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Abstract. We present several conditions on topological groups G and H under which every discontinuous
homomorphism of G to H preserves accumulation points of open sets in G. It is also proved that every
(locally) precompact abelian group admits a strictly finer zero-dimensional (locally) precompact topological
group topology of the same weight as the original one.

1. Introduction

The study of refinements of (topological group) topologies has a long tradition. In [13] F. Jones mentions
that real-valued functions f defined on the real line and satisfying the equation f (x + y) = f (x) + f (y)
were considered by Cauchy who noted before 1821 that such a function f is either continuous or totally
discontinuous.

In modern terms Cauchy’s remark is equivalent to saying that a homomorphism of topological groups
is continuous if it is continuous at some point of the domain. The starting point of Jones’ article [13] is the
simple but very useful observation that considering the graph Gr( f ) = {(x, f (x)) : x ∈ R)} of a discontinuous
homomorphism f : R→ Rwe obtain a strictly finer topological group topology on the real line. According
to [13, Theorem 5], the graph Gr( f ) can be connected, even if f is discontinuous. It is natural to ask, therefore,
whether the subgroup Gr( f ) of R × R can be zero-dimensional, for some discontinuous homomorphism
f : R → R. Example 2.10 in Section 2 answers this question in the affirmative and serves as a key to the
proof of Proposition 3.2 on refinements of precompact topologies on abelian groups.

The general problem of finding a finer topological group topology on a topological abelian group G
preserving some of the properties of G was considered by several authors in [1, 3–7, 11] and [14, 15, 17, 18].
This study has been mainly focused on the preservation of pseudocompactness or connectedness. Our
aim is different. We are interested in finding finer zero-dimensional topological group topologies on groups.
Clearly every topological group admits the discrete topology which apparently satisfies the conditions
of our search. The additional condition on a finer topology not mentioned yet is the preservation of the
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weight of the group. Hence an important special case of the problem can be formulated as follows: Does
every second countable topological abelian group admit a finer second countable zero-dimensional topological group
topology? The affirmative answer to this question would imply that every abelian group endowed with the
finest ω-narrow topological group topology is zero-dimensional (see [8, Problem 4.4 c)]).

A natural strategy for solving the aforementioned problem is to fix an appropriate countable base B
at the identity of a second countable topological abelian group G and then construct a (discontinuous)
homomorphism f : G → H to a second countable zero-dimensional abelian group H such that the open
subset {(x, f (x)) : x ∈ U} of Gr( f ) is closed in Gr( f ), for each U ∈ B. Once this is done, Gr( f ) will be a
zero-dimensional subgroup of G ×H.

It turns out, however, that this strategy does not work if G has the Baire property. Even worse, if G
is a second countable Baire topological group with topology τ and τ′ is a second countable topological
group topology on G containing τ, then clτ′O = clτO. In other words, if an open set O ⊂ G is not closed
in G, it won’t be closed in any finer second countable topological group topology on the same group.
These conclusions follow from Theorem 2.7 and Corollary 2.8 of the article. Summing up, the search for
finer zero-dimensional, second countable topological group topologies on abelian groups should consist in
introducing new clopen sets, while almost nothing can be done to open sets in the original topology of the
group.

In Section 2 of the article we present different conditions on topological groups G and H guaranteeing
that every, continuous or discontinuous, homomorphism f : G→ H preserves accumulation points of open
sets in G, i.e. the inclusion f (O) ⊂ f (O) holds for every open subset O of G. We show that this happens in
the following cases:

• H is precompact (Theorem 2.5);

• G and H are ω-narrow and G has the Baire property (Theorem 2.7).

We also give several examples of when a homomorphism f : G → H does not preserve accumulation
points of open sets.

In Section 3 we study the problem of finding finer zero-dimensional topological group topologies on
topological groups formulated above. We prove in Proposition 3.2 that if a topological abelian group G is
precompact, then there exists a strictly finer precompact, zero-dimensional topological group topology on
G of the same weight as the original one. For locally precompact groups, the conclusion is similar: Every
locally precompact abelian group admits a finer locally precompact, zero-dimensional topological group
topology of the same weight (see Theorem 3.4).

All topological groups considered in this article are assumed to be Hausdorff.

2. Accumulation Points of Open Sets

We start with a useful concept which is used in almost all proofs in this section.

Definition 2.1. Let X and Y be topological spaces. A (not necessarily continuous) mapping f : X → Y is
called nearly open if for every open set U ⊂ X, there exists an open set V ⊂ Y such that f (U) ⊂ V ⊂ f (U).

