector regression
is proposed whose solution is obtained by solving a pair of dual exterior penalty problems as unconstrained
minimization problems using Newton method. The idea of our formulation is to reformulate TSVR as a
strongly convex problem by incorporated regularization technique and then derive a new 1-norm linear
programming formulation for TSVR to improve robustness and sparsity. Our approach has the advantage
that a pair of matrix equation of order equals to the number of input examples is solved at each iteration of the
algorithm. The algorithm converges from any starting point and can be easily implemented in MATLAB
without using any optimization packages. The efficiency of the proposed method is demonstrated by
experimental results on a number of interesting synthetic and real-world datasets.

1. Introduction

Support Vector Machine (SVM) introduced by Vapnik and coworkers [11, 45, 46] is an excellent kernel-
based machine learning tool for binary classification and regression. It has been successfully applied to
many important class of problems like face detection [32], text categorization [23], gene selection [20],
brain-computer interface [14], image segmentation [8] and time series analysis [29, 30]. Since it exhibits
better performance in a wide variety of real-world applications in comparison to other popular machine
learning methods like artificial neural networks (ANNs), it becomes a powerful paradigm for classification
and regression.

Recently, variants of SVM wherein two non-parallel planes are constructed become popular in the
literature [22, 28, 33]. The generalized eigenvalue proximal SVM (GEPSVM) proposed by Mangasarian
and Wild [28] seeks two non-parallel planes in which each one of them will be closest to its own class of
data but at the same time as far away as possible from the other class of data. They are found to be the
eigenvectors corresponding to the smallest eigenvalues of two related generalized eigenvalue problems. In
the sprit of GEPSVM, Jayadeva et al. [22] proposed twin SVM (TWSVM) for binary classification wherein
two non-parallel planes are constructed by solving a pair of quadratic programming problems (QPPs) of
smaller size than a single large one as in SVM. Experimental results show the effectiveness of TWSVM over
SVM and GEPSVM [22]. TWSVM takes O

(
1
4 m3

)
operations which is 1/4 of the standard SVM, whereas

2010 Mathematics Subject Classification. Primary 60K05; Secondary 49M15
Keywords. Linear programming; 1-norm support vector machines; Newton method; Twin support vector regression.
Received: 18 February 2014; Accepted: 27 July 2014
Communicated by Predrag Stanimirović
Acknowledgment: The author would like to express his sincere gratitude to Professor S. Balasundaram for his help during the

preparation of this manuscript. This research was supported by Council of Scientific & Industrial Research (CSIR), Government of
India.

Email address: tanveergouri@gmail.com; mtanveer@iiti.ac.in (M. Tanveer)

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2124

GEPSVM takes O
(

1
4 n3

)
. Here, m is the number of training examples; n is the dimensionality and m >> n

[22, 24]. It is obvious that GEPSVM is far faster than TWSVM. Some scholars proposed variants of TWSVM
to reduce the time complexity and keep the effectiveness of TWSVM, see [1–4, 9, 10, 18, 24, 34, 37–43, 47–49].

Inspired by the study of TWSVM, Peng [33] proposed a non-parallel plane regressor called twin support
vector regression (TSVR) in which a pair of nonparallel functions corresponding to the ε−insensitive down-
and up- bounds of the unknown regressor are constructed. In fact, they are obtained by solving a pair
of dual QPPs of smaller size than a single large one as in the standard support vector regression (SVR).
Experimental results show the generalization performance of TSVR over SVR. It is well known that one
significant advantage of SVR is the implementation of the structural risk minimization principle. However,
only empirical risk is considered in the primal problems of TSVR due to its complex structure and thus may
incur overfitting and suboptimal in some cases. The formulation of TSVR is sensitive to outliers because
of the well known outlier-sensitiveness disadvantage of the squared loss function [44]. Furthermore, the
solution of TSVR is not capable of generating very sparse solution.

To overcome the shortcomings described above and motivation from the work of Mangasarian [26], re-
cently Tanveer [40–42] proposed novel robust and sparse linear programming twin support vector machines
for classification problems. The significant advantage of this formulation is the implementation of struc-
tural risk minimization principle and the solution of two modified unconstrained minimization problems
reduces to solving just two systems of linear equations as opposed to solving two quadratic programming
problems in TWSVM, TBSVM and TSVR, which leads to extremely simple and fast algorithm. In the spirit
of Tanveer [40–42], we propose in this paper a new linear programming formulation of 1-norm TSVR to
improve robustness and sparsity, whose solution is obtained, by solving a pair of exterior penalty problems
in dual as unconstrained optimization problems using Newton-Armijo algorithm. In order to avoid the use
of LP packages, illuminated by the exterior penalty (EP) theory [15, 17, 26], we first reformulate the linear
programming (LP) problem in the dual space and then construct a completely unconstrained quadratic
convex optimization problem. The dual LP formulation can be easily solved using a generalized Newton
method. Since the objective functions are not twice differentiable, both the generalized Hessian [16] and
smoothing approaches [25] are considered. To demonstrate the effectiveness of the proposed method,
we performed numerical experiments on a number of interesting synthetic and real-world datasets and
compared their results with other SVRs.

In this work, all vectors are taken as column vectors. The inner product of two vectors x, y in the
n−dimensional real space Rn, will be denoted by: xty, where xt is the transpose of x. Whenever x is
orthogonal to y, we write x ⊥ y. For x = (x1, x2, ..., xn)t

∈ Rn, the plus function x+ is defined as: (x+)i =
max{0, xi}, where i = 1, 2, ...,n. Further we define the step function x∗ as: (x∗)i = 1 for xi > 0, (x∗)i = 0 for
xi < 0 and (x∗)i = 0.5 when xi = 0. The 2-norm of a vector x and a matrix Q will be denoted by ‖x‖ and
‖Q‖ respectively. For simplicity, we drop the 2 from ‖x‖2. Also we denote the diagonal matrix of order n
whose diagonal elements become the components of the vector x ∈ Rn by dia1(x). The identity matrix of
appropriate size is denoted by I and the column vector of ones of dimension m by e. If f is a real valued
function of the variable x = (x1, x2, ..., xn)t

∈ Rn then the gradient of f is denoted by∇ f = (∂ f/∂x1, ..., ∂ f/∂xn)t

and the Hessian matrix of f is denoted by ∇2 f = (∂2 f/∂xi∂x j)i, j=1,2,...,n.
The paper is organized as follows. Section 2 dwells briefly SVR and TSVR. In Section 3, the proposed

LPTSVR problem is formulated and its solution is obtained by considering a pair of exterior penalty
problems in dual as unconstrained optimization problems solved by Newton- Armijo algorithm. Numerical
experiments are performed and their results are compared with other SVRs in Section 4. Finally we conclude
our work in Section 5.

2. Background

In this section, we briefly outline the standard SVR and twin SVR formulations. For a more detailed
description, the interested reader is referred to [12, 33, 46].

Let a training set of examples {(xi, yi)}i=1,2,...,m be given where for each input xi ∈ Rn, its corresponding
observed value be yi ∈ R. Suppose we represent the m input examples in the n−dimensional space Rn by a
matrix A ∈ Rm×n whose ith row is taken to be xt

i and the vector of observed values by y = (y1, ..., ym)t.

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2125

2.1. Support vector regression formulation

The goal of the standard ε–insensitive error loss SVR problem is in determining the regression estimation
function f : Rn

→ R of the form:

f (x) = wtϕ(x) + b, (1)

where the nonlinear mapping ϕ(.) takes the input examples into a higher dimensional feature space in
which the unknown coefficients are estimated by solving the minimization problem given by [12, 46]:

min
w,b,ξ1,ξ2

1
2

wtw + C(etξ1 + etξ2)

s.t. y − (ϕ(A)w + eb) ≤ εe + ξ1, (2)
ϕ(A)w + eb) − y ≤ εe + ξ2,

ξ1, ξ2 ≥ 0.

Here ξ1, ξ2 ∈ Rm are vectors of slack variables; C > 0, ε > 0 are input parameters and the matrix ϕ(A) =
[ϕ(x1)t;ϕ(x2)t; ...;ϕ(xm)t].