Let us note that if f : X→ Y is an open mapping and D is a dense subspace of X, then the restriction of
f to D is nearly open. It is worth noting that nearly open mappings were called d-open in [16, Definition 5].

Proposition 2.2. ([2, Lemma 10.1.19]) A continuous mapping ϕ : X→ Y is nearly open if and only if the equality
ϕ−1(V) = ϕ−1(V) holds for every open set V ⊂ Y.

Lemma 2.3. Let f : G → H be a (possibly discontinuous) homomorphism of topological groups. Let also Γ =
{(x, f (x) : x ∈ G} ⊂ G ×H be the graph of f and π : G ×H→ G the projection. If the restriction of π to Γ is a nearly
open homomorphism, then the inclusion f (O) ⊂ f (O) is valid for every open set O ⊂ G.
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Proof. Denote by ϕ the restriction of π to Γ. By Proposition 2.2, the equality

ϕ−1(O) = ϕ−1(O) (1)

holds for every open set O ⊂ G. Take x ∈ O, and let us check that f (x) ∈ f (O). It is clear that (x, f (x)) ∈ ϕ−1(O)
and by (1), (x, f (x)) ∈ ϕ−1(O) = {(y, f (y)) : y ∈ O}. Take arbitrary open neighborhoods U and V of x and f (x)
in G and H, respectively. Then (U × V) ∩ {(y, f (y)) : y ∈ O} , ∅, whence it follows that there exists x0 ∈ O
such that (x0, f (x0)) ∈ U × V. In particular f (x0) ∈ V and f (O) ∩ V , ∅. Therefore, f (x) ∈ f (O).

Lemma 2.4. Suppose that G,H are topological groups and p : G → H is an open and continuous epimorphism. If
ker p is compact, then p is a perfect mapping.

Proof. Let π : G → G/kerπ be the canonical projection. By the first isomorphism theorem [12, 5.27], there
exists a topological isomorphism α such that the following diagram commutes.

G
p

//

π
##

H

G/ker p

α

OO

By [2, Theorem 1.5.6], the homomorphism π is perfect and, by the commutativity of the above diagram, p
is perfect too.

Theorem 2.5. Let G and H be topological groups and f : G → H an arbitrary (not necessarily continuous)
homomorphism. If the group H is precompact, then the inclusion f (O) ⊂ f (O) holds for every open set O ⊂ G.

Proof. Let Γ = {(x, f (x) : x ∈ G} be the graph of f . Clearly Γ is a subgroup of G × H. Let also %G and ρH be
the completions of the groups G and H, respectively. Denote by π the projection of the product ρG × ρH to
ρG and let ϕ be the restriction of π to Γ.

Let Γ be the closure of Γ in the group ρG × ρH. Since the group ρH is compact, Lemma 2.4 implies that
π is a perfect homomorphism and in particular π is a closed mapping. It follows that the restriction of π to
Γ is also a closed homomorphism. Since G is dense in ρG and G ⊂ π(Γ) ⊂ ρG, we see that π(Γ) = ρG. So
ϕ = π�Γ is a quotient homomorphism and therefore it is open.

As Γ is dense in Γ, we conclude that ϕ = ϕ�Γ= π�Γ is a nearly open mapping. Hence Lemma 2.3 implies
that f (O) ⊂ f (O), for every open set O ⊂ G.

Let us recall that a topological group G is called ω-narrow if G can be covered by countably many
translations of an arbitrary neighborhood of the identity in G.

Lemma 2.6. (See [2, Proposition 4.3.32]) A continuous homomorphism f : G→ H of an ω-narrow group G onto a
group H with the Baire property is nearly open.

Theorem 2.7. Let f : G → H be an arbitrary homomorphism of ω-narrow topological groups. If G has the Baire
property, then f (O) ⊂ f (O), for every open set O ⊂ G.

Proof. Again we start as in the proof of Theorem 2.5. Let Γ = {(x, f (x) : x ∈ G} be the graph of f . Denote by
ϕ the restriction to Γ of the projection π : G ×H→ G. Clearly Γ is ω-narrow as a subgroup of the ω-narrow
group G × H. Since ϕ(Γ) = π(Γ) = G, Lemma 2.6 implies that ϕ is a nearly open mapping. By Lemma 2.3,
f (O) ⊂ f (O) for every open set O ⊂ G.