By introducing Lagrange multipliers u1 = (u11, ...,u1m)t, u2 = (u21, ...,u2m)t
∈ Rm and using the KKT

optimality conditions, the nonlinear estimation function f (.), defined as above, can be explicitly obtained
to be of the form [12, 46]:

f (x) =

m∑
i=1

(u1i − u2i)k(x, xi) + b, (3)

where k(., .) is a kernel function in which k(xi, x j) =ϕ(xi)tϕ(x j) holds.

2.2. Twin support vector regression (TSVR)

TSVR, introduced by Peng [33], aims at determining two non-parallel functions corresponding to the
ε1-insensitive down- and ε2-insensitive up- regressors by solving a pair of QPPs of smaller size than solving
a single large one as in the classical SVR with the advantage that it is fast and shows good generalization
performance.

The linear TSVR algorithm finds the down- and up-bound estimation functions, defined by: for any
x ∈ Rn,

f1(x) = wt
1x + b1 and f2(x) = wt

2x + b2, (4)

respectively, such that the unknowns w1,w2 ∈ Rn and b1, b2 ∈ R become the solutions of the following pair
of QPPs [33]:

min
(w1,b1,ξ1)∈Rn+1+m

1
2
||y − ε1e − (Aw1 + b1e)||2 + C1etξ1

s.t. y − (Aw1 + b1e) ≥ ε1e − ξ1, ξ1 ≥ 0 (5)

and

min
(w2,b2,ξ2)∈Rn+1+m

1
2
||y + ε2e − (Aw2 + b2e)||2 + C2etξ2

s.t. (Aw2 + b2e) − y ≥ ε2e − ξ2, ξ2 ≥ 0, (6)

where C1,C2 > 0; ε1, ε2 > 0 are input parameters and ξ1, ξ2 are vectors of slack variables in Rm.

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2126

Once the down- and up-bound regressors are determined, the end regressor f : Rn
→ R is obtained by

taking their mean, i.e. we have

f (x) =
1
2

(f1(x) + f2(x)) for all x ∈ Rn. (7)

The above approach can be easily extended to nonlinear regressors by following the kernel technique of [27].
For the input matrix A ∈ Rm×n and a nonlinear kernel function k(., .) given, let the kernel matrix K(A,At) of
order m whose (i,j)-th element be defined by: K(A,At)i j = k(xi, x j) ∈ R and let K(xt,At) = (k(x, x1), ..., k(x, xm))
be a row vector in Rm.

The nonlinear TSVR seeks the down- and up- bounds of the form:

f1(x) = K(xt,At)w1 + b1 and f2(x) = K(xt,At)w2 + b2, (8)

respectively, which are determined by solving the following pair of QPPs [33]:

min
(w1,b1,ξ1)∈Rm+1+m

1
2
||y − ε1e − (K(A,At)w1 + b1e)||2 + C1etξ1

s.t. y − (K(A,At)w1 + b1e) ≥ ε1e − ξ1, ξ1 ≥ 0 (9)

and

min
(w2,b2,ξ2)∈Rm+1+m

1
2
||y + ε2e − (K(A,At)w2 + b2e)||2 + C2etξ2

s.t. (K(A,At)w2 + b2e) − y ≥ ε2e − ξ2, ξ2 ≥ 0 (10)

and finally the end regressor is obtained using (7). For a detailed study on TSVR, the interested reader is
referred to [33].

3. Proposed Linear Programming Twin Support Vector Regression (LPTSVR)

In this section, we first reformulate TSVR as a strongly convex problem by incorporated regularization
term and then derive a 1-norm linear programming formulation for TSVR. Before starting our proposed
formulation, let us first revisit the model of TSVR. It can be observed that the formulation of TSVR is sensitive
to outliers because of the well known outlier-sensitiveness disadvantage of the squared loss function [44].
Furthermore, the objective functions of (5) and (6) are comprised empirical risk and small empirical risk
can not ensure good generalization performance since it may suffer from overfitting [46]. Furthermore, the
solution of TSVR is not capable of generating very sparse solution.

To overcome the shortcoming described above in TSVR and motivation from the works of Tanveer [40–
42], we make some improvements and propose a novel 1-norm linear programming formulation for TSVR
to improve robustness and sparsity. In order to avoid the use of LP packages, illuminated by the exterior
penalty (EP) theory [15, 17, 26], we first reformulate the LP problem in the dual space and then construct a
completely unconstrained quadratic convex optimization problem. The pair of dual LP formulation can be
easily solved using a generalized Newton method.

The 2-norm regularized TSVR (RTSVR) formulation can be written as follows:

min
(w1,b1,ξ1)∈Rn+1+m

1
2
||y − ε1e − (Aw1 + b1e)||22 +

C1

2
ξt

‘1ξ1 +
η1

2
‖

[
w1
b1

]
‖

2
2

s.t. y − (Aw1 + b1e) ≥ ε1e − ξ1, (11)

and

min
(w2,b2,ξ2)∈Rn+1+m

1
2

∥∥∥y + ε2e − (Aw2 + b2e)
∥∥∥2

2
+

C2

2
ξt

2ξ2 +
η2

2
||

[
w2
b2

]
||

2
2

s.t. (Aw2 + b2e) − y ≥ ε2e − ξ2. (12)

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2127

Notice that the objective functions of RTSVR are regularized via the 2-norm of corresponding coefficients
with weights η1 and η2 respectively which makes the objective functions strongly convex. Thus, it has

a unique global optimal solution. Furthermore, by introducing the regularization terms 1
2 ||

[
w1
b1

]
||

2
2 and

1
2 ||

[
w2
b2

]
||

2
2 to the framework of TSVR, the regularized TSVR becomes a well-posed model as it can not

only help to alleviate overfitting and improve the generalization performance as in conventional SVM but
also introduce invertibilty in the dual formulation.

Even though 2-norm distance of residuals is more sensitive to large errors and therefore less robust in
comparison to 1-norm and though 1-norm formulation has the advantage of generating sparse solution
[6], many methods exist in the literature to solve 2-norm SVR formulated as a QPP but very little on 1-
norm linear programming SVR. For the work on the formulation of TSVR as a pair of linear programming
problems the interested reader is referred to [18].

Motivated by the study of 1-norm SVM problem formulated as a linear programming optimization
problem [26], Tanveer [40–42] recently proposed novel robust and sparse linear programming twin support
vector machines for classification problems. In this paper, we are extending the idea for regression problems
and proposed a novel linear programming TSVR (LPTSVR) whose solution is obtained, by solving a pair of
exterior penalty problems in dual as unconstrained optimization problems using Newton-Armijo algorithm.

We first replaces all the 2-norm terms in RTSVR with 1-norm terms as follows:

min
(w1,b1,ξ1)∈Rn+1+m

||y − ε1e − (Aw1 + b1e)||1 + C1etξ1 + η1||

[
w1
b1

]
||1

s.t. y − (Aw1 + b1e) ≥ ε1e − ξ1, ξ1 ≥ 0 (13)

and

min
(w2,b2,ξ2)∈Rn+1+m

||y + ε2e − (Aw2 + b2e)||1 + C2etξ2 + η2||

[
w2
b2

]
||1

s.t. (Aw2 + b2e) − y ≥ ε2e − ξ2, ξ2 ≥ 0. (14)

whose solutions w1,w2 ∈ Rn and b1, b2 ∈ R will be used to determine the end regressor (7).
We notice that regularization technique is adopted to convert original TSVR to a well posed problem.
Furthermore, 1-norm error loss function and 1-norm regularization are used to introduce robustness and
sparseness simultaneously.

Following the approach of Mangasarian [26], we will obtain the solutions of (13) and (14) in two steps:
(i). formulate the pair (13) and (14) as a pair of linear programming problems (LPPs); (ii). obtain their
solutions by minimizing a pair of exterior penalty functions of their duals for a finite value of the penalty
parameter θ using Newton-Armijo algorithm.

First we describe the method of converting the 1-norm TSVR as a pair of LPPs.
Let G = [A e] be an augmented matrix. Then, by setting

[
w1
b1

]
= r1 − s1, y − ε1e − G

[
w1
b1

]
= p1 − q1,

[
w2
b2

]
= r2 − s2 and y + ε2e − G

[
w2
b2

]
= p2 − q2,

(15)

where r1, s1, r2, s2 ∈ Rn+1 and p1, q1, p2, q2 ∈ Rm satisfying the non-negativity constraints

r1, s1, r2, s2 ≥ 0 and p1, q1, p2, q2 ≥ 0,

the pair of QPPs (13) and (14) can be converted into the following pair of linear programming TSVR

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2128

(LPTSVR) problems:

min
r1,s1,ξ1,p1,q1

et(p1 + q1) + C1etξ1 + η1et
1(r1 + s1)

s.t. p1 − q1 + ξ1 ≥ 0,
G(r1 − s1) + p1 − q1 = y − eε1, (16)
r1, s1, p1, q1, ξ1 ≥ 0

and

min
r2,s2,ξ2,p2,q2

et(p2 + q2) + C2etξ2 + η2et
1(r2 + s2)

s.t. − p2 + q2 + ξ2 ≥ 0,
G(r2 − s2) + p2 − q2 = y + eε2, (17)
r2, s2, p2, q2, ξ2 ≥ 0,

respectively, where e1 is the vector of one’s of size (n + 1).
Rather than solving the resulting QPPs in the dual, we first convert the constrained QPPs to uncon-

strained minimization problems (UMPs). Since the objective function of UMPs are not twice differentiable,
both the generalization Hessian [16] and smoothing technique [25] are considered and apply fast Newton
method to solve it effectively.

In a similar manner, one can easily obtain a pair of explicit LPPs for nonlinear TSVR.
Assume that the down- and up- bound nonlinear functions are expressed in the form of (8). They will be
obtained by solving the following pair of 1-norm minimization problems:

min
(w1,b1,ξ1)∈Rm+1+m

||y − ε1e − (K(A,At)w1 + b1e)||1 + C1etξ1 + η1||

[
w1
b1

]
||1

s.t. y − (K(A,At)w1 + b1e) ≥ ε1e − ξ1, ξ1 ≥ 0 (18)

and

min
(w2,b2,ξ2)∈Rm+1+m

||y + ε2e − (K(A,At)w2 + b2e)||1 + C2etξ2 + η2||

[
w2
b2

]
||1

s.t. (K(A,At)w2 + b2e) − y ≥ ε2e − ξ2, ξ2 ≥ 0, (19)

where K(A,At) is a kernel matrix.
By defining the augmented matrix G = [K(A,At) e] and using (15) where r1, s1, r2, s2 ∈ Rm+1, and

proceeding as in the linear case, the pair of 1-norm minimization problems (18) and (19) can be converted
into nonlinear LPTSVR problems again of the same form (16) and (17) in which e1 becomes the vector of
one’s of size (m + 1).

Now we focus on the method of obtaining the solutions of (16) and (17) for the linear and nonlinear
TSVR.

Since both the linear problems (16) and (17) are feasible and their objective functions are bounded below
by zero, they are solvable. Using the optimization toolbox of MATLAB one can easily solve LPTSVR.
However, because of increase in number of unknowns and constraints of LPTSVR and therefore increase
in problem size, following the work of [26], we propose Newton method for LPTSVR (NLPTSVR) by
considering the dual exterior penalty problems for LPTSVR as a pair of unconstrained minimization
problems and solving them using Newton-Armijo method. In fact, using Proposition 1 of [26], the pair of
unconstrained dual exterior penalty problems with penalty parameter θ > 0, corresponding to the linear

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2129

problems (16) and (17), given by

min
u,v∈Rm

L1(u, v) = −θ(y − ε1e)tv +
1
2

∥∥∥∥∥∥∥∥∥∥∥∥∥

Gtv − η1e1
−Gtv − η1e1

u + v − e
−u − v − e

u − C1e

+

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

+ ||(−u)+||
2

 (20)

and

min
u,v∈Rm

L2(u, v) = −θ(y + ε2e)tv +
1
2

∥∥∥∥∥∥∥∥∥∥∥∥∥

Gtv − η2e1
−Gtv − η2e1
−u + v − e
u − v − e
u − C2e

+

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

+ ||(−u)+||
2

 (21)

are solvable for all θ > 0 and further there exists θ̄ > 0 such that for any θ ∈ (0, θ̄] we have: for k = 1, 2,

rk =
1
θ

(Gtvk − ηke1)+, sk =
1
θ

(−Gtvk − ηke1)+, ξk =
1
θ

(uk − Cke)+,

pk =
1
θ

((−1)k+1uk + vk − e)+ and qk =
1
θ

((−1)kuk − vk − e)+, (22)

where (u1, v1) and (u2, v2) are the solutions of the minimization problems (21) and (22) respectively.
In this work, we solve each of the unconstrained minimization problems by Newton-Armijo iterative algo-
rithm. Further, using their solutions and Eqs. (15) and (22), the ε1−insensitive down- and ε2−insensitive
up- bound functions given by (8) will be determined. Finally, the end regressor is obtained by taking their
mean, i.e. by (7).

Newton Algorithm with Armijo step size for solving (20), (21) [16, 25]: For k = 1, 2

Choose any initial guess
[

u0

v0

]
∈ R2m, where u0, v0

∈ Rm.

(i) Stop the iteration if ∇Lk(ui, vi) = 0
Else
Determine the direction vector di

k ∈ R2m as the solution of the following linear system of equations in 2m
variables
∇

2Lk(ui, vi)di
k = −∇Lk(ui, vi)

(ii) Armijo step size: Define[
ui+1

vi+1

]
=

[
ui

vi

]
+λidi

k

where λi = max{1, 1
2 ,

1
4 , ...} is the step size in which

Lk(ui, vi) − Lk((ui, vi) + λidi
k) ≥ −δλi∇Lk((ui, vi))tdi

k
and δ ∈ (0, 1

2).

Clearly, once the gradient vector and the Hessian matrix of Lk(., .) are known, Newton-Armijo algorithm
can be performed for solving (20) and (21).

Consider the gradient of Lk(., .) which can be derived in the following form:

For k = 1, 2 and u, v ∈ Rm,∇Lk(u, v) =

[
h1k(u, v)
h2k(u, v)

]
2m×1

is such that

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2130

h1k(u, v) = (u + (−1)(k+1)v − e)+ − (−u + (−1)kv − e)+ + (u − Cke)+ − (−u)+

and

h2k(u, v) = −θ(y + (−1)kεke) + G[(Gtv − ηke1)+ − (−Gtv − ηke1)+] + ((−1)(k+1)u + v − e)+ − ((−1)ku − v − e)+.

Since the gradient function is not differentiable and therefore the Hessian matrix of second order partial
derivatives of Lk(., .) does not exist in the usual sense. However, a generalized Hessian in the sense of [21]
exists and is given by: For k = 1, 2 and u, v ∈ Rm,

∇
2Lk(u, v) = ∇2Lk =

[
Dk + Ek (−1)(k+1)Dk

(−1)(k+1)Dk Dk + GFkGt

]
where Dk = diag(((−1)(k+1)u + v− e)∗) + diag(((−1)ku− v− e)∗),Ek = diag((u−Cke)∗) + diag((−u)∗) and Fk =
diag((Gtv − ηke1)∗) + diag((−Gtv − ηke1)∗)
in which diag(.) is a diagonal matrix.

Clearly, ∇2Lk is symmetric and positive semi-definite matrix of order 2m. Since it is possible that the
matrix may be ill-conditioned and therefore we will use (δI + ∇2Lk)−1 in place of the inverse of ∇2Lk where
the regularization parameter δ is taken as a very small positive number.

For solving the above pair of exterior penalty problems (20) and (21), it is proposed to apply Newton-
Armijo algorithm whose global convergence will follow from Proposition 4 of [26].

Lemma 3.1. [35]: Let an invertible matrix Ā of the following form

Ā =

[
P̄ Q̄
R̄ S̄

]
be given where P̄, Q̄, R̄ and S̄ are block matrices of size p̄ × p̄, p̄ × s̄, s̄ × p̄ and s̄ × s̄ respectively. Assume that Ā−1can
be partitioned in a similar manner

Ā−1 =

[
P̃ Q̃
R̃ S̃

]
where P̃, Q̃, R̃ and S̃ are matrices of the same size as P̄, Q̄, R̄ and S̄ respectively. Then,

S̃ = (S̄ − R̄P̄−1Q̄)−1, P̃ = P̄−1 + P̄−1Q̄S̃R̄P̄−1, Q̃ = −P̄−1Q̄S̃ and R̃ = −S̃R̄P
−1

.