Corollary 2.8. Let (G, τ) be an ω-narrow group with the Baire property. Suppose that τ′ is an ω-narrow topological
group topology on G such that τ ⊂ τ′. Then the equality clτ(O) = clτ′ (O) holds for every open set O in (G, τ).
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Proof. Take an open set O in (G, τ). It follows from τ ⊂ τ′ that clτ(O) ⊃ clτ′ (O). Consider the identity
mapping f : (G, τ)→ (G, τ′). As (G, τ) is an ω-narrow group with the Baire property and (G, τ′) is ω-narrow,
Theorem 2.7 implies that

clτ(O) = f
(
clτ(O)

)
⊂ clτ′

(
f (O)

)
= clτ′ (O).

This completes the proof.

Problem 2.9. Let f : G → H be a homomorphism of topological groups, where G is Čech-complete and ω-narrow.
What properties of H guarantee that the inclusion f (O) ⊂ f (O) holds for every open subset O of G?

Now we present an example of a homomorphism f : R→ R such that the graph of f is a zero-dimensional
subgroup of the plane, as it is mentioned in the introduction.

Example 2.10. There exists a discontinuous homomorphism f : R → R such that Gr( f ) is a dense zero-
dimensional subgroup of R × R. Similarly, there exists a homomorphism 1 : T → T such that Gr(1) is a
dense zero-dimensional subgroup of T × T.

Indeed, since the subgroupQ ofR is divisible, there exists a dense subgroup B ofR such thatR � Q⊕B.
Let f : R→ R be a homomorphism such that ker f = B and f (q) = q for each q ∈ Q. It is easy to see that

Gr( f ) =
⋃
{(B + q) × {q} : q ∈ Q}

is a dense subgroup ofR×R. Notice that the subgroup B ofR is a zero-dimensional since B∩Q = {0}. Hence
the subgroup Gr( f ) of R ×R is the union of countably many closed zero-dimensional subsets (B + q) × {q},
with q ∈ Q. Since the plane R × R is a normal space, the countable sum theorem for dimension dim [10,
Theorem 7.2.1] implies that the graph of f is also zero-dimensional.

Our construction of a homomorphism 1 : T → T is very close to that of f . Let us identify the circle
group T with the quotient group R/Z under the canonical projection x 7→ x + Z, where x ∈ R. Since the
subgroup Q/Z of T is divisible, there exists a dense subgroup C of T such that T � Q/Z ⊕ C, algebraically.
Let 1 : T→ T be a homomorphism such that ker f = C and 1(z) = z for each z ∈ Q/Z. A simple verification
similar to the one given above in the case of f shows that Gr(1) is a dense zero-dimensional subgroup of
T × T.

In the following example we construct two topologies τ, τ′ on the real line R such that the identity
mapping f : (R, τ)→ (R, τ′) does not preserve accumulation points of open sets in the domain of f .

Example 2.11. The exist two Hausdorff topological group topologies τ and τ′ on the additive group R of
reals such that the identity mapping f : (R, τ)→ (R, τ′) does not preserve accumulation points of open sets
in (R, τ).

Let τ∗ be the usual interval topology on R and Q the group of rational numbers endowed with the
topology σ inherited from (R, τ∗). Denote by τ the finest topological group topology on R that induces the
topology σ on Q. A local base at zero of (R, τ) is formed by the sets (−1/n, 1/n) ∩ Q, where n ∈ N+. In
particular, the subgroup Q of R is open in (R, τ).

Since the group Q is divisible it splits in R. In other words, there exists a subgroup B of R such that the
mapping m : Q × B→ R defined by m(q, b) = q + b for all q ∈ Q and b ∈ B is an isomorphism. Denote by τ′

the finest topological group topology on R which induces the usual interval topology on B, i.e. τ′�B= τ∗�B.
Then B is open in (R, τ′).

We consider the identity mapping f : (R, τ) → (R, τ′). Take an open set O = (a, b) ∩ Q in (R, τ), where
0 < a < b and a ∈ Q. It is clear that a ∈ clτ(O). Choose a positive integer n such that 0 < a + (−1/n, 1/n). The
neighborhood U = a + ((−1/n, 1/n) ∩ B) of the point a in (R, τ′) satisfies the equality

U ∩ f (O) = U ∩
(
(a, b) ∩Q

)
=

(
a +

(
(−1/n, 1/n) ∩ B

))
∩

(
(a, b) ∩Q

)
= ∅.