Theorem 3.2. For k = 1, 2 and u, v ∈ Rm, let the inverse of the matrix (δI +∇2Lk)(u, v) be taken to be of the following
form:

(δI + ∇2Lk)−1 =

[
δI + Dk + Ek (−1)(k+1)Dk
(−1)(k+1)Dk δI + Dk + GFkGt

]−1

=

[
P̃k Q̃k
R̃k S̃k

]
.

Then, we can write
P̃k = Mk + MkDkS̃kDkMk, Q̃k = (−1)kDkMkS̃k, R̃k = (−1)kS̃kDkMk and

S̃k = [δI + (δI + Ek)MkDk + GFkGt]−1,

where Mk = (δI + Dk + Ek)−1 is a diagonal matrix of order m.

Proof. Consider the expression (δI + Dk + GFkGt) −DkMkDk

= (δI + GFkGt) + M−1
k MkDk −DkMkDk

= (δI + GFkGt) + (M−1
k −Dk)MkDk = (δI + (δI + Ek)MkDk + GFkGt).

Now, using Lemma 3.1, it is easy to verify the result.

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2131

Note that since (δI + Dk + Ek) is positive definite, Mk exists and is also a diagonal matrix of order m.
For k = 1, 2 and u, v ∈ Rm, consider the following system of linear equations in augmented variables [z1k

z2k]:

(δI + (δI + Ek)MkDk + GFkGt)[z1k z2k] = [DkMkh1k(u, v) h2k(u, v)], (23)

where z1k = z1k(u, v), z2k = z2k(u, v) ∈ Rm. Since the solution of the above system can be written as

z1k = S̃kDkMkh1k(u, v) and z2k = S̃kh2k(u, v), (24)

the direction vector di
k ∈ R2m, for i=0, 1, 2, ..., of Newton-Armijo algorithm can be computed as:

di
k = −(δI + ∇2Lk)−1

∇Lk(ui, vi) = −

[
P̃k Q̃k
R̃k S̃k

] [
h1k(ui, vi)
h2k(ui, vi)

]

= −

[
Mkh1k(ui, vi) + MkDk(z1k + (−1)kz2k)(ui, vi)

(−1)k(z1k + (−1)kz2k)(ui, vi)

]
.

From the above derivations one can observe that the direction vector di
k at the i-th iteration of the algorithm

can be determined by solving a matrix equation of order m for unknown augmented variables of size m× 2
rather than solving the original matrix equation of order 2m.

For the linear case where suppose n << m, it is preferable to use SMW identity [19] to calculate the
direction vector di

k at the i-th iteration of the algorithm since it has the advantage that a linear system of
equations of size (n + 1) × (n + 1) needs to be solved rather than solving a linear system of equations of
larger size (m × m). In fact, by defining Hk =GF1/2

k = [A e]F1/2
k , Lk = (δI + (δI + Ek)MkDk) and applying the

SMW identity [19] we have:

S̃k = (Lk + HkHt
k)−1 = L−1

k − L−1
k Hk(I + Ht

kL−1
k Hk)−1Ht

kL−1
k .

Since Lk is a diagonal matrix, its inverse can be trivially computed.
In this work, we solve both the problems (20) and (21) using Newton’s method, i.e. the unknown

(ui+1, vi+1) at the (i+1)-th iteration is obtained by solving the system of equations

∇Lk(ui, vi) + (δI + ∇2Lk(ui, vi))((ui+1, vi+1) − (ui, vi)) = 0, (25)

where k = 1, 2 and i=0, 1, 2,

4. Numerical Experiments and Comparison of Results

In addition to the Newton method of solving LPTSVR problem using generalized Hessian discussed
in the previous section, we also solved the proposed LPTSVR numerically by smoothing technique, i.e.
replacing the plus function appearing in the objective functions of the unconstrained dual exterior penalty
problems given by (20) and (21) with a smooth approximation function and solving a pair of modified
problems by Newton method. In fact, we replaced the non-differential plus function x+ by the following
smooth function [25]:

p(x, α) = x +
1
α

log(1 + exp(−αx)),

where α > 0 is the smoothing parameter.
All the regression methods were implemented in MATLAB R2010a environment on a PC running on

Windows XP OS with 2.27 GHz Intel(R) Xeon(R) processor having 3 GB of RAM. The standard SVR was
solved by LIBSVM [7] and for the implementation of TSVR and LPTSVR, we used the optimization toolbox
of MATLAB.

To demonstrate the effectiveness of the proposed Newton LPTSVR, computational testing was carried-
out in this section on seven synthetic and several well-known, publicly available, real-world benchmark

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2132

datasets and their results were compared with smooth LPTSVR (SLPTSVR), LPTSVR, TSVR and SVR. In
all the examples considered, the Gaussian nonlinear kernel function with parameter µ > 0, defined by: for
x1, x2 ∈ Rm

k(x1, x2) = exp(−µ||x1 − x2||
2),

is used. The 2-norm root mean square error (RMSE) test error

RMSE =

√√
1
N

N∑
i=1

(yi − f (xi))2

and standard deviation are adopted to measure the performance of each algorithm.

Since more parameters need to be selected in TSVR, LPTSVR, SLPTSVR and NLPTSVR, this will lead
to, however, a slower model selection speed in comparison to SVR and therefore in all experiments ε1 =
ε2 = 0.01 and C1 = C2 were assumed. Further we set η1 = η2 = 10−5 and the penalty parameter θ = 0.1.
For SVR, the insensitive margin parameter ε is taken as 0.01 and for SLPTSVR the smoothing parameter
α = 5. The optimal values of the parameters were determined by performing 10-fold cross-validation on
the training dataset. In detail, each data is partitioned into ten subsets with similar sizes and distributions.
Then, the union of nine subsets is used as the training set while the remaining subset is used as the
test. The experiment is repeated ten times such that every subset is used once as a test set. The whole
process described above is then repeated ten times with randomly generated cost matrices belonging to
the same cost type, and the average results are recorded as the final results, where statistical significance
are examined. The values of the regularization parameter C1 = C2 = C were allowed to vary from the set
{10−5, 10−4, ..., 105

}. However, the kernel parameter µ assumed values from {2−5, 2−4, ..., 22
} for LPTSVR and

for the rest of the methods from {2−10, 2−9, ..., 210
}. Finally, choosing these optimal values, the RMSE on the

test dataset was calculated.

4.1. Synthetic datasets

To demonstrate the performance of the proposed method, we first considered the following function
defined as [36]:

y ≈ f (x) = sin(x) cos(x2), x ∈ [0, 6].

Training samples were polluted by adding three kinds of different noises: (i) uniformly distributed noises
over the interval [−0.2, 0.2]; (ii) Gaussian noises with mean zero and standard deviation 0.05; (iii) Gaussian
noises with mean zero and standard deviation 0.2, i.e. we have taken the training samples (xi, yi) of the
form yi = f (xi) + ςi, where ςi is the noise. 200 training and 1000 test samples were generated randomly
under uniform distribution over the interval [0, 6]. Test data was assumed to be noise-free. The estimation
functions obtained with one run simulation results for these three different types of noises were illustrated in
Figure 1a, Figure 1b and Figure 1c. The noisy samples were represented by the symbol “◦ ”. The numerical
results along with their computational learning time in seconds obtained by NLPTSVR, SLPTSVR, LPTSVR,
TSVR and SVR were summarized in Table 2.

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2133

a) Uniformly distributed noises over[-0.2,0.2].

b) Gaussian noises with mean zero and standard deviation 0.05.

c) Gaussian noises with mean zero and standard deviation 0.2.

Figure 1: Prediction error over the test set by SLPTSVR, NLPTSVR, LPTSVR, SVR and TSVR for the simulated dataset generated by
the function sin(x)cos(x2) where three different kinds of additive noises were used. Gaussian kernel was employed.

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2134

To further investigate the effectiveness of NLPTSVR and SLPTSVR another six synthetic datasets, each
consisting of 200 training and 1000 test samples, were generated using functions whose definitions are given
in Table 1. As in the first example discussed above, the observed values of the training set were polluted by
additive noises. For each kind of noises, ten independent groups of samples were randomly generated. The
average accuracies of NLPTSVR, SLPTSVR, LPTSVR, TSVR and SVR with 10 independent runs along with
their computational training time in seconds were shown in Table 2. Clearly one can observe from Table
2 that, in comparison to SVR and TSVR, both NLPTSVR and SLPTSVR show either better or comparable
generalization performance with fast learning speed.

Table 1: Functions used for generating synthetic datasets.

Name Function Definition Domain of Definition

Function 1 f (x) = sin(x)cos(x2) x ∈ [0, 6]

Function 2 f (x1, x2) =
sin
√

(x2
1+x2

2)
√

(x2
1+x2

2)
x1, x2 ∈ [−4π, 4π]

Function 3 f (x1, x2, x3, x4, x5) = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 x1, x2, x3, x4, x5 ∈ [0, 1]
Function 4 f (x1, x2) =

(5−x2)2

3(5−x1)2+(5−x2)2 x1, x2 ∈ [0, 10]
Function 5 f (x1, x2) = exp(x1sin(πx2)) x1, x2 ∈ [−1, 1]
Function 6 f (x1, x2) = 1.9

[
1.35 + exp(x1)sin(13(x1 − 0.6)2)

+exp(3(x2 − 0.5))sin(4π(x2 − 0.9)2)
]

x1, x2 ∈ [0, 1]
Function 7 f (x) = sin

(
2π(0.35×10+1)

0.35x+1

)
x ∈ [0, 10]

Table 2: Performance comparison of NLPTSVR with SLPTSVR, SVR, TSVR and LPTSVR on ten independent runs. RMSE was used
for comparison. Gaussian kernel was employed.

Dataset Training set size Test set size SVR TSVR LPTSVR SLPTSVR NLPTSVR
Time(s) Time(s) Time(s) Time(s) Time(s)

Function1 200x1 1000x1 0.1044 0.0453 0.0354 0.0614 0.0456
0.3675 0.2971 0.3154 0.0210 0.0159

Function2 200x2 1000x2 0.2013 0.1883 0.1578 0.1250 0.1322
0.6714 0.1845 0.1689 0.0310 0.0165

Function3 200x5 1000x5 0.2022 0.2188 0.0454 0.0326 0.0242
0.5034 0.3134 0.4568 0.0598 0.0230

Function4 200x2 1000x2 0.1237 0.1393 0.1552 0.1360 0.1395
0.3043 0.3522 0.2976 0.0870 0.0939

Function5 200x2 1000x2 0.0224 0.0283 0.0255 0.0365 0.0122
0.4864 0.3744 0.3522 0.0577 0.0765

Function6 200x2 1000x2 0.0976 0.0235 0.0278 0.0268 0.0361
0.2025 0.1337 0.1566 0.1020 0.0230

Function7 200x1 1000x1 0.1355 0.1055 0.0822 0.0742 0.0761
0.2765 0.1199 0.1230 0.0520 0.0220

a) Uniformly distributed noises over [-0.2,0.2]

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2135

Dataset Training set size Test set size SVR TSVR LPTSVR SLPTSVR NLPTSVR
Time(s) Time(s) Time(s) Time(s) Time(s)

Function1 200x1 1000x1 0.0964 0.0227 0.0296 0.0293 0.0369
0.6453 0.5935 0.4087 0.0532 0.0459

Function2 200x2 1000x2 0.0576 0.0437 0.0311 0.0350 0.0163
0.2336 0.1350 0.1076 0.0206 0.0190

Function3 200x5 1000x5 0.1652 0.1842 0.0497 0.0308 0.0555
0.2675 0.1655 0.1234 0.0930 0.0117

Function4 200x2 1000x2 0.0655 0.0773 0.0120 0.0158 0.0071
0.2034 0.1629 0.2025 0.0376 0.0502

Function5 200x2 1000x2 0.0120 0.0143 0.0095 0.0062 0.0132
0.1804 0.1402 0.1577 0.0766 0.0802

Function6 200x2 1000x2 0.0961 0.0154 0.1173 0.1075 0.0728
0.3098 0.1322 0.1066 0.0211 0.0313

Function7 200x1 1000x1 0.0875 0.0560 0.0222 0.0178 0.0322
0.5673 0.1439 0.3777 0.1098 0.0355

b) Gaussian noises with mean zero and standard deviation 0.05

Dataset Training set size Test set size SVR TSVR LPTSVR SLPTSVR NLPTSVR
Time(s) Time(s) Time(s) Time(s) Time(s)

Function1 200x1 1000x1 0.1158 0.0885 0.1286 0.1185 0.0740
0.4555 0.4577 0.3562 0.0657 0.0762

Function2 200x2 1000x2 0.0480 0.1558 0.0974 0.0723 0.0853
0.5760 0.7367 0.6097 0.0764 0.0543

Function3 200x5 1000x5 0.2252 0.2089 0.1633 0.0820 0.1215
0.3230 0.1612 0.2085 0.0222 0.0106

Function4 200x2 1000x2 0.1102 0.1245 0.1098 0.0979 0.1176
0.5430 0.1736 0.4087 0.0480 0.529

Function5 200x2 1000x2 0.0634 0.0466 0.0884 0.0418 0.0233
0.2453 0.2025 0.2103 0.0290 0.0176

Function6 200x2 1000x2 0.0497 0.0512 0.0752 0.0623 0.0495
0.3980 0.0818 0.1023 0.0340 0.0154

Function7 200x1 1000x1 0.2262 0.2057 0.1176 0.1082 0.0975
0.4543 0.3998 0.2307 0.0439 0.0210

c) Gaussian noises with mean zero and standard deviation 0.2

4.2. Real-world benchmark datasets

In all the real-world examples considered, we normalized the given data in the following manner:

x̄i j =
xi j − xmin

j

xmax
j − xmin

j

where xmin
j = minm

i=1(xi j) and xmax
j = maxm

i=1(xi j) denote the minimum and maximum values, respectively, of
the j-th column of A, xi jis the (i,j)-th element of the input matrix A and x̄i j is its corresponding normalized
value.

As the first real-world dataset, we considered the example of Box and Jenkins gas furnace [5]. It consists
of 296 input-output pairs of points of the form: (u(t), y(t)) where u(t) is input gas flow rate whose output
y(t) is the CO2 concentration from the gas furnace. The output y(t) is predicted based on 2 attributes taken

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2136

to be of the form [36]: x(t) = (y(t− 1),u(t− 4)). Thus we get 292 samples in total where each sample is of the
form(x(t), y(t)). The first 100 samples were chosen for training and the rest for testing. The performances of
SVR, TSVR, LPTSVR, SLPTSVR and NLPTSVR on the training and test sets were shown in Figure 2a and
Figure 2b respectively.

a) Prediction over the Training set

b) Prediction over the Test set

Figure 2: Prediction error over the whole dataset by SLPTSVR, NLPTSVR, LPTSVR, SVR and TSVR for the gas furnace dataset.
Gaussian kernel was employed.

To further demonstrate the validity of NLPTSVR, we tested nonlinearly on several benchmark datasets
including: Wine quality white, Abalone, Concrete CS, Boston, Forest fires, Flares, Machine CPU, Auto-
MPG original and Servo from UCI repository [31]; Kin-fh, Bank-32fh and Demo from DELVE [13];
the time series datasets generated by the Mackey-Glass differential equation, SantaFeA and Sunspots

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2137

taken from the web site: http://www.cse.ogi.edu/˜ericwan; Bodyfat and NO2 from StatLib collection:
http://lib.stat.cmu.edu/datasets and a number of interesting financial datasets of stock index taken from
the web site: http://www.dailyfinance.com. In addition two more time series datasets generated by the
Lorenz differential equation were also considered.

Consider the Mackey-Glass time delay differential equation [29] defined by:

dx(t)
dt

= −0.1x(t) +
0.2x(t − τ)

1 + x(t − τ)10 ,

for the parameter values a=0.2, b=0.1 and τ = 17, 30. Let the time series generated by the above equation
corresponding to τ = 17 and τ = 30 be denoted by MG17 and MG30 respectively. Assume that five previous
values were used to predict the current value. Among the total of 1495 samples obtained, the first 500 were
considered for training and the rest for testing.