Hence a < clτ′ ( f (O)) and f (clτ(O)) 1 clτ′ ( f (O)).
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Remark 2.12. Example 2.11 is a (more complicated) form of a much simpler fact. Let Q be the group of
rationals with the usual interval topology andQd the same group with the discrete topology. Then evidently
the identity isomorphism of G = Q×Qd onto H = Qd×Q is not nearly open. Clearly the groups G and H are
non-discrete and countable (hence ω-narrow.) Notice that the group (R, τ) in Example 2.11 is not ω-narrow.

In Example 2.13 below we present countable topological abelian groups G and H such that no non-trivial
homomorphism f : G→ H preserves accumulation points of open sets in G.

Example 2.13. Let H1 =
{
a/2k : a ∈ Z, k ∈N

}
and H2 =

{
a/5k : a ∈ Z, k ∈N

}
and consider the topological

group refinements τi of the usual topology onQ obtained by declaring each of the groups Hi open in (Q, τi),
where i = 1, 2. Then for every non-trivial homomorphism h : (Q, τ1) → (Q, τ2), there exists an open set
U ⊂ (Q, τ1) for which h(clτ1 (U)) 1 clτ2 (h(U)).

Indeed, since each homomorphism h : Q → Q has the form h(x) = qx for some fixed rational number
q, it suffices to verify our claim only for the identity homomorphism. In this case observe that while
1 ∈ clτ1 ((1, 2) ∩ H1), the neighborhood (0.5, 1.5) ∩ H2 of 1 in (Q, τ2) separates 1 from (1, 2) ∩ H1 in (Q, τ2).
Indeed, we have that(

(1, 2) ∩H1

)
∩

((
0.5, 1.5

)
∩H2

)
=

(
1, 1.5

)
∩ (H1 ∩H2) =

(
1, 1.5

)
∩Z = ∅.

Since the index of Hi in Q is countable, (Q, τi) is a second countable topological group which is of course of
the first category in itself.

3. Refining Group Topologies

The next result is immediate from Example 2.10. In the case of the circle group T, it sheds some
light on [9, Theorem 4.8] which states that every discrete abelian group endowed with the Bohr topology is
zero-dimensional (see also [2, Theorem 9.9.31]).

Lemma 3.1. The additive group of reals R admits a finer second countable, zero-dimensional, locally precompact
topological group topology, while the circle group T admits a finer precompact, second countable, zero-dimensional
topological group topology.

In the next two results we refine (locally) precompact topological group topologies.

Proposition 3.2. Every precompact abelian group G admits a finer precompact zero-dimensional topological group
topology of the same weight.

Proof. The completion of G, say, ρG is a compact topological abelian group. Hence ρG is topologically
isomorphic to a subgroup of Tκ, where κ is the weight of ρG (which coincides with the weight of G). By
Lemma 3.1, T admits a finer precompact, second countable, zero-dimensional topological group topology
which is denoted by τ. Let L = (T, τ). The topology of G inherited from Lκ is as required since the latter
group is precompact, zero-dimensional and has weight κ.

We do not know whether the above result extends to non-abelian groups:

Problem 3.3. Does every non-abelian compact group admit a finer precompact zero-dimensional topological group
topology?

Theorem 3.4. Let G be a locally precompact abelian group. Then there exists a finer locally precompact, zero-
dimensional group topology on G having the same weight as the original topology.

Proof. Since G is locally precompact it can be considered as a dense subgroup of a locally compact abelian
group G∗. It is clear that the groups G and G∗ have the same weight, say, κ. By [12, Theorem 24.30], the
group G∗ is topologically isomorphic toRn

×H, where n is a non-negative integer and H contains a compact
open subgroup K. Notice that the index of K in H is not greater than κ.
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Since w(K) ≤ w(H) ≤ κ, it follows from Proposition 3.2 that the compact group K admits a finer
precompact, zero-dimensional topological group topology σ of weight ≤ κ. Denote by T the coarsest
topological group topology on H which contains the original topology of H and such that (K, σ) is an open
subgroup of (H,T ). Then the topology T is zero-dimensional and locally precompact. Since the index
of K in H is at most κ, the weight of (H,T ) does not exceed κ. Now we take the second countable, zero-
dimensional, locally precompact topological group topology τ′ on R provided by Lemma 3.1. Consider
the topology λ on G which the group G inherits from (R, τ′)n

× (H,T ). It is clear the group (G, λ) has the
required properties.
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