As examples of financial datasets, the stock index of S&P500, Google, IBM, Intel, Redhat, and Microsoft
were taken. For our experimental study we considered 755 closing prices starting from 01-01-2006 to 31-
12-2008 and using five previous values to predict the current value, 750 samples in total were obtained.
For each of the above financial time series examples considered except S&P500, the first 200 samples were
taken for training and the rest 550 for testing. For S&P500 we choose, however, the first 300 samples for
training and the rest for testing.

By assuming different sampling rates τ = 0.05 and τ = 0.20 with parameters values ρ = 10, r = 28
and b = 8/3, two time series datasets Lorenz0.05 and Lorenz0.20 are generated using the time series values
associated to the variable x of the Lorenz differential equation [29] given by:

ẋ = ρ(y − x), ẏ = rx − y − xz and ż = xy − bz,

obtained by fourth-order Runge-Kutta method. They consist of 30000 number of time series values. To
avoid the initial transients the first 1000 values were discarded. The next 3000 values were taken for our
experiment and using five previous values to predict the current value, 2995 samples in total were obtained.
Among them, the first 500 samples were taken for training and the remaining 2495 samples for testing.

Table 3: Performance comparison of NLPTSVR with SLPTSVR,
SVR, TSVR and LPTSVR on real world datasets. RMSE was used
for comparison. Gaussian kernel was employed.

Datasets SVR TSVR LPTSVR SLPTSVR NLPTSVR
(Train Size,Test Size) RMSE±STD RMSE±STD RMSE±STD RMSE±STD RMSE±STD

Time(s) Time(s) Time(s) Time(s) Time(s)
(C, µ) (C1 = C2, µ) (C1 = C2, µ) (C1 = C2, µ) (C1 = C2, µ)

Gas furnace 0.0518 ± 0.2402 0.0517 ± 0.2335 0.0509 ± 0.2231 0.0510 ± 0.2229 0.0512 ± 0.2228
(100 × 2, 192 × 2) 0.1045 0.0832 0.0888 0.0120 0.0170

(100, 2−3) (10−1, 2−3) (10−3, 2−3) (10−2, 2−3) (10−4, 2−4)
Wine quality-white 0.1715 ± 0.1065 0.2029 ± 0.1455 0.2290 ± 0.0826 0.1360 ± 0.0714 0.1689 ± 0.0603

(1000 × 11, 3898 × 11) 4.5238 2.568 1.2387 0.9740 0.5620
(102, 25) (10−1, 2−2) (100, 2−3) (10−8, 2−5) (100, 2−1)

Abalone 0.1901 ± 0.1892 0.1188 ± 0.1185 0.1341 ± 0.1296 0.1126± 0.1209 0.1206 ± 0.1304
(1000 × 8, 3177 × 8) 13.6482 2.7266 4.2390 0.6532 0.7251

(102, 2−4) (10−1, 2−3) (100, 2−4) (100, 2−1) (100, 2−1)
Concrete CS 0.1526± 0.2031 0.1466± 0.1930 0.1517 ± 0.1681 0.1447 ± 0.1560 0.1435± 0.1553

(700 × 8, 330 × 8) 6.2765 2.802 2.0372 0.8722 0.7736
(101, 20) (100, 2−4) (101, 2−5) (10−1, 2−1) (10−1, 2−1)

Boston 0.1237 ± 0.1782 0.1393 ± 0.2202 0.1406 ± 0.2241 0.1280 ± 0.1796 0.1292 ± 0.1822
Continued on next page

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2138

Table 3 – Continued from previous page
Datasets SVR TSVR LPTSVR SLPTSVR NLPTSVR

(Train Size,Test Size) RMSE±STD RMSE±STD RMSE±STD RMSE±STD RMSE±STD
Time(s) Time(s) Time(s) Time(s) Time(s)
(C, µ) (C1 = C2, µ) (C1 = C2, µ) (C1 = C2, µ) (C1 = C2, µ)

(200 × 13, 306 × 13) 0.2786 0.0836 0.0763 0.0204 0.0127
(101, 2−3) (10−2, 20) (100, 2−3) (100, 2−5) (100, 2−5)

Forest fires 0.1569 ± 0.1076 0.0765 ± 0.0735 0.0863 ± 0.0423 0.0756 ± 0.0045 0.0755 ± 0.0026
(200 × 12, 318 × 12) 0.3204 0.1378 0.1232 0.0755 0.0891

(103, 2−8) (10−1, 2−8) (100, 2−5) (100, 2−4) (100, 2−4)
Flares 0.1896 ± 0.1347 0.1274 ± 0.1164 0.1324 ± 0.0767 0.1266 ± 0.0651 0.1594 ± 0.1222

(200 × 9, 866 × 9) 0.2036 0.1218 0.1003 0.0334 0.0210
(103, 2−8) (10−1, 2−8) (100, 2−5) (100, 2−4) (100, 2−4)

Machine CPU 0.0443 ± 0.3287 0.0377 ± 0.2081 0.0232 ± 0.2055 0.0334 ± 0.1893 0.0284 ± 0.1983
(150 × 7, 59 × 7) 0.2265 0.1230 0.1325 0.0939 0.0231

(105, 2−8) (10−2, 2−2) (100, 2−3) (105, 2−2) (100, 2−2)
Autp-MPG Original 0.1490 ± 0.2056 0.2183 ± 0.2146 0.1665 ± 0.1949 0.1552 ± 0.1830 0.1551 ± 0.1832

(100 × 7, 292 × 7) 0.0766 0.0181 0.0137 0.0090 0.0104
(102, 2−4) (10−5, 210) (100, 2−2) (10−1, 2−1) (10−2, 2−1)

Servo 0.1240 ± 0.2130 0.1330 ± 0.2197 0.1277 ± 0.2547 0.1321± 0.2337 0.1322 ± 0.2333
(100 × 4, 67 × 4) 0.0972 0.0598 0.0487 0.0120 0.0120

(105, 2−3) (10−1, 20) (10−4, 20) (105, 21) (105, 21)
Kin-fh 0.0947 ± 0.1373 0.0952 ± 0.1432 0.0991 ± 0.1321 0.0927 ± 0.1327 0.0929 ± 0.1320

(1000 × 32, 7192 × 32) 15.2765 4.2083 2.9762 0.0972 0.1076
(10−1, 2−4) (10−5, 2−7) (10−3, 2−2) (101, 2−6) (101, 2−6)

Bank-32fh 0.1497 ± 0.2006 0.1431 ± 0.1989 0.1636 ± 0.1308 0.1418 ± 0.1064 0.1425 ± 0.1003
(1000 × 21, 700 × 21) 5.6217 5.1196 2.3154 1.1273 1.2008

(103, 2−10) (100, 2−8) (105, 2−1) (101, 2−5) (101, 2−6)
Demo 0.1117 ± 0.0876 0.1046 ± 0.1088 0.1006 ± 0.0628 0.1028 ± 0.0833 0.1030 ± 0.0839

(500 × 4, 1548 × 4) 1.3028 0.7454 0.6530 0.0865 0.0622
(100, 23) (10−1, 21) (100, 20) (100, 23) (100, 23)

MG17 0.0084 ± 0.2670 0.0051 ± 0.2540 0.0047 ± 0.2539 0.0061 ± 0.2537 0.0063 ± 0.2538
(500 × 5, 995 × 5) 2.8720 0.8362 0.7523 0.0420 0.0555

(104, 22) (103, 23) (104, 22) (101, 23) (100, 23)
MG30 0.0275 ± 0.2586 0.0218 ± 0.2495 0.0265 ± 0.2480 0.0247 ± 0.2478 0.0247 ± 0.2479

(500 × 5, 995 × 5) 2.1430 0.5100 0.4823 0.0492 0.0230
(102, 21) (10−2, 23) (103, 22) (101, 23) (101, 23)

SantafeA 0.0423 ± 0.1702 0.0449 ± 0.1775 0.0446 ± 0.1938 0.0449 ± 0.0449 0.0451 ± 0.1884
(200 × 5, 795 × 5) 0.3208 0.1485 0.1076 0.0108 0.0245

(101, 22) (10−1, 21) (100, 21) (10−3, 23) (10−1, 23)
Sunspots 0.0845 ± 0.2301 0.0816 ± 0.2249 0.0831 ± 0.2111 0.0798 ± 0.2114 0.0794 ± 0.2114

(100 × 5, 190 × 5) 0.0923 0.0785 0.0544 0.0092 0.0133
(102, 2−3) (10−1, 2−2) (100, 2−3) (101, 21) (101, 21)

Body fat 0.0126 ± 0.1660 0.0151 ± 0.1664 0.0212 ± 0.1693 0.0196 ± 0.1632 0.0222 ± 0.1607
(150 × 14, 102 × 14) 0.3109 0.2649 0.2230 0.0692 0.0633

(103, 2−9) (10−1, 2−6) (100, 2−5) (100, 2−4) (100, 2−4)
NO2 0.1456 ± 0.1472 0.1350 ± 0.1470 0.1491 ± 0.1473 0.1454 ± 0.1317 0.1442 ± 0.1340

(100 × 7, 400 × 7) 0.1253 0.0481 0.0372 0.0222 0.0117
(105, 2−9) (10−1, 2−8) (10−2, 2−5) (100, 2−4) (100, 2−4)

S&P500 0.0384 ± 0.2510 0.0497 ± 0.2445 0.0280 ± 0.2414 0.0286 ± 0.2420 0.0306 ± 0.2413
Continued on next page

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2139

Table 3 – Continued from previous page
Datasets SVR TSVR LPTSVR SLPTSVR NLPTSVR

(Train Size,Test Size) RMSE±STD RMSE±STD RMSE±STD RMSE±STD RMSE±STD
Time(s) Time(s) Time(s) Time(s) Time(s)
(C, µ) (C1 = C2, µ) (C1 = C2, µ) (C1 = C2, µ) (C1 = C2, µ)

(300 × 5, 450 × 5) 0.1732 0.1485 0.1220 0.0440 0.0521
(103, 2−3) (10−1, 2−4) (100, 2−5) (100, 21) (10−5, 21)

Google 0.0252 ± 0.1872 0.0265 ± 0.1900 0.0260 ± 0.1878 0.0288 ± 0.1829 0.0329 ± 0.1798
(200 × 5, 550 × 5) 0.3023 0.1334 0.1133 0.0321 0.0301

(103, 2−8) (10−1, 2−5) (100, 2−5) (100, 2−3) (10−1, 2−3)
IBM 0.0318 ± 0.2268 0.0729 ± 0.2238 0.0318 ± 0.2272 0.0425 ± 0.2392 0.0333 ± 0.2262

(200 × 5, 550 × 5) 0.1420 0.1892 0.1674 0.0267 0.0433
(103, 2−7) (105, 2−4) (10−1, 2−5) (105, 2−3) (100, 2−3)

Intel 0.0340 ± 0.2102 0.0369 ± 0.2104 0.0456 ± 0.2168 0.0424 ± 0.2129 0.0369 ± 0.2060
(200 × 5, 550 × 5) 0.1920 0.1416 0.1002 0.0108 0.0087

(103, 2−7) (10−1, 2−3) (100, 2−3) (10−1, 2−3) (100, 2−3)
Red Hat 0.0334 ± 0.1823 0.0367 ± 0.2070 0.0342 ± 0.2006 0.0355 ± 0.1982 0.0361 ± 0.1973

(200 × 5, 550 × 5) 0.4021 0.2131 0.1562 0.0350 0.0344
(103, 2−9) (100, 2−5) (100, 2−5) (10−1, 2−3) (10−3, 2−3)

Microsoft 0.0319 ± 0.1823 0.0313 ± 0.1796 0.0310 ± 0.1789 0.0315 ± 0.1786 0.0315 ± 0.1788
(200 × 5, 550 × 5) 0.2354 0.1141 0.0988 0.0113 0.0086

(104, 2−10) (10−1, 2−5) (101, 2−5) (101, 2−3) (101, 2−3)
Lorenz0.05 0.0067 ± 0.2270 0.0035 ± 0.2290 0.0035 ± 0.2281 0.0035 ± 0.2282 0.0035 ± 0.2283

(500 × 5, 2495 × 5) 2.9212 0.6432 0.4827 0.1022 0.0922
(104, 2−10) (10−1, 20) (104, 2−1) (105, 20) (105, 20)

Lorenz0.2 0.0049 ± 0.1902 0.0050 ± 0.2054 0.005 ± 0.2041 0.0054 ± 0.2037 0.005 ± 0.2042
(500 × 5, 2495 × 5) 2.8613 0.5302 0.6103 0.0822 0.0915

(104, 2−6) (10−1, 20) (100, 2−2) (105, 21) (105, 20)

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2140

Table 4: Average ranks of SVR, TSVR, LPTSVR, SLPTSVR and NLPTSVR with Gaussian kernel on RMSE values.

Datasets SVR TSVR LPTSVR SLPTSVR NLPTSVR

Gas furnace 5 4 1 2 3
Wine quality-white 3 4 5 1 2
Abalone 5 2 4 1 3
Concrete CS 5 3 4 2 1
Boston 1 4 5 2 3
Forest fires 5 4 3 2 1
Flares 5 2 3 1 4
Machine CPU 5 4 1 3 2
Auto-MPG original 1 5 4 3 2
Servo 1 5 2 3 4
Kin-fh 3 4 5 1 2
Bank-32fh 4 3 5 1 2
Demo 5 4 1 2 3
MG17 5 2 1 3 4
MG30 5 1 4 2.5 2.5
SantafeA 1 3.5 2 3.5 5
Sunspots 5 3 4 2 1
Body fat 1 2 4 3 5
NO2 4 1 5 3 2
S&P500 4 5 1 2 3
Google 1 3 2 4 5
IBM 1.5 5 1.5 4 3
Intel 1 2.5 5 4 2.5
Red Hat 1 5 2 3 4
Microsoft 5 2 1 3.5 3.5
Lorenz0.05 5 2.5 2.5 2.5 2.5
Lorenz0.2 1 2.8 2.8 2.8 2.8

Average Rank 3.2777 3.2703 2.9925 2.4740 2.8814

For all the datasets considered the number of training and test samples chosen, the number of attributes,
the optimal parameter values determined using 10-fold cross-validation and the numerical results along
with their computational training time in seconds obtained by NLPTSVR, SLPTSVR, LPTSVR, TSVR and
SVR were summarized in Table 3. From the Table 3, we notice that generalization capability of our proposed
algorithms NLPTSVR and SLPTSVR are better than SVR and TSVR on many of the datasets considered.
Specifically, our proposed algorithm NLPTSVR gains comparable or better accuracy with TSVR on 18 of 27
datasets and SLPTSVR gains comparable or better accuracy on 19 of 27 datasets. In addition, NLPTSVR
and SLPTSVR achieve its best performance on Wine quality-white, Abalone, Concrete CS, Forest fires,
Flares, Kin-fh, Bank-32fh, Sunspots and Lorenz0.2. Furthermore, the training time of our proposed methods
greatly outperformed SVR and TSVR on all the benchmark datasets considered. The average ranks of all
the algorithms on RMSE for Gaussian kernel were computed and listed in Table 4. One can observed from
Table 4 that our proposed algorithms LPTSVR, SLPTSVR and NLPTSVR outperform SVR and TSVR.

5. Conclusions and Future Works

We have presented 1-norm twin support vector regression as a pair of linear programming problems
whose solutions were obtained by solving their exterior penalty dual problems as a pair of unconstrained
minimization problems using Newton-Armijo algorithm. Though the proposed method requires the so-
lution of a pair of unconstrained minimization problems having 2m variables and hence a pair of linear

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2141

equation solvers of size 2m at each iteration of the algorithm, where m is the number of training examples,
using the properties of block matrices it was shown that the solution can be obtained using a pair of linear
equation solvers of size m for unknown augmented variables of size m × 2. The method was implemented
in MATALB without using commands of optimization toolbox. Numerical results show that the proposed
method is a very promising computational tool for regression problems. It should be pointed out that
there are four parameters in our proposed formulation and parameters selection is a practical problem and
should be addressed in future study.

References

[1] S Balasundaram, D Gupta, Training Lagrangian twin support vector regression via unconstrained convex minimization,
Knowledge-Based Systems 59 (2014) 85-96.

[2] S Balasundaram, D Gupta, On implicit Lagrangian twin support vector regression by Newton method, International Journal of
Computational Intelligence Systems 7 (1) (2014) 50-64.

[3] S Balasundaram, M Tanveer, On Lagrangian twin support vector regression. Neural Computing and Applications 22 (1) (2013)
257-267.

[4] S Balasundaram, M Tanveer, Smooth Newton method for implicit Lagrangian twin support vector regression, International
Journal of Knowledge-Based and Intelligent Engineering Systems 17 (4) (2013) 267-278.

[5] GEP Box, GM Jenkins, Time series analysis: Forecasting and Control, Holden-Day, San Francisco, 1976.
[6] PS Bradley, OL Mangasarian, Feature selection via concave minimization and support vector machines, In: Shavlik (Ed.), Machine

learning proceedings of the Fifteenth International Conference, (1998) 82-90, San Francisco, MK.
[7] CC Chang, CJ Lin, LIBSVM: A library for support vector machines, (2011) http://www.csie.ntu.edu.tw/ cjlin/libsvm.
[8] S Chen, M Wang, Seeking multi-threshold directly from support vectors for image segmentation, Neurocomputing, 67 (2005)

335-344.
[9] X Chen, J Yang, J Liang, A flexible support vector machine for regression, Neural Computing & Applications 21 (8) (2012)

2005-2013.
[10] X Chen, J Yang, J Liang, Q Ye, Smooth twin support vector regression, Neural Computing & Applications 21 (3) (2012) 505-513.
[11] C Cortes, VN Vapnik, Support vector networks, Machine Learning 20 (1995) 273-297.
[12] N Cristianini, J Shawe-Taylor, An introduction to support vector machines and other kernel based learning method, Cambridge

University Press, Cambridge, 2000.
[13] DELVE, Data for Evaluating Learning in Valid Experiments (2005). http://www.cs.toronto.edu/d̃elve/data
[14] T Ebrahimi, GN Garcia, JM Vesin, Joint time-frequency-space classification of EEG in a brain-computer interface application,

Journal of Applied Signal Processing 1 (7) (2003) 713-729.
[15] AV Fiacco, GP McCormick, Nonlinear Programming: Sequential unconstrained minimization techniques, John Wiley & Sons,

New York, 1968.
[16] G Fung, OL Mangasarian, Finite Newton method for Lagrangian support vector machine classification, Neurocomputing 55

(1-2) (2003) 39-55.
[17] G Fung, OL Mangasarian, A feature selection Newton method for support vector machine classification, Computational Opti-

mization and Applications 28 (2) (2004) 185-202.
[18] S Gao, Q Ye, N Ye, 1-Norm least squares twin support vector machines. Neurocomputing 74 (2011): 3590-3597.
[19] GH Golub, CF Van Loan, Matrix computations, (3rd edition), The Johns Hopkins University Press, 1996.
[20] I Guyon, J Weston, S Barnhill, VN Vapnik, Gene selection for cancer classification using support vector machine, Machine

Learning 46 (2002) 389-422.
[21] JB Hiriart-Urruty, JJ Strodiot, VH Nguyen, Generalized Hessian matrix and second order optimality conditions for problems

with CL1 data, Applied Mathematics and Optimization 11 (1984) 43-56.
[22] Jayadeva, R Khemchandani, S Chandra, Twin support vector machines for pattern classification, IEEE Transactions on Pattern

Analysis and Machine Intelligence 29 (5) (2007) 905-910.
[23] T Joachims, C Ndellec, Rouveriol, Text categorization with support vector machines: learning with many relevant features. In:

European Conference on Machine Learning, Chemnitz, Germany 10 (1998) 137-142.
[24] MA Kumar, M Gopal, Least squares twin support vector machines for pattern classification, Expert Systems with Applications

36 (2009) 7535-7543.
[25] YJ Lee, OL Mangasarian, SSVM: A Smooth support vector machine for classification, Computational Optimization and Applica-

tions 20 (1) (2001) 5-22.
[26] OL Mangasarian, Exact 1-norm support vector machines via unconstrained convex differential minimization, Journal of Machine

Learning Research 7 (2006) 1517-1530.
[27] OL Mangasarian, DR Musicant, Lagrangian support vector machines, Journal of Machine Learning Research 1 (2001) 161-177.
[28] OL Mangasarian, EW Wild, Multisurface proximal support vector classification via generalized eigenvalues, IEEE Transactions

on Pattern Analysis and Machine Intelligence 28 (1) (2006) 69-74.
[29] S Mukherjee, E Osuna, F Girosi, Nonlinear prediction of chaotic time series using support vector machines, In: NNSP’97: Neural

Networks for Signal Processing VII: in Proc. of IEEE Signal Processing Society Workshop, Amelia Island, FL, USA, (1997) 511-520.
[30] KR Muller, AJ Smola, G Ratsch, B Schlkopf, J Kohlmorgen, Using support vector machines for time series prediction, In: Schlkopf

B, Burges CJC, Smola AJ (Eds.), Advances in Kernel Methods- Support Vector Learning MIT Press, Cambridge, MA, (1999)
243-254.

M. Tanveer / Filomat 31:7 (2017), 2123–2142 2142

[31] PM Murphy, DW Aha, UCI repository of machine learning databases, (1992), University of California, Irvine.
http://www.ics.uci.edu/ mlearn

[32] E Osuna, R Freund, F Girosi, Training support vector machines: An application to face detection. In: Proceedings of Computer
Vision and Pattern Recognition, (1997) 130-136.

[33] X Peng, TSVR: An efficient twin support vector machine for regression, Neural Networks 23 (3) (2010) 365-372.
[34] X Peng, Building sparse twin support vector machine classifiers in primal space, Information Sciences 181 (2011) 3967-3980.
[35] WH Press, SA Teukolsky, WT Vetterling, BP Flannery, Numerical recipes in C, (2nd edition), Cambridge University Press, 1994.
[36] B Ribeiro, Kernelized based functions with Minkovsky’s norm for SVM regression. In: Proceedings of the International Joint

Conference on Neural Networks, IEEE press, (2002) 2198-2203.
[37] YH Shao, NY Deng, ZM Yang, WJ Chen, Z Wang, Probabilistic outputs for twin support vector machines, Knowledge-Based

Systems 33 (2012) 145-151.
[38] YH Shao, CH Zhang, XB Wang, NY Deng, Improvements on twin support vector machines, IEEE Transactions on Neural

Networks, 22 (6) (2011), 962-968.
[39] YH Shao, CH Zhang, ZM Yang, L Jing, NY Deng, An ε-twin support vector machine for regression, Neural Computing and

Applications 23 (2012) 175-185.
[40] M Tanveer, Smoothing technique on linear programming twin support vector machines, International Journal of Machine

Learning and Computing 3 (2) (2013) 240-244.
[41] M Tanveer, Robust and sparse linear programming twin support vector machines, Cognitive Computation, 7 (1) (2015) 137-149.
[42] M Tanveer, Application of smoothing techniques for linear programming twin support vector machines, Knowledge and Infor-

mation Systems, 45 (1) (2015) 191-214.
[43] Y Tian, X Ju, Z Qi, Efficient sparse nonparallel support vector machines for classification, Neural Computing and Applications

24 (5) (2013) 1089-1099.
[44] AN Tikhonov, VY Arsen, Solutions of ill-posed problems, John Wiley & Sons, New York, 1977.
[45] VN Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
[46] VN Vapnik, The nature of statistical learning theory, (2nd Edition), Springer, New York, 2000.
[47] Y Xu, L Wang, A weighted twin support vector regression, Knowledge-Based Systems (33) (2012) 92-101.
[48] Y Xu, L Wang, P Zhong, A rough margin-based ν-twin support vector machine, Neural Computing and Applications 21 (6)

(2012) 1307-1317.
[49] P Zhong, Y Xu, Y Zhao, Training twin support vector regression via linear programming, Neural Computing and Applications

21 (2) (2012) 399-407.